
INTERNATIONAL JOURNAL OF ECONOMICS AND FINANCE STUDIES 
Vol 5, No  2, 2013   ISSN:  1309-8055 (Online) 
 
VARIANTS OF THE CUTTING STOCK PROBLEM 
AND THE SOLUTION METHODS 
 
M. M. Malik 
Abu Dhabi University 
Assistant Professor 
E-mail: mohsin.malik@adu.ac.ae  
 
J. H. Taplin  
University of Western Australia 
Professor  
E-mail: john.taplin@uwa.edu.au 
 
M. Qiu 
University of Western Australia 
Associate Professor  
E-mail: min.qiu@uwa.edu.au 
 
─Abstract ─ 
Over the years, column generation based algorithms such as branch and price 
have been the preferred solution techniques for the classical cutting stock problem 
(CSP). However, most cutting stock problems encountered in the real world are 
variants of the classical CSP with many more complexities. The exact algorithms 
have been found wanting for these variant problems such as cutting stock with 
knives setup considerations, pattern minimization, ordered cutting stock, order 
spread minimization, minimization of open stacks, CSP with contiguity, CSP with 
due dates and service level considerations, CSP with multiple objectives and 
integration of the cutting stock problem with other production processes. This 
paper studies the cutting stock variants with an emphasis on the optimality of 
solutions obtained by the approximate methods.  
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1. INTRODUCTION 
The classical cutting stock problem (CSP) with only a trim minimization goal is 
best solved with the column generation method. The fractional values in the 
solution can be removed by resorting to rounding heuristics or by the branch and 
price algorithm. However, most industrial cutting stock problems are extensions 
of the classical CSP with added constraints and objectives. The effectiveness of an 
exact solution approach like column generation and ‘branch and price’ is limited 
for such complex problems leaving heuristics as the preferred option. The exact or 
global solution is not pursued because it is perceived to be intractable or too 
difficult to obtain and instead, good solutions but not necessarily the best ones are 
deemed to suffice. For example, Haessler (1975) identified knife setup cost as an 
important factor during the conversion stage of a paper mill and solved it with a 
sequential heuristic. Chen, Hart & Tham (1996) solved a combined objective 
function comprising trim loss and knife setup cost with simulated annealing. 
Pattern minimization problem (PMP) is a related problem where minimization of 
knife setup cost is carried out as a secondary objective to the trim loss criterion. 
McDiarmid (1999) classified the pattern minimization problem as ‘strongly NP-
hard’ even if the trim loss solution was trivial implying PMP’s enhanced 
complexity. Forester & Wáscher (2000) used lexicographic search to minimize 
the number of setups or different patterns. Umetani, Yagiura & Ibaraki (2006) 
proposed heuristics for similar CSP variants. Golfeto & Neto (2009) used  multi-
objective evolutionary optimization algorithm to solve the cutting stock problem 
with knife setup considerations..  
The Cutting Stock Problem (CSP) with contiguity, open stacks or order spreads 
are related computationally challenging cases because of the integration of two 
NP-hard problems of pattern generation and sequencing (Becceneri, Yanasse, & 
Soma, 2004). Hinterding & Khan (1995), Ragsdale & Zobel (2004) and Respicio 
& Captivo (2005) used genetic algorithms whereas Forester & Wascher (1998) 
used simulated annealing to solve this CSP variant. Belov & Scheithauer (2007) 
developed a stepwise sequential heuristic for a combined problem of minimizing 
trim loss, open stacks and setup cost. Araujo, Constantino & Poldi (2011) used a 
multi-objective evolutionary algorithm for a similar problem. 
The assessment of above literature shows that the trim minimization problem has 
an efficient exact solution approach in column generation or branch and price 
(B&P) algorithm but the effectiveness of B&P is limited when variants of cutting 
stock problem are encountered in various industries, leaving heuristics as the 

