CUSP FORMS AND NUMBER OF REPRESENTATIONS OF POSITIVE INTEGERS BY DIRECT SUM OF BINARY QUADRATIC FORMS

Müberra GUREL ${ }^{1}$
${ }^{1}$ Department of Mathematics-Computer, Istanbul Aydın University Florya, Istanbul

E-mail: muberragurel@aydin.edu.tr

Abstract

In this study, we calculated all reduced primitive binary quadratic forms which are $E_{1}=x_{1}^{2}+x_{1} x_{2}+8 x_{2}^{2}, \quad \Phi_{1}=2 x_{1}^{2}+x_{1} x_{2}+4 x_{2}^{2}, \quad \Phi_{1}^{b}=2 x_{1}^{2}-x_{1} x_{2}+4 x_{2}^{2}$. We find the theta series \oplus_{Q}, Eisenstein part of \oplus_{Q} and the generalized theta series which are cusp forms by computing some spherical functions of second order with respect to Q. We obtain a basis of the subspace of $\boldsymbol{S}_{4}\left(\mathrm{I}_{0}(\mathbf{3 1)})\right.$. Explicit formulas are obtained for the number of representations of positive integers by all direct sum of three quadratic forms $F_{1}=x_{1}^{2}+x_{1} x_{2}+8 x_{2}^{2}, \Phi_{1}=2 x_{1}^{2}+x_{1} x_{2}+4 x_{2}^{2}, \Phi_{1}^{n}=2 x_{1}^{2}-x_{1} x_{2}+4 x_{2}^{2}$.

Keywords: Positive Definite Quadratic Forms, Spherical Functions, Theta Series, Cusp Forms, Eisenstein Series

1.INTRODUCTION

Modular forms have played an significant role in the mathematics of the 19th and 20th centuries, mostly in the theory of elliptic functions and quadratic forms. Quadratic forms occupy a central place in number theory, linear algebra, group theory, differential geometry, differential topology, Lie theory, coding theory and cryptology.
In this study, we focus on how to find a formula which solve problem of representation numbers of quadratic forms with discriminant -31 . All calculations have been done by Maple.
Here, we will follow the method described in [$1,2,6$] to determine the number of representations of some direct sum of quadratic forms of discriminant -31 .
Let Δ be a negative integer such that
$\Delta=\left\{\begin{array}{c}4 d \text { if } d \equiv 2,3 \bmod 4 \\ d \text { if } d \equiv 1 \bmod 4\end{array}\right.$
where d is square-free integer. It is called fundamental discriminant. Let $r(n ; Q)$ denote the number of representations of n by Q.

Let $r(n ; Q)$ denote the number of representations of n by Q. It is known that there exists a ont-to-one correspondence between $\operatorname{SL}(2, \mathbb{Z})$ equivalence classes of positive definite binary quadratic forms

$$
Q=a x^{2}+b x y+c y^{2}
$$

with integral coefficients of fundamental discriminant Δ and ideal classes of imaginary quadratic field $Q(\sqrt{d})$. In this correspondence, the number $r(n ; Q)$ of representations of integer n by Q
$Q=n$
is equal to the number w of roots of 1 in $Q(\sqrt{d})$ times the number of ideals in the corresponding ideal class of norm n. Let
$\theta_{Q}(q)=\sum_{(Q, y \in \mathbb{Z} \times \mathbb{Z})} q^{Q(x, y)}=\sum_{n=0}^{\infty} r(n ; Q) q^{n}$
be the theta function associated to positive definite quadratic form Q.

