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─Abstract ─ 
The aim of this study is to model steel price returns by Lévy process. The daily 
LME Steel Billets Spot Prices between 04.01. 2010 and 31.10.2011 are analyzed 
and AR[1] ~ GARCH[1,1] discrete model is found to be the best candidate taking 
all indicators into account. Then the continuous analogue of the discrete model is 
derived from the discrete model parameters. During the overall study, time 
(pathwise), distributional and spectral analysis performed. Finally, it is shown that 
the volatility simulated from both discrete and continuous models shows similar 
volatility patterns. The results of the study could be utilized to predict the 
behavior of future steel prices’ moves. In addition, the finding could be a good 
reference specialist and researchers who are interested in steel market. 
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1. INTRODUCTION 
 
The volatility in the commodity market increases the importance of modeling 
studies in those area and the models which have a success in forecasting the 
commodity prices receive great attention in the last decade. Geman (2005:4) 
analyzed commodity market and relationships between commodities in his book. 
In addition to general commodity market attraction, the steel prices are becoming 
more and more important nowadays and they directly or indirectly affect the 
economy in world. If the historical trends are analyzed, high volatilities, 
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upward/downward jumps and drifts could be easily observed. This means that 
there is no equilibrium in the steel market. Although the researches and analyses 
on the behavior of steel prices together with modeling studies are increasing, it is 
also a reality that steel price modelling is scarce and it could be defined as quite 
new subject in modeling. Those models are really important especially in hedging 
and risk management purposes as well as in trading.  
 
To be able understand the characteristic of steel market, the essential criteria is to 
figure out the stochastic models of steel prices. Since the confidence intervals of 
the models could change with time, the accuracy of the models can be improved 
with variance of error models. It comes with heteroskedasticity concept in error 
terms. If the conditional heteroskedasticity of steel prices could be captured with 
stochastic volatility models (GARCH), then the accuracy of the model could be 
improved easily. It is also time to mention the importance of time horizon 
selection in the analysis. It plays a vital role in the appropriate model selection 
procedure and should be taken into account during all studies. 
 
In financial econometrics, most of the volatility models are in discrete time, 
namely GARCH models. Those discrete time models have been widely used in 
various modeling studies to be able to capture the characteristics of financial data. 
Nelson (1990:7) and Duan (1997:3) studies are only some of those. They tried to 
model the financial data characteristics by GARCH diffusion approximations. 
Because of the fact that continuous time models allow closed form solutions, they 
have advantages with respect to discrete ones and those advantages are tried to be 
utilized with several studies carried out with continuous models. Klüppelberg 
(2004:5) worked on a new continuous time GARCH model, namely COGARCH 
by adapting the single noise process idea.  
 
2. METHODOLOGY 
 
First of all, the stationarity of the data has to be check before starting the discrete 
modelling part. The trend analysis, Augmented Dickey-Fuller test, autocorrelation 
and partial autocorrelation functions are utilized to be able to identify whether the 
data is stationary or not. If the data is not stationary, then either difference or 
logarithmic difference is applied to make it stationary. 
 
The next step is to execute discrete modeling via “Hannan-Rissanen” algorithm. 
In this approach, the results of the algorithm are checked with AIC and BIC 
values to find the best candidate model. The best model should has the lowest 
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AIC and BIC values. The resulted model is controlled for both stationarity and 
autocorrelations left in the residuals. The ARCH effects in the residuals will be 
eliminated with ARCH/GARCH modeling by selecting the best GARCH model. 
Finally, the non-negativity constraints of GARCH process and the covariance 
stationary condition are controlled before moving to the continuous modeling.   
 
In the continuous side, discrete model parameters are used to find the parameters 
for COGARCH. The simulations are carried out for discrete and continuous 
models and results are compared with each others. Overall, the study is covering 
not only time analysis, but also distributional and spectral analysis on the data. 
 
Nelson (1990:7) worked on GARCH diffusion approximation with a different 
way. In the model, there are two different and independent Brownian motions 
which drive the diffusion, although the process is driven by a single noise 
sequence. tG  and volatility process 2

t can be represented as: 
 

)1(
ttt dBdG       t ≥ 0    [1] 

)2(222 )( tttt dBdt      t ≥ 0    [2] 
 
where β > 0, η ≥ 0, and φ ≥ 0 are constants.  
 
Klüppelberg (2004:5) and Ross (2008:8 / 2009:9) together with all others model 
COGARCH with a direct analogue of GARCH. The model is based on Lévy 
process and the model construction is done by taking limits of an explicit 
representation of the discrete time GARCH process.  
 