46 
 



INTERNATIONAL JOURNAL OF ECONOMICS AND FINANCE STUDIES 
Vol 5, No  2, 2013   ISSN:  1309-8055 (Online) 
 
preferred option to obtain good solutions. Heuristic methods and meta-heuristics 
are well known for their ability to solve very difficult or nearly intractable 
problems but the optimality of resulting solutions is not guaranteed. Since, in most 
these cases, the global optimal is also unknown, the effectiveness of meta-
heuristics in solving difficult problems cannot be quantitatively measured. Most 
of the computationally challenging cutting stock variants mentioned above are 
essentially two NP-hard problems solved simultaneously. It can be argued that if a 
solution method can efficiently solve one of the two NP-hard problems or part of 
a difficult joint optimization problem, it may be reasonable to assume that 
solution method will also be effective in obtaining a good solution to the overall 
problem. It may also help to quantify the robustness of the heuristic and meta-
heuristic methods to solve a particular type of optimization problem by comparing 
the results with exact solutions which are relatively easy to obtain for the classical 
cutting stock problem. This paper studies the computational complexity of the 
cutting stock variants and the appropriateness of the applied solution methods 
with an emphasis on the quality of obtained solutions by genetic algorithms (GA) 
so as to extrapolate its performance for bigger and more complex CSP variants. 
2. META-HEURISTCS AND THE CUTTING STOCK PROBLEM 
The one dimensional (1-D) cutting stock problem involves optimal allocation or 
grouping of a finite set of items into a number of categories subject to constraints 
and, has been referred to as a ‘grouping optimization problem’. Meta-heuristics 
such as evolutionary algorithms, simulated annealing and tabu search have been 
used as solution methods for the classical cutting stock problem and similar 
‘grouping optimization problems’ such as the bin packing problems (BPP), 
timetabling problems, knapsack problems and vehicle loading problems. 
However, there are divergent views on the effectiveness of a standard genetic 
algorithm in solving grouping optimization problems. Falkenauer (1996) proposed 
a new GA mapping scheme called Grouping Genetic Algorithm (GGA) for the 
BPP wherein each gene hosted a group of candidate solutions. It was deemed that 
with this arrangement, traditional genetic operators like crossover would be less 
disruptive. The improved experimental results were also backed by Gen & Cheng 
(2000) in their analyses of genetic algorithms for bin-packing problems. On the 
contrary, Reeves (1996) did not approve of grouping genetic algorithm and 
instead used the standard genetic algorithm hybridized with a local heuristic to 
reduce the size of the bin packing problem and found it to be effective.   
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Peng & Chu (2010) utilized a two chromosome genetic representation for the 
classical cutting stock problem and the CSP with contiguity. The first 
chromosome consisted of different cutting patterns with each cutting pattern being 
represented by a single gene while the second chromosome represented the 
frequency of cutting patterns. Experimental results showed that their mapping 
scheme showed better or equally good results as those obtained by Liang et al 
(2002) which used mutation as the only genetic operator for their cutting stock 
problem. Other application of evolutionary algorithms that utilized mutation as 
the only genetic operator include Chiong & Beng (2007) for the cutting stock 
problem and Stawowy (2008) for the bin packing problem. Nevertheless, the 
utility of both crossover and mutation in obtaining improved solutions has been 
confirmed by Peng & Chu (2010) when their genetic algorithm performed equally 
well as or better than Liang’s evolutionary algorithm. Therefore, it is reasonable 
to assume that instead of jettisoning crossover altogether, a better genetic 
representation coupled with careful parametric settings is more likely to succeed.  
3. COMPARISON OF GENETIC AGORTHIMS (GA) AND EXACT 
SOLUTIONS TO THE CLASSICAL CSP  
In the following sub-sections, two separate genetic representations are applied to 
the classical cutting stock problem to ascertain their usefulness in solving the 
variants of the cutting stock problem. The rationale behind testing multiple 
representations for suitability stems from the findings of the previous section that 
different GA representations have corresponded to different results 
3.1 GA Representations for the Classical Cutting Stock Problem 
3.1.1 Single Chromosome Representation 
The single chromosome representation for five ordered lengths (m = 5) is shown 
in Figure 1-(a) where each gene represents an ordered length. If a cutting pattern 
is used more than once, it is treated as a new pattern i.e if a pattern is used ‘n’ 
times it appears ‘n’ times in the chromosome with the same combination of 
ordered lengths. Each pattern represents a possible combination of ordered lengths 
to be cut from the jumbo reel, therefore, the number of patterns in the Figure 1-(a) 
represent the required number of jumbo reels to meet the customer demand. The 
figure represents a relatively small problem where seven jumbo reels are sufficient 
to fulfill the demand. Although easy to model, this representation’s major flaw is 
that the length of the chromosome increases considerably with increasing problem 
size, thus, accentuating the effects of crossover.  
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Figure 1: Genetic Representations of 1Dimensional Cutting Stock Problem 

