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─Abstract ─ 
We proposed a continuous time GARCH known as COGARCH(p,q) model for 
modeling the volatility of Turkish interest rates. COGARCH (p,q) models have 
been statistically proven successful in capturing the heavy-tail behaviour of the 
interest rates . We demonstrate the capabilities of COGARCH(p,q) model by 
using Turkish short rate. The Turkish Republic Central Bank’s benchmark bond 
prices are used to calculate the short-term interest rates between the period of 
15.07.2006 and 15.07.2008.  COGARCH(1,1) model is chosen as best candidate  
model in modeling the Turkish short rate for the sample period. 
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1. INTRODUCTION 
Modeling the interest rate dynamics is an expanding research area because of 
theoretical as well as technical consideration. Economic agents, both private and 
public, monitor closely the evolution of the interest rate movements in order to 
make decisions. For this reason, modeling the interest rate dynamics plays 
important roles in especially macroeconomic policy decision makings, derivative 
pricing, and hedging and risk management for fixed income securities. The 
current literature has massive number of studies in this field. Some of them are 
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Ait-Sahalia (1996:1) (1999:2), Stanton (1997:14), Chapman and Pearson 
(1998:7), Hong et.al (1996:9), and Pritsker (1998:13).  
 
These studies show some important properties of spot interest rates in developed 
financial markets, especially in the U.S. markets. According to the studies, there 
exist a significant mean reverting for the U.S. interest rates, although existence of 
a non-linear drift is inconclusive. Chan et.al. (1992:6) and Hong et.al. (1996:9) 
find that the interest rate volatility tends to be higher when the interest rate level is 
higher, which is often characterized by a constant eleasticity variance (CEV) 
specification. On the other hand, Gray (1996:8) points out that regime switching 
and jump models help capturing volatilty clustering and particularly the excess 
kurtosis and heavy tails of spot interest rates. 
 
Moreover, it is also important to capture conditional heteroskedasticity of interest 
rates by stochastic volatility / GARCH models.  In this paper, we move into this 
area by modeling the interest rate volatility with continuous-time GARCH 
(COGARCH) which was introduced by Klüpperg by using Turkish benchmark 
bond rate. 
 
2. METHODOLOGY 
2.1. Related Work 
In financial econometrics, the majority of the volatility models are discrete-time 
GARCH models. The models have been widely used in modeling the stocks 
returns, currencies, interest rates and similar financial assets. These discrete-time 
models have been successful in capturing the characteristics of such financial 
data, for example, heavy tails, volatility clustering and dependencies without 
correlation. There have been several attempts to model these financial data by 
using continuous-time models. The continuous-time models have advantage over 
discrete-time models that they allow closed form solutions for options and other 
derivatives pricing.  
 
One of the notable studies among these attempts is the GARCH diffusion 
approximation of Nelson (1990:12). Even though, GARCH process is driven by a 
single noise sequence, the diffusion limit is driven by two independent Brownian 
motions  and . The volatility process  and  take the 
form of; 
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,  

 
As Nelson’s diffusion limit, another important study in this area is Barndorff-
Nielsen and Shephard’s (2001:3) (2001:4) stochastic volatility model in which 
volatility process  is an Ornstein-Uhlenbeck (O-U) process driven by a 
nondecreasing (subordinator) Lévy process. More precisely, let  be a 
subordinator and . Then the volatility process  is defined by the 
stochastic differential equation  

 
Where  is a finite random variable independent of   and  .  
The  satisfies the equation of the form 

  
where  and  are constants and   is standard Brownian motion. As in 
Nelson’s model, the process  is again driven by two independent noise processes 
and the volatility process  evolves independently of  the process  in the 
equation for .  
 
2.2. COGARCH(1,1) Model 
 
The models of Nelson, and Barndorff-Nielsen and Shepherd have two 
independent sources of uncertainty, whereas the discrete-time GARCH process is 
driven by a single white noise process. As Klüppelberg et. Al (2004:11) pointed 
out, in GARCH models, the idea of large innovations in the price processes are 
almost immediately manifested as innovations in the volatility process, but these 
feedback mechanism is lost in models such as the Nelson’s continuous time 
version. Klüppelberg et.al (2004:10) introduced a different approach to a 
continuous-time model. The COGARCH model , is based on a single background 
driving Lévy process. Their construction is based on taking a limit of an explicit 
representation of the discrete-time GARCH(1,1) process to obtain a continuous-
time analog.  

The COGARCH process 0)( ≥ttG  is defined in terms of its stochastic differential 
dG , such that 
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   t≥0        

,  0>t    
where 0>β , 0≥η , and   are constants. 

 is the quadratic variation process of L  which is defined as  

       
where  for 0≥t . 
The process G  ‘jumps’ at the same time as L does, and has jump sizes 

  0≥t               
Klüppelberg (2004:10) shows the identity as 

 0≥t      
Deriving a recursive and deterministic approximation for the volatilities at the 
jump times we get 

                 
since sσ  is latent and ΔLs is usually not observable, hence using Euler 
approximation for the integral we get 

                 
              

therefore for the volatility estimation we end up with  
             

The bivariate process 0),( ≥ttt Gσ  is Markovian. If 0
2 )( ≥ttσ  is the stationary version 

of the process with
22

0 ∞= σσ , then 0)( ≥ttG  is a process with stationary increments. 
(Klüppelberg, 2004:10). 
 
