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─Abstract ─ 
Mortality and longevity risk is usually one of the main risk components in 
economic capital models of insurance companies. Above all, future mortality 
expectations are an important input in the modeling and pricing of long term 
products. Deviations from the expectation can lead insurance company even to 
default if sufficient reserves and capital is not held. Thus, Modeling of mortality 
time series accurately is a vital concern for the insurance industry. The aim of this 
study is to perform distributional and spectral testing to the mortality data and 
practiced discrete and continuous time modeling. We believe, the results and the 
techniques used in this study will provide a basis for Value at Risk formula in 
case of mortality.  
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1. INTRODUCTION 
 
1.1. Mortality and Longevity as Risk Factor  
Mortality risk is defined as the risk of average life to be shorter than expected and 
vice versa for the longevity. Mortality and longevity risks are one of the main 
risks that the Life Insurance companies are exposed to. The mortality and 
longevity risk is a concern for the insurance companies in various forms. First of 
all, in product development processes, it is a vital decision to use accurate 
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assumptions. However, it is quite a difficult task taking into account the durations 
of the products reaching 20 or even 30 years. Too loose assumptions can cause 
life insurance firms to end up in locked-in loss positions while too tight 
assumptions can lead to unmarketable products.  
 
Furthermore, Mortality and Longevity risks are one of the most important risk 
components in Economic Capital Models of Life Insurance companies. According 
to the QIS 5 study, held by European Insurance and Occupational Pensions 
Authority, for the participating solo Life undertakings, 52% of the underwritings 
risks are due to longevity and mortality (EIOPA, 2009).  
 
This study aims to start a discussion in the industry on mortality modeling. 
Mortality rates are taken as a financial time series and analyzed accordingly to 
come up with certain findings which can be useful for future research.  
 
1.2. Data  
Mortality tables for UK between the years of 1922 to 2009 are available for each 
year in the HMD, Human Mortality Database. In our analysis, we have identified 
the death rate  for the age of 55 from the mortality table for each year. We 
have used the mortality rate for a single age for every year in order to be able to 
identify the trends in mortalities. The reader should be aware that the results might 
be different for different ages.  
 
We have not used mortality tables for males or females, rather used the mortality 
tables for the whole population. This choice is in line with the new legislation in 
Europe where the gender cannot be used for premiums or benefits. 
 
2. TIME SERIES ANALYSIS 
 
2.1. Analysis in Time Domain  
 
The data on figure 1 is the mortality rates for the age of 55 from 1922 to 2009 for 
UK. The data is trending downwards (as expected from the medical 
developments) and includes jumps, biggest in 1940, due to the Second World 
War.  
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Figure 1: Mortality Rates for the UK from 1922 to 2009 for the age of 60 
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Due to the trend the series is mean nonstationy.The nonstationarity is also evident 
in the bahaviour of autocorrelations where the autocorrelations die slowly while 
the partial autocorrelations sharply converge to zero. To maintain both mean and 
variance stationarity, we have preferred log differenciencing. According to visual 
graph, the Autocorrelation, partial autocorrelation and the Augmented Dickey-
Fuller test results all indicate that the desired stationarity is achieved. Figure 2 
below provides the autocorrelation and partial autocorrleation functions of the 
transformed data.  
 
Figure 2: Autocorrelation (ACF) and Partial Autocorrelation (PACF) graphs of  log difference of 
yearly mortality rates 
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The visual representation of the ACF and the PACF function of the data indicate a 
relationship in the order of one. Furthermore there seems to be significant AC on 
the order of 6 to 10 and 13. Our expectation is in line with the AC and PAC which 
is significant on the order of one. We expect to see short term trends in mortality 
rates due to pandemics or wars. However we do not see any reason to assume a 
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higher order relationship. We apply the Hannan-Rissanen algorithm to decide the 
mean equation for our time series. 
 
 In the Hannan Rissanen Procedure, first a AR model is fitted to the data and the 
errors are obtained. The estimated errors are used in place of true errors and by 
least squares regression the ARMA model parameters are fit. We begin with 
fitting  models until  by using the Levinson Durbin algorithm. 
Akaike information criterion (AIC) is calculated for the AR models and the  
model with the smallest AIC is chosen. Then, from the best fitted  model the 
residuals are calculated and by using the least squares estimation,  
coefficients are estimated up to  and  . Lastly, model with the 
lowest Bayesian Information Criterion (BIC) is chosen. The results from best to 
worst fit can be seen in table 1.  

Table 1 – Hannan Rissanen Estimate Results 

Model Parameters AIC BIC   

AR(1)       

MA(1)       

AR(2)       

MA(2)       

ARMA(1,1)       
 
 
Although Hannan Rissanen Procedure and the BIC points the AR(1) model; 
according to AIC the best fit is MA(4). We will go on with  AR(1) as estimated by 
Hannan Rissanen.  
 
The residuals after the AR(1) mean modeling, does not possess any significant 
AC or PAC. Furthermore we have applied the Portmanteau test to see if there is 
any autocorrelation is left. Portmanteau tests whether the first h correlations of 
residuals together have any significant autocorrelation or not. The test statistic is 
calculated as 

  (1) 
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where n is the number of data points and h is the number of autocorrelations we 
want to evaluate. The portmanteau statistic calculated for AR(1) for the first 35 
autocorrelations is 40.85 while the table value (with a degree of freedom equal to 
h-p-q=35-1-0=34) . Thus, the portmanteau statistics also 
indicates that we do not have enough evidence to believe there is autocorrelation 
left in the residuals for AR(1) model.   
 