3.1.2 Two Chromosome Representation 
The two chromosome representation models the usage of each cutting pattern and 
its combination in two separate chromosomes as shown in Figure 1-(b). Possible 
combinations of ordered lengths are represented in the chromosome 1 and the 
chromosome 2 represents the frequencies of patterns which is different from the 
single chromosome representation where a repeat pattern was treated as a new 
pattern.  Pattern 1 is used six times, pattern 2 seven times, pattern 3 eight times, 
pattern 4 nine times, pattern 5 not used at all, pattern 6 is used three times and 
pattern 7 is used four times. The total number of jumbo reels used to meet 
customer’s demand is the sum of all the frequencies and for the example shown in 
Figure 1-(b), the required number of jumbo reels is forty three. Figure 1 shows 
that the two chromosome representation can handle much bigger problems with 
an additional chromosome having only a few genes. The two chromosome 
representation is similar to Peng & Chu (2010) except that they assigned a group 
of ordered lengths to a single gene and here, each gene corresponds to a single 
ordered length.  
3.1.3 GA Implementation  
Evolver, a GA application in the Palisade Decision Tools, is used to solve the 
problem. It has the capability to deal with two chromosome representations by 
treating its chromosome as comprising two distinct parts i.e the Evolver 
chromosome will have ‘n+m’ genes with ‘n’ representing the cutting patterns and 
‘m’ the frequencies. All the genetic operators are applied separately on these two 
parts. Evolver also comes with different ‘solving methods’, each of which is a 
different type of genetic algorithm with customized attributes. The Recipe solving 
method is a genetic algorithm that treats each decision variable as an ingredient in 
a recipe, trying to find the best mix by changing each decision variable 
independently. Grouping solving method is a special type of recipe genetic 
algorithm with a reduced search space; it involves multiple variables to be 
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grouped together in sets. The Grouping method is applied on the cutting patterns 
chromosome whereas the Recipe method is suitable for the frequency 
chromosome. A uniform crossover value of 0.5 is used across all experiments and 
auto mutation is used (Palisade, 2009). The initial population of 2500 gave good 
results without significant increase in the computational load and was therefore 
selected for all the experiments. The global known optimum obtained by an exact 
solution method was used as the stopping criterion and in case optimal solutions 
were not obtained by GA, experiments showed that GAs converged before 200 
equivalent GA generations or 500,000 iterations; therefore, it was used as the 
stopping criterion. 
3.2 The Exact Solution Approach 
The exact solutions were obtained by solving the continuous relaxation of the 
original integer problem with the column generation method. With Excel built-in 
functions and a Visual Basic for Application (VBA) program, Solver was 
automated for repeated exchange of information between the restricted master and 
dual problem of column generation approach. Once an optimal solution to the 
linear relaxation was obtained, an appropriate rounding heuristic as proposed by 
Wascher & Gau (1996) was applied to obtain integer solutions. 
3.3 Random Test Instances Generator 
Gau & Wascher (1995) introduced a test set generator (CUTGEN) for the cutting 
stock problem wherein three important input parameters number of cuts or 
number of ordered lengths (m), demand factor (d ̃) and length factor (b) are varied 
one at a time to randomly generate several classes of test instances. Although no 
genetic algorithm representation has been tested against CUTGEN, it has been 
used as a test data generator for various other solution approaches to the CSP 
(Poldi & Arenales, 2009; Umetani et al., 2006; Wascher & Gau, 1996). The 
number of ordered lengths (m) to be cut from the jumbo reel is an important input 
parameter for the cutting stock problem. Different values of ‘m’ used in the 
comparison are 3, 5, 7, 10 and 15. The second input parameter for the cutting 
stock problem is the individual demand of ordered lengths which has been treated 
as a random variable. Average demand per order d ̃is the determinant of the total 
demand for ordered lengths with two values of d ̃ = (10, 50) to differentiate 
between the low and high demand cutting stock problems.  The total demand of 
all ordered lengths is given by (1). 

  (1) 
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The individual demand of each ordered length (li) is represented by the 
following equation:  

 (2) 

Ri is a random variable drawn from a uniform distribution [0,1]. The demand for 
 ordered length is determined by subtracting the individual random demands 

obtained from the above equation from total demand D.  