The COGARCH process 0)( ttG  is defined in terms of its stochastic differential 
dG , such that, 
 

ttt dLdG      t ≥ 0    [3] 

  )(222 ,)( d
tttt LLddtd      t > 0    [4] 

 
where β > 0, η ≥ 0, and φ ≥ 0 are constants.  
 
  )(, d

tLL  is a quadratic variation process of L (Lévy process) which is defined as; 
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The process G jumps at the same time as L (Lévy process) does, and has jump 
sizes; 
 

tt LG         t ≥ 0    [6] 
 
Deriving a recursive and deterministic approximation for the volatilities at the 
jump times, Klüppelberg (2004:5) shows; 

  




t

t
ts

ssii Lds
0

2

0

222
1

2 )(      [7] 

Since s is latent sL is usually not observable, hence using Euler approximation 
for the integral we get; 

 
t

ts ds
0

2
1

2           [8] 





ts

ttts GGL
0

2
1

22 )()(        [9] 

 
Therefore, for the volatility estimation, we end up with; 
 

2
1

2
1

2 )()1(   ttii GG       [10] 
 
The bivariate process 0),( ttt G is Markovian. If 0

2 )( tt is the stationary version 
of the process with 22

0  , then 0)( ttG is a process with stationary increments.  
 
3. DATA ANALYSIS 
 
3.1. Analysis in Time Domain 
 
In this study, LME Steel Billets Spot Prices (in US dollars) have been analyzed. 
The analysis has been performed by using the daily close data over the period 
from January 4, 2010 to October 31, 2011. The data contains 462 observations 
and the graphical representation is given on Figure-1. 
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Figure-1: LME Steel Billets Spot Prices / Time Series Plot  
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Source: Bloomberg / LMFMDY Commodity  
 
It is visually clear from the graph that the price series have a trend and are mean 
non-stationary. The data is checked for a trend and the result shows that there is a 
trend which means it is not stationary. [-9673.2+0.251505 t] It is also checked by 
Augmented Dickey-Fuller test. Test results confirm that the series is not 
stationary. (Table-1) 
 
Table 1: Unit Root Test for LME Steel Billets Spot Prices 

t-Statistic   Prob.*

-2.183019  0.2129
Test critical values: 1% level -3.444311

5% level -2.86759
10% level -2.570055

Augmented Dickey-Fuller test statistic

 
Source: Own Study  
 
Finally, autocorrelation and partial correlation function graphs have been given on 
Figure-2. While autocorrelation values decrease slowly, partial autocorrelation 
values sharply converge to almost zero levels. The decrease in autocorrelation 
could be thought as the fact that random shocks to the system dissipate with time. 
It could be concluded that LME Steel Billets Spot Prices have a trend and so are 
mean non-stationary. Finally, considering the slow decrease in autocorrelation 
values, it could be concluded that there is a long memory structure in the data. 
 
Figure-2: Autocorrelation & Partial Autocorrelation Functions of LME Spot Prices 
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Source: Own Study  
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The next step is to make the data stationary. To achieve mean stationary, 
difference of the series could be used. But, if the series show non-linear trend, the 
differencing creates non-stationary variance. So, to achieve both mean and 
variance stationary, first the logarithm should be taken and then difference of the 
series, which is the logarithmic return. The resulted series is given on Figure-3. 
 
Figure-3: Log Return of LME Steel Billets Spot Prices  
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Source: Own Study  
 
The logarithmic return of steel price series seems to have no trend. The next step 
is to check that whether it is a non-stationary or not. Augmented Dickey-Fuller 
test results confirm that the series is not stationary. (Table-2) 
 
Table 2: Unit Root Test for Log Returns 

t-Statistic   Prob.*

-23.75465  0.0000
Test critical values: 1% level -3.444342

5% level -2.867603
10% level -2.570063

Augmented Dickey-Fuller test statistic

 
Source: Own Study  
 
Finally, the autocorrelation and partial autocorrelation results are obtained. 
(Figure-4) It seems that there is relationship in an order of one.  
 
Figure-4: Autocorrelation & Partial Autocorrelation Functions of Log Returns 
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Source: Own Study  
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The next step is to apply “Hannan-Rissanen” algorithm to decide the mean 
equation. The idea behind the procedure is first to fit an AR model to the data in 
order to obtain the estimates of the noise or innovation. When this estimated noise 
is used in place of the true noise, it enables us to estimate ARMA parameters 
using the less expensive method of least squares regression. The orders are 
determined within the procedure itself using an information criterion. It gives 
AR[1] as the best fit. The results for the first eight models are given at Table-3. 
 