In this formulas Φ_{1} can be replaced by its

CUSP FORMS AND NUMBER OF REPRESENTATIONS OF POSITIVE INTEGERS BY DIRECT SUM OF BINARY QUADRATIC FORMS Muberra GUREL

It is known that it is a modular form of weight 1 with Dirichlet character
$x(a)=\left(\frac{\Delta}{a}\right)$
expressed by Kronecker symbol. In fact it is Legendre symbol if a is an odd prime.
There exist 3 inequivalent classes of binary quadratic forms of discriminant -31 whose reduced primitive binary quadratic forms are
$F_{1}=x_{1}^{2}+x_{1} x_{2}+8 x_{2}^{2}$
$\Phi_{1}=2 x_{1}^{2}+x_{1} x_{2}+4 x_{2}^{2}$
$\Phi_{1}^{b}=2 x_{1}^{2}-x_{1} x_{2}+4 x_{2}^{2}$
Here, F_{1} is the identity element. Φ_{1}^{t} is the inverse of Φ_{1}.
Since -31 is prime number then there is only one genus, i.e., the principal genus.
F_{k}, Φ_{k} denote the k direct sum of F_{1}, Φ_{1} respectively for $k \geq 1$. These binary quadratic forms form a group whose order is 3 such that
$\Phi_{1}, \Phi_{1}^{2}=\Phi_{1}^{d}, \Phi_{1}^{a}=F_{1}$
In this paper, formulas for $r(n ; Q)$ are derived for any positive integer associated tot he following quadratic forms
$Q=F_{4}, \Phi_{4}, F_{1} \oplus \Phi_{a}, F_{2} \oplus \Phi_{2}, F_{a} \oplus \Phi_{1}$.
inverse Φ_{1}^{v}.

2.POSITIVE DEFINITE FORMS

Let $Q=a x^{2}+b x y+c y^{2}$. A binary quadratic form is primitive if the integer a, b and c are relatively prime. Moreover, if $\Delta=b^{2}-4 a c<0$ and $a>0$ then $Q(x, y)$ is positive definite. $M_{k}\left(\Gamma_{0}(N), X_{\Delta}\right)$ denotes the space of modular forms on $\Gamma_{0}(N)$ of weight k, with character $X_{\Delta} \cdot S_{k+2}\left(\Gamma_{0}(N), \chi_{\Delta}\right)$ denotes the space of all cusp forms of weight k, with character \mathcal{X}_{Δ}. Definition 1 Let Q be a positive definite quadratic form of $2 k$ variables
$Q=\sum_{1 \leqslant i \leq j \leq 2 k}^{2 k} b_{i j} x_{i} x_{j}, b_{i j} \in \mathbb{Z}$
and the matrix A defined by
$a_{i i}=2 b_{i i}, a_{j i}=a_{i j}=b_{i j}$ for $i<j$
Let D be the determinant of the matrix A and $A_{i j}$ the cofactors of A for $1 \leq i_{i j} \leq 2 k$. If $\delta=\operatorname{gcd}\left(\frac{A_{i i}}{2}, A_{i j}\right.$ for $\left.1 \leq i, j \leq 2 k\right)$, then $N:=\frac{D}{\delta}$ is the smallest positive integer, called the level of Q, for which $N A^{-1}$ is again an even integral matrix like $A . \Delta=(-1)^{k} D$ is called the discriminant of the form Q.
Theorem 1 Let $Q: \mathbb{Z}^{2 k} \rightarrow \mathbb{Z}$ be a positive definite integer valued form of $2 k$ variables of level N and discriminant Δ. Then