2.2. Analysis in Frequency Domain  
So far all the analysis done are functions of time. One example can be the 
autocorrelations as function of the time lag. This is called the time series analysis 
in time domain.  In this section of the study, we will do analysis with an 
alternative domain which is called the frequency domain. It is also called the time 
series analysis in Fourier space. Working with different domains is simply 
different representations of the same data. They do end with same the result. 
However, frequency domain analysis can yield powerfull methods for analysis 
and can provide new insights.  
 
Figure 3 represents us  the smoothed spectrum of the data and the spectrum of the 
synthetic AR(1) estimated. As seen from the graph, the AR(1) and the actual data 
follow the same path with some noise in the actual data due to the GARCH effect.  
  
Figure 3: Spectrum of synthetic AR(1) and the Smoothed Spectrum actual data 
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2.3. Variance Equation Estimation  
The data provide evidence of dependencies in the variances. The distribution of 
residuals after mean modeling poses fat tails with a kurtosis of 5.61.  Furthermore; 
there is significant autocorrelation for squared residuals. We have also applied 
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ArchLM test as a formal test for the existence of a GARCH effect. The calculated 
LM statistic for the existence of ARCH effect is 8.74 while the  
indicating that the null hypothesis that there is no GARCH effect is rejected. For 
the GARCH modeling, we will apply a GARCH(1,1) model to be used in 
COGARCH(1,1) estimation as a basis. GARCH(1,1) is chosen due its wide 
application and practical usage.  
 
2.4. Distribution fit for the errors  
The smoothed histogram of errors left after mean and variance modeling is in 
figure 4. The histogram has long tails compared to normal. For distribution fitting, 
we have tested various distributions including normal, Johnson SU, Weibull, 
Gumbel, Cauchy. The tests done includes controlling the histogram and the 
distribution PDF’s, Checking the Q-Q plots, and conducting distribution fit tests.  
 
Figure 4: Smoothed Histogram of errors 

   
 
The results of all the distributions will not be presented for simplicity. But the 
results of the best fit distribution, Johnson SU is presented below. As seen from 
the graph, Johnson SU has a good performance in fitting the tail behavior of the 
errors. Johnson SU is a transformation of the normal distribution developed by 
Johnson (Kleiber et al.,2003) 
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Figure 5: PD of Johnson SU (in red) and Smoothed Histogram of errors 
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The fit also can be observed from the Q-Q plot and probability plot graphs.  
 
Figure 6: Probability plot and Q-Q plot of Johnson SU distribution and the errors 
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We have also conducted various goodness of fit tests. The null hypothesis is that 
the data is drawn from a population with Johnson SU distribution. All the p-values 
indicate that the null hypothesis is not rejected at 5%. The results are in Table 2 
 
Table 2 Goodness of Fit test results for Johnson SU 

  Statistic  P-Value 
Anderson-Darling       0,1186           0,9998     
Cramér-von Mises       0,0154           0,9995     
Kolmogorov-Smirnov       0,0338           0,9999     
Kuiper       0,0657           0,9994     
Pearson c2       4,4483           0,9549     
Watson U2       0,0144           0,9935      
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3. METHODOLOGY 
3.1. COGARCH(1,1) process  
 
COGARCH(1,1) process is defined as the solution to the following stochastic 
differential equations. 

  

(2) 

  (3) 
Where   L is Lévy process and  is 
discrete part of covariation. (Klüppelberg et al. 2009) 
 
Assuming the data consist of intervals of time length equal to r, the equations 2 
and 3 become 

  
(4) 

  
(5) 

 
For  r = 1;  

  
(6) 

 
We approximate the integral and the sum on the right hand side of the equation. 
For the integral; we use a simple Euler Approximation 

 
 
We can also approximate the sum as; 

 
 
Thus we end up with an discretized version of equation 3  

  (6) 
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We can clearly see the anologue with the Garch(1,1) which is; 
  (7) 

where  
 
 
3.2. Application  
Discretized model for continuous time model is given by  

  (8) 
  (9) 

 
With some simplifications;  

 (10) 
 
since the Garch(1,1) can be written as 

  (11) 
 
Then, with equation 10 and 11 we can find the parameters for the 
COGARCH(1,1) as follows 

;  ;   
 
The model we have estimated from our data is 

  
  

 
Thus; the continuous model parameters are; 

; ;   
 
We have used the above parameters with errors generated from the fitted Johnson 
SU distribution for simulating the COGARCH(1,1) process for mortality rates.  
 
The results of the volatility process are presented in the table 4 
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Table 4 GARCH(1,1) and COGARCH(1,1) results 
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4. CONCLUSION 
Mortality rates for UK from 1922 to 2009 was modeled by AR(1),GARCH(1,1).  
Then,  using the parameters estimated for the discrete model; COGARCH(1,1) 
was applied to the data. The COGARCH was applied by estimating the 
distribution of errors without using jumps. The results indicate that the 
COGARCH model generates reasonable volatilities 
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