 

   
(3) 

The ratio of ordered lengths (li) to the jumbo length (L) is defined as the length 
factor (b). The length factor is third important input parameter which may affect 
the solution quality. Consideration of length factor for checking the effectiveness 
of different GA representations appears to have been ignored in all previous 
studies. The jumbo length for all problem instances is fixed at 10,000 length units, 
while different cases have been distinguished with respect to the order lengths. 
The order lengths are modelled as uniformly distributed integer random variables 
which were allowed to vary between one and a certain percentage b of L, i.e. li  = 
[1000, b L]. The values of the length factor b that have been investigated were b= 
0.25, 0.5, 0.75 and 1.0.  It is felt that comparing any solution technique on these 
40 test problems will give a good measure of its effectiveness 
4. RESULTS 
Of the two proposed single item per gene representations, the two chromosome 
representation performance is far superior and its deviation from the optima is 
plotted in Figure 2 against variations in the three input parameters. Figure 2 shows 
that the two chromosomes GA performed very well when the number of ordered 
lengths was less than 10, irrespective of demand and length factor variations. With 
m = 10, GA was still able to reach the global optimal for five of the eight test 
instances belonging to the same class but when faced with high demand and high 
ratio of length factor, the optimal values obtained by GA were two to three units 
(jumbo reels) away from the exact solution. When the number of ordered lengths 
increased to 15, GA was still able to match the exact solution approach when the 
demand and length factor were low but it fell short when the demand and length 
factor increased. 
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Figure 2: GA Performance against Three Input Variables 

5. DISCUSSION 
Two different genetic representations were tested against several classes of cutting 
stock problem and it is noted that because of fewer number of genes, the two 
chromosome representation performed better than the single chromosome 
representation. With smaller problems (m ≤ 5 and d ̃ = 10), their performance was 
similar but as the length of chromosome increased, the single chromosome GA 
started yielding poor results because of the involvement of the genetic operators 
with a greater number of genes. This suggests that the grouping GA introduced by 
Hinterding & Khan (1995) and further transformed by Peng & Chu (2010) into a 
two chromosome representation is likely to perform better because of its much 
reduced size 
The comparison between the exact and approximate solution obtained by genetic 
algorithms also gives us confidence that GA is a good choice to solve CSP 
variants against certain classes of input data. For example, in this study, if the 
number of ordered lengths is equal to or less than ten, the proposed representation 
is likely to perform as well as the exact solution technique with an ability to tackle 
the complexities of CSP variants.  
6. CONCLUSION 
The classical cutting stock problem is best solved with the help of column 
generation or branch and price algorithms but the real world scenarios often 
involve non-linearities and added complexities which can only be captured by 
variants of cutting stock problem. Application of exact solution approaches is 
limited in such scenarios where approximate methods such as heuristics and meta-
heuristics can give good solutions. However, the optimality of solutions is not 
guaranteed because the global optimum is unknown. For such instances, applying 
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the approximate method to the classical cutting stock problem with a readily 
available exact solution will help us determine the performance of the 
approximate method for a bigger and more complex CSP variant. This is 
particularly valid when genetic algorithm is chosen as the approximate solution 
technique because it has been shown in this paper that different genetic 
representations result in dissimilar performances.  
BIBLIOGRAPHY 
Araujo, S. A., Constantino, A. A., & Poldi, K. C. (2011). An evolutionary 

algorithm for the one-dimensional cutting stock problem. International 
Transactions in Operational Research, 18, 115-127.  

Becceneri, J., Yanasse, H., & Soma, N. (2004). A method for solving the 
minimization of the maximum number of open stacks problem within a 
cutting process. Computers & operations research, 31(14), 2315-2332.  

Chen, C., Hart, S., & Tham, W. (1996). A simulated annealing heuristic for the 
one-dimensional cutting stock problem. European journal of operational 
research, 93(3), 522-535.  

Chiong, R., & Beng, O. K. (2007). A comparison between Genetic algorithms and 
Evolutionary Programming based on Cutting Stock Problem. Engineering 
Letters, 14:1.  