1. The theta function

$\theta_{Q}(q)=\sum_{\left(n_{1} n_{2} \ldots, n_{k}\right) \in \mathbb{Z} \times \mathbb{Z} \times \ldots \times \mathbb{Z}} q^{Q\left(n_{1}, n_{2}, n_{k}\right)}=1+\sum_{n=1}^{m \infty} r(n ; Q) q^{n}, q=e^{2 \pi i z}(*)$
is a modular form on $\Gamma_{0}(N)$ of weight k and character χ_{Δ}, i.e., $\theta_{Q} \in M_{k}\left(I_{0}(N), \chi_{\Delta}\right)$, where $\chi_{\Delta}(d):=\left(\frac{\Delta}{d}\right), d \in(\mathbb{Z} / N \mathbb{Z})^{\mathrm{x}},\left(\frac{\Delta}{d}\right)$ is the Kronecker character.
2. The homogeneous quadratic polynomials in $2 k$ variables $\varphi_{i j}=x_{i} x_{j}-\frac{1}{2 k} \frac{A_{i j}}{D} 2 Q, 1 \leq i_{s} j \leq 2 k$ are spherical functions of second order with respect to $Q .\left({ }^{* *}\right)$
3. The theta series $\theta_{Q q_{i j}}(q)=\sum_{n=1}^{m}\left(\sum_{Q=n} \varphi_{i j}\right) q^{n}$ is a cusp form in $S_{k+2}\left(\Gamma_{0}(N), X_{\Delta}\right)$. (***)
4. If two quadratic forms Q_{1}, Q_{2} have the same level N and the characters $\chi_{1}(d), \chi_{2}(d)$ respectively, then the direct sum $Q_{1} \oplus Q_{2}$ of the quadratic forms has the same level N and the character $\chi_{1}(d) \cdot \chi_{2}(d)$.

Now, let's look at the positive definite quadratic forms of discriminant $\mathbf{- 3 1}$.
1- For the quadratic form $F_{1}=x_{1}^{2}+x_{1} x_{2}+8 x_{2}^{2}$,
$2 F_{1}=2 x_{1}^{2}+2 x_{1} x_{2}+16 x_{2}^{2}=\left(x_{1}, x_{2}\right)\left(\begin{array}{cc}2 & 1 \\ 1 & 16\end{array}\right)\binom{x_{1}}{x_{2}}$
the determinant of the matrix and cofactors are $D=31, A_{11}=16, A_{12}=A_{21}=-1, A_{22}=2$.
So $\delta=1, N=D=31$ and the discriminant is $\Delta=(-1)^{2 / 2} 31=-31$. The character of F_{1} is the Kronecker Symbol $\chi(d)=\left(\frac{-a 1}{d}\right)$.
2. For the quadratic form $\Phi_{1}=2 x_{1}^{2}+x_{1} x_{2}+4 x_{2}^{2}$,
$2 \Phi_{1}=4 x_{1}^{2}+2 x_{1} x_{2}+8 x_{2}^{2}=\left(x_{1}, x_{2}\right)\left(\begin{array}{ll}4 & 1 \\ 1 & 8\end{array}\right)\binom{x_{1}}{x_{2}}$
the determinant of the matrix and cofactors are $D=31, A_{11}=8, A_{12}=A_{21}=-1, A_{22}=4$.
So $\delta=1, N=D=31$ and the discriminant is $\Delta=(-1)^{2 / 2} 31=-31$. The character of Φ_{1} is the Kronecker Symbol $\chi(d)=\left(\frac{-31}{d}\right)$.
Consequently, F_{1}, Φ_{1} are quadratic forms whose theta series are in $M_{1}\left(\Gamma_{0}(31),\left(\frac{-a 1}{d}\right)\right)$. Hence $\mathrm{F}_{2}, \Phi_{2}, F_{1} \oplus \Phi_{1}$ are quadratic forms whose theta series are in $M_{2}\left(\Gamma_{0}(31)\right)$. Obviously there are only two inequivalent cusps ioo and 0 for Γ_{0} (31).
Theorem 2 Let Q be a positive definite form of $2 k$ variables, $k=4,6,8, \ldots$, whose theta series θ_{Q} is in $M_{k}\left(\Gamma_{0}(p)\right), p$ prime, then the Eisenstein part of Θ_{Q} is
$E(q ; Q)=1+\sum_{n=1}^{\infty}\left(\alpha \sigma_{k-1}(n) q^{n}+\beta \sigma_{k-1}(n) q^{p n}\right)$