Table 3: Hannan-Rissanen Results and AIC&BIC Values 
Ranking Model Model Parameters AIC BIC

1 AR [1] [{-0.102947},0.000368701] -7.8922 -7.8721
2 MA [1] [{-0.118533},0.000368849] -7.8918 -7.8717
3 AR [2] [{-0.109846,-0.0564174},0.000366953] -7.8836 -7.8435
4 ARMA [1,1] [{0.289847},{-0.408522},0.000367832] -7.8812 -7.8411
5 MA [2] [{-0.117819,-0.0336272},0.000369023] -7.8780 -7.8378
6 MA [4] [{-0.113389,-0.0375167,0.0863235,0.113773},0.000359727] -7.8768 -7.7966
7 AR [4] [{-0.115142,-0.0447406,0.0698673,0.125534},0.000361382] -7.8722 -7.7920
8 AR [3] [{-0.108007,-0.0507689,0.0568196},0.000366382] -7.8718 -7.8116  

Source: Own Study  
 
Moreover, Stationary-Q test result for AR[1] model states that it is stationary. 
Finally, the Portmanteau test is used to see whether there is any autocorrelation is 
left. AR[1] Portmanteau statistics for the first 35 autocorrelations is 30.53, while 
95% confidence level Chi-Square Distribution result is 48.60. In other word, there 
is not enough evidence to state that there is autocorrelation left in the residuals. 
 
3.2. Analysis in Frequency Domain 
 
The aim in this section is to analyze the data in frequency domain. It is also called 
the time series analysis in Fourier space. It enables us to work with the same data 
in different representation and all should give the same result. When the spectrum 
analysis has been carried out, it could be observed that while the paths are same 
for both the smoothed spectrum of the data and the spectrum of AR[1] estimates, 
there are some noise due the GARCH effect. (Figure-5)  
 
Figure-5: Smoothed Spectrum of Data vs Hanning Window Spectrum of AR[1] 
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Source: Own Study  
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3.3. GARCH Modelling  
 
The data has to be checked for GARCH modeling. In other word, it is controlled 
to be able to see that is there any GARCH effect of not. ARCH LM test result 
shows that there is GARCH effect in the series which is to be modeled. (LM 
Statistic: 6.884 & 95% confidence level Chi-Square Distribution result: 3.841)   
 
GARCH effect is analyzed and the results for different models indicated that 
GARCH[1,1] is the best fit via lowest AIC value. The parameters for constant, 
ARCH[1] and GARCH[1] coefficients are 0.000007970611852, 0.07482224309 
and 0.9049436507 respectively. The estimated GARCH obeys the non-negativity 
constraints of GARCH process, since all coefficients are positive. The model also 
satisfies the covariance stationary condition that sum of coefficients is less than 1.  
 

ttt XX  1102947.0000368701.0  
2

11
2 9049436507.090748222430.0118520000079706.0   ttt   

 
3.4. Distribution Analysis on Errors 
 
The aim of this section is to find the best distribution which fit to GARCH model 
error series. Normal, Johnson SU, Weibull, Gumbel and Cauchy distributions are 
being tested for distribution fitting. Histograms, probability plots, Q-Q plots and 
cumulative distribution functions are checked together with different statistical 
tests including Anderson-Darling, Cramér-von Mises, Kolmogorov-Smirnov and 
Kulper. As a result, Johnson SU is found to be the best fit. (Figure-6) 
 
Figure-6: Historgram and Q-Q Plot for Johnson SU Distribution and Errors  
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Source: Own Study  
 
3.5. Continuous Modelling  
 
When the discrete time GARCH[1,1] model had been estimated, the continuous 
time COGARCH[1,1] model can be found from the discrete model parameters. 
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The parameters of continuous COGARCH [1,1] model in terms of discrete time 
GARCH[1,1] model can be written as: 
 

     )ln(     /  
 
Therefore, the parameters of COGARCH [1,1] model can be calculated as: 
 

06118520.00000797  
164060980.09988260)070.90494365ln(   

982724210.08268165436507309/0.90490.07482224/    
 
After the parameter estimation, the simulation has been carried out by using the 
numerical solutions for tG  and 2

t . The Lévy process driven by Johnson-SU 
process, which is found to be the best fit, is utilized. Figure-7 shows the discrete 
GARCH model and continuous GARCH (COGARCH) model. It could be easily 
realized that both models are showing similar pattern in time. 
 
Figure-7: Volatility Graphs of COGARCH & GARCH & Log Returns 
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Source: Own Study  
 
4. CONCLUSION 
 
In this study, log returns of daily LME Steel Billets Spot Prices between 04.01. 
2010 and 31.10.2011 have been modeled with AR[1] ~ GARCH[1,1] discrete 
model which is the best candidate. The discrete model parameters are used to 
construct the continuous COGARCH[1,1] analogue. Then, the simulated volatility 
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results of both discrete and continuous models are compared with each other. It 
was shown that both models follow the similar patterns especially in the jumps. 
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