3. DATA ANALYSIS 
The data we are going to use in this paper are the daily series of Turkish Republic 
Central Bank’s benchmark bond rates between the period of 15.07.2006  and 
15.07.2008 (729) observations. The interest rates are calculated by using the 
benchmark bond prices of the sample period. The following figure exhibits the 
moving tendency of the Turkish benchmark bond rates for the sample period.  
 
 
 



INTERNATIONAL JOURNAL OF ECONOMICS AND FINANCE STUDIES 
Vol 3, No  1, 2011   ISSN:  1309-8055 (Online) 
 

 203

Figure 1: Time Series Plot of the TCMB Benchmark Bond Rates 
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Source: Turkish Republic Central Bank’s Web Page http://www.tcmb.gov.tr/ 
 
The figure 1 implies that the series are not stationary moreover the Augmented 
Dickey-Fuller test results confirm that by not rejecting the null hypothesis of the 
unit-root (Table 1).  
 
Table 1: Unit-Root Test  

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic  0.092674  0.7118 
Test critical values: 1% level  -2.568151  
 5% level  -1.941260  
 10% level  -1.616406  

Source: Own study 
 
Since the original series have a unit-root, we need to transform them into 
stationary series by taking the first difference of them. The figure 2 shows the first 
difference of the series that we are going to use in our analysis.  
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Figure 2: Time Series Plot of the Benchmark Bond Rates (First Differences) 
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4. EMPIRICAL RESULTS 
Before building a continuous-time GARCH model, a discrete-time GARCH 
model must be estimated. The Akaike’s information criteria (AIC) suggests a 
GARCH(1,1) model for the series which satisfies the mean and variance equations 
of the form 

 
 

The table 2 shows the output for the estimated GARCH(1,1) model.  
 
Table:2 Estimation Coefficients of GARCH(1,1) Model 
 
                            Value           Std.Error         t value    Pr(>|t|)  
C                         4.256e-005   9.346e-005     0.4554    0.64899197 
A                        2.972e-007   1.064e-007      2.7931    0.00535838 
ARCH(1)           3.892e-002   9.217e-003      4.2228    0.00002721 
GARCH(1)        9.162e-001   2.405e-002 3   8.0889    0.0000000 
AIC(4) = -6633.159 
BIC(4) = -6614.798 
 
The estimated model obeys the non- negativity conditions of the GARCH process 
as all the coefficients are positive. The model also satisfies the covariance 
stationary condition that sum of coefficients is less than 1.  Also, GARCH(1,1) 
coefficients are statistically significant in terms of t-value. The Ljung-Box serial 
correlation test with p-value 0.8031, and ARCH LM test with p-value 0.9759 
indicate that there are no serial correlation and ARCH effect in the residuals. 
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GARCH(1,1) model is therefore a satisfactory model for our sample data.  The 
candidate model therefore reads as 

 
 

 
After estimating an appropriate discrete-time GARCH process, the next step in the 
analysis would be estimating a continuous-time model by using discrete model 
parameters. The COGARCH(1,1) model which takes the form of 

   t≥0        

,  0>t    
The parameters of the continuous model are equal to 

.  
The COGARCH(1,1) model parameters in this case are 

. 
To start the simulation we use numerical solutions for and   also use a Lévy 
process driven by Cauchy process. The figure 3 below shows the time plot of the 
simulated values of COGARCH(1,1) process. And the figure 4 shows the 
volatility processes generated by GARCH(1,1) and COGARCH(1,1) models 
compared to real volatility. As we can infer from the figure 4 that both models are 
successful in capturing the volatility clustering as both volatility processes mimic 
the real volatility. 
 
Figure 3: COGARCH(1,1) and GARCH(1,1) Simulated Series 
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Figure 4: Real Volatility vs. GARCH(1,1) and COGARCH(1,1) Volatility 
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5. CONCLUSION 
This paper is an analysis of the interest rate volatility with continuous-time 
GARCH processes. We have used daily data of the Turkish benchmark bond rate 
as sample data between the period of 15.07.2006 and 15.07.2008. The 
COGARCH(1,1) model is applied as canditate model for the sample data and it 
has been proven as a parsimonuous model in analyzing the characteristics of the 
Turkish interest rate volatility. Although, COGARCH(1,1) model is successful in 
capturing the stylized characteristics of the interest rate data, continuous-time 
models would be more suitable for modeling the asset returns and foreign 
exchange rates, because of the availability of high-frequency data for these 
financial series. 
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