Where

$\alpha=\frac{i^{k}}{\rho_{k}} \frac{p^{k / 2}-i^{k}}{p^{k}-1}$
$\beta=\frac{1}{\rho_{k}} \frac{p^{k}-i^{k} p^{k / 2}}{p^{k}-1}$
$p_{k}=(-1)^{k / 2} \frac{(k-1)}{(2 \pi)^{k}} \zeta(k)$
Corollary 1 Let Q be a positive definite quadratic form of 8 variables whose theta series θ_{Q} is in $M_{4}\left(\Gamma_{0}(31)\right)$, then the Eisenstein
part of Θ_{Q} is
$E(q ; Q)=1+\sum_{n=1}^{\infty}\left(\alpha \sigma_{a}(n) q^{n}+\beta \sigma_{a}(n) q^{a 1 n}\right)$
Where
$\rho_{4}=\frac{2!}{(2 \pi)^{4}} \zeta(4)=\frac{1}{240}$
$\alpha=240 \frac{a 1^{2}-1}{a 1^{4}-1}=\frac{120}{481}$
$\beta=240 \frac{31^{4}-31^{2}}{31^{4}-1}=\frac{115320}{481}$

3.SELECTION OF SPHERICAL FUNCTIONS

In order to find the generalized theta series corresponding to spherical functions, we will determine the sphericalfunctions of second order with respect to Q, see[3,9].
1.For the quadratic form

$$
2 F_{2}=2 x_{1}^{2}+2 x_{1} x_{2}+16 x_{2}^{2}+2 x_{3}^{2}+2 x_{3} x_{4}+16 x_{4}^{2}
$$

$$
=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\left(\begin{array}{rrrc}
2 & 1 & 0 & 0 \\
1 & 16 & 0 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 1 & 16
\end{array}\right)
$$

the determinant $D=31^{2}, A_{11}=16.31$.
$\varphi_{11}=x_{1} x_{1}-\frac{1}{4} \frac{A_{11}}{D} 2 F_{2}=x_{1}^{2}-\frac{8}{31} F_{2}$
which will be spherical function of second order with respect to F_{2}.
2.For the quadratic form

$$
\begin{aligned}
& 2 \Phi_{2}=4 x_{1}^{2}+2 x_{1} x_{2}+8 x_{2}^{2}+4 x_{3}^{2}+2 x_{3} x_{4}+8 x_{4}^{2} \\
& =\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\left(\begin{array}{cccc}
4 & 1 & 0 & 0 \\
1 & 8 & 0 & 0 \\
0 & 0 & 4 & 1 \\
0 & 0 & 1 & 8
\end{array}\right)
\end{aligned}
$$