Falkenauer, E. (1996). A hybrid grouping genetic algorithm for bin packing. 
Journal of Heuristics, 2(1), 5-30. doi: 10.1007/bf00226291 

Foerster, H., & Wascher, G. (1998). Simulated annealing for order spread 
minimization in sequencing cutting patterns. European journal of 
operational research, 110(2), 272-281.  

Foerster, H., & Wascher, G. (2000). Pattern reduction in one-dimensional cutting 
stock problems. International journal of production research, 38(7), 1657-
1676.  

Gau, T., & Wascher, G. (1995). CUTGEN1: A problem generator for the standard 
one-dimensional cutting stock problem. European journal of operational 
research, 84(3), 572-579.  

Gen M., & Cheng, R. (2000). Combinitorial Optimzation Problems Genetic 
Algorithms and Engineering Optimization (pp. 53-96). New York: John 
Wiley & Sons, Inc. 

Golfeto, R., Moretti, A.  , & Neto, L. (2009). A genetic symbiotic algorithm 
applied to the one-dimensional cutting stock problem. Advanced Modeling 
and OPtimization, 11(4), 473-501.  

53 
 



INTERNATIONAL JOURNAL OF ECONOMICS AND FINANCE STUDIES 
Vol 5, No  2, 2013   ISSN:  1309-8055 (Online) 
 
Haessler, R. W. (1975). Controlling cutting pattern changes in one-dimensional 

trim problems. OPERATIONS RESEARCH, 23(3), 483-493.  
Hinterding, R., & Khan, L. (1995). Genetic algorithms for cutting stock problems: 

With and without contiguity Progress in Evolutionary Computation (pp. 
166-186). 

Liang, K.-H., Yao, X., Newton, C., & Hoffman, D. (2002). A new evolutionary 
approach to cutting stock problems with and without contiguity. 
Computers & Operations Research, 29(12), 1641-1659.  

McDiarmid, C. (1999). Pattern minimisation in cutting stock problems. Discrete 
applied mathematics, 98(1-2), 121-130.  

Palisade. (2009). Evolver Extras Guide to Using Evolver: The Genetic Algorithm 
Solver for Microsoft Excel (pp. 93-97). New York: Palisade Corporation. 

Peng, J., & Chu, Z. S. (2010). A Hybrid Multi-chromosome Genetic Algorithm for 
the Cutting Stock Problem. Paper presented at the International 
Conference on Information Management, Innovation Management and 
Industrial Engineering (ICIII) 26-28 Nov. 2010. 

Poldi, K. C., & Arenales, M. N. (2009). Heuristics for the one-dimensional cutting 
stock problem with limited multiple stock lengths. Computers & 
operations research, 36(6), 2074.  

Ragsdale, C., & Zobel, C. (2004). The ordered cutting stock problem. Decision 
Sciences, 35(1), 83-100.  

Reeves, C. (1996). Hybrid genetic algorithms for bin-packing and related 
problems. Annals of Operations Research, 63(3), 371-396.  

Respicio, A., & Captivo, M. (2005). Bi-Objective Sequencing of Cutting Patterns. 
In T. Ibaraki, K. Nonobe & M. Yagiura (Eds.), Metaheuristics: Progress 
as Real Problem Solvers (Vol. 32, pp. 227-241): Springer US. 

Stawowy, A. (2008). Evolutionary based heuristic for bin packing problem. 
Computers & Industrial Engineering, 55(2), 465-474.  

Umetani, S., Yagiura, M., & Ibaraki, T. (2006). One-Dimensional Cutting Stock 
Problem with a Given Number of Setups: A Hybrid Approach of 
Metaheuristics and Linear Programming. Journal of Mathematical 
Modelling and Algorithms, 5(1), 43-64.  

Wascher, G., & Gau, T. (1996). Heuristics for the integer one-dimensional cutting 
stock problem: a computational study. OR Spectrum, 18(3), 131.  

 

54 
 


	AND THE SOLUTION METHODS
	M. M. Malik
	J. H. Taplin
	University of Western Australia
	Professor
	M. Qiu
	University of Western Australia
	Associate Professor
	─Abstract ─
	3.1.1 Single Chromosome Representation
	3.1.2 Two Chromosome Representation
	3.1.3 GA Implementation
	3.2 The Exact Solution Approach
	3.3 Random Test Instances Generator

	4. RESULTS
	5. DISCUSSION
	6. CONCLUSION