the determinant
$D=31^{2}, A_{11}=8.31_{,}, A_{12}=-31$

CUSP FORMS AND NUMBER OF REPRESENTATIONS OF POSITIVE INTEGERS BY DIRECT SUM OF BINARY QUADRATIC FORMS Muberra GUREL

$\varphi_{11}=x_{1} x_{1}-\frac{1}{4} \frac{A_{11}}{D} 2 \Phi_{2}=x_{1}^{2}-\frac{4}{31} \Phi_{2}$
$\varphi_{12}=x_{1} x_{2}-\frac{1}{4} \frac{A_{12}}{D} 2 \Phi_{2}=x_{1} x_{2}+\frac{1}{62} \Phi_{2}$
which will be spherical functions of second order with respect to $\Phi_{2^{*}}$
3.For the quadratic form
$2\left(F_{1} \oplus \Phi_{1}\right)=2 x_{1}^{2}+2 x_{1} x_{2}+16 x_{2}^{2}+4 x_{3}^{2}+2 x_{3} x_{4}+8 x_{4}^{2}$
$=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\left(\begin{array}{cccc}2 & 1 & 0 & 0 \\ 1 & 16 & 0 & 0 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 1 & 8\end{array}\right)$,
the determinant
$D=31^{2}, A_{11}=16.31, A_{12}=-31, A_{21}=8.31$
$\varphi_{11}=x_{1} x_{1}-\frac{1}{4} \frac{A_{11}}{D} 2\left(F_{1} \oplus \Phi_{1}\right)=x_{1}^{2}-\frac{8}{31}\left(F_{1} \oplus \Phi_{1}\right)$
$\varphi_{12}=x_{1} x_{2}-\frac{1}{4} \frac{A_{12}}{D} 2\left(F_{1} \oplus \Phi_{1}\right)=x_{1} x_{2}+\frac{1}{62}\left(F_{1} \oplus \Phi_{1}\right)$
$\varphi_{a \mathrm{ab}}=x_{\mathrm{a}} x_{a}-\frac{1}{4} \frac{A_{2 \mathrm{an}}}{D} 2\left(F_{1} \oplus \Phi_{1}\right)=x_{2}^{2}-\frac{4}{31}\left(F_{1} \oplus \Phi_{1}\right)$
which will be spherical functions of second order with respect to $\left(F_{1} \oplus \Phi_{1}\right)$.
Now, we will construct a basis of a subspace $S_{4}\left(\Gamma_{0}(31)\right)$ of dimension 6 . The general information about the modular forms $M_{k}\left(\Gamma_{0}(N), \chi\right)$ of weight k of the group $\Gamma_{0}(N)$ with Dirichlet character χ and the cusp forms $S_{k}\left(\Gamma_{0}(N), \chi\right)$ of weight k of the group $\Gamma_{0}(N)$ with Dirichlet character χ are given in details in $[5,3,4,8]$.
Theorem 3 The set of the following generalized 6 generalized theta series is a basis of the subpace of $S_{4}\left(\Gamma_{0}(31)\right)$ spanned by all generalized theta series of the form (**) induced by spherical functions of the form (***).
$\theta_{F_{2} \varphi_{11}}=\frac{1}{31} \sum_{n=1}^{m}\left(\sum_{F_{2}=n} 31 x_{1}^{2}-8 F_{2}\right)$

$$
\begin{aligned}
& \theta_{\Phi_{2}, \varphi_{11}}=\frac{1}{31} \sum_{n=1}^{\infty}\left(\sum_{F_{2}=n} 31 x_{1}^{2}-4 \Phi_{2}\right) \\
& \theta_{\Phi_{2}, \varphi_{12}}=\frac{1}{62} \sum_{n=1}^{\infty}\left(\sum_{F_{2}=n} 62 x_{1} x_{2}+\Phi_{2}\right)
\end{aligned}
$$

$$
\theta_{\left(F_{1} \oplus \Phi_{1}\right), \varphi_{11}}=\frac{1}{31} \sum_{n=1}^{\infty}\left(\sum_{F_{2}=n} 31 x_{1}^{2}-8\left(F_{1} \oplus \Phi_{1}\right)\right)
$$

$$
\Theta_{\left(F_{1} \oplus \Phi_{1}\right), \varphi_{12}}=\frac{1}{62} \sum_{n=1}^{\infty}\left(\sum_{F_{2}=n} 62 x_{1} x_{2}+\left(F_{1} \oplus \Phi_{1}\right)\right)
$$

$$
\Theta_{\left(F_{1} \oplus \Phi_{1}\right), \varphi_{33}}=\frac{1}{31} \sum_{n=1}^{\infty}\left(\sum_{F_{2}=n} 31 x_{2}^{2}-4\left(F_{1} \oplus \Phi_{1}\right)\right)
$$

Proof. The series are cusp forms because of Theorem 1.
Therefore, the generalized theta series associated to spherical functions can be calculated as follows:

$$
\begin{aligned}
& \Theta_{F_{2}, \varphi_{11}}=\frac{1}{31} \sum_{n=1}^{\infty}\left(\sum_{F_{2}=n} 31 x_{1}^{2}-8 F_{2}\right) \\
& =\frac{1}{31}\left(30 q+60 q^{2}+120 q^{4}+300 q^{5}+\cdots\right) \\
& \Theta_{\Phi_{2}, \varphi_{11}}=\frac{1}{31} \sum_{n=1}^{\infty}\left(\sum_{F_{2}=n} 31 x_{1}^{2}-4 \Phi_{2}\right) \\
& =\frac{1}{31}\left(30 q^{2}-4 q^{4}-18 q^{5}-68 q^{6}-26 q^{7}+\cdots\right) \\
& \Theta_{\Phi_{2}, \varphi_{12}}=\frac{1}{62} \sum_{n=1}^{\infty}\left(\sum_{F_{2}=n} 62 x_{1} x_{2}+\Phi_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{31}\left(4 q^{2}+16 q^{4}-52 q^{5}+24 q^{6}-20 q^{7}+\cdots\right) \\
& \Theta_{\left(F_{1} \oplus \Phi_{1}\right), \varphi_{11}}=\frac{1}{31} \sum_{n=1}^{\infty}\left(\sum_{F_{2}=n} 31 x_{1}^{2}-8\left(F_{1} \oplus \Phi_{1}\right)\right) \\
& =\frac{1}{31}\left(46 q-32 q^{2}+28 q^{3}+120 q^{4}-116 q^{5}+236 q^{6}-112 q^{7}+\cdots\right) \\
& \Theta_{\left(F_{1} \oplus \varphi_{1}\right), \varphi_{12}}=\frac{1}{62} \sum_{n=1}^{\infty}\left(\sum_{F_{2}=n} 62 x_{1} x_{2}+\left(F_{1} \oplus \Phi_{1}\right)\right) \\
& =\frac{1}{31}\left(q+2 q^{2}+6 q^{3}+8 q^{4}+15 q^{5}+24 q^{6}+7 q^{7}+\cdots\right) \\
& \Theta_{\left(F_{1} \oplus \Phi_{1}\right), \varphi_{33}}=\frac{1}{31} \sum_{n=1}^{\infty}\left(\sum_{F_{2}=n} 31 x_{3}^{2}-4\left(F_{1} \oplus \Phi_{1}\right)\right) \\
& =\frac{1}{31}\left(-8 q+46 q^{2}+76 q^{3}-64 q^{4}-58 q^{5}+56 q^{6}+6 q^{7}+\cdots\right)
\end{aligned}
$$

4.CONCLUSION

According to (*) we can obtain $\theta_{\vec{F}_{1}}=1+2 q+2 q^{4}+\cdots \quad$ and $\theta_{\dot{\phi}_{1}}=1+2 q^{2}+2 q^{4}+2 q^{5}+2 q^{7}+\cdots$.
Then we can obtain theta series of quadratic forms $\quad F_{4}, \Phi_{4}, F_{1} \oplus \Phi_{2}, F_{2} \oplus \Phi_{2}, F_{2} \oplus \Phi_{1} \quad$ by direct sum of $\theta_{F_{1}}$ and $\theta_{\Phi_{1}}$. By subtracting any one of these theta series by Eisenstein series, we get a linear combination of the generalized theta series.
$\mathrm{r}(n ; Q)=\theta_{Q}(q)-E(q ; Q)=$
$c_{1} \theta_{\tilde{F}_{2}, \varphi_{11}}(q)+c_{2} \theta_{\dot{\Psi}_{2}, \varphi_{11}}(q)+c_{3} \theta_{\dot{\Psi}_{2}, \varphi_{12}}(q)+c_{4} \theta_{\tilde{F}_{1} \oplus \dot{\oplus}_{1}, \varphi_{11}}(q)+c_{5} \theta_{\tilde{r}_{1} \in \oplus_{1}, \varphi_{12}(q)}+c_{6} \theta_{\tilde{F}_{1} \oplus \oplus_{1}, \varphi_{33}}(q)$
By equating the coefficients of q^{n} in both sides for $n=1,2,3,4,5,6,7$, we can find out $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}$.
From these identities, we get the formulas for $r\left(n ; F_{4}\right), r\left(n ; \Phi_{4}\right), r\left(n ; F_{1} \oplus \Phi_{a}\right), r\left(n ; F_{2} \oplus \Phi_{2}\right), r\left(n ; F_{a} \oplus \Phi_{1}\right)$.
(See [6])

