CUSP FORMS AND NUMBER OF REPRESENTATIONS OF POSITIVE INTEGERS BY DIRECT SUM OF BINARY QUADRATIC FORMS

Müberra GUREL¹

¹Department of Mathematics-Computer, Istanbul Aydın University Florya, Istanbul

E-mail: muberragurel@aydin.edu.tr

Abstract-In this study, we calculated all reduced primitive binary quadratic forms which are $F_1 = x_1^2 + x_1x_2 + 8x_2^2$, $\Phi_1 = 2x_1^2 + x_1x_2 + 4x_2^2$, $\Phi_1' = 2x_1^2 - x_1x_2 + 4x_2^2$. We find the theta series Θ_Q , Eisenstein part of Θ_Q and the generalized theta series which are cusp forms by computing some spherical functions of second order with respect to Q. We obtain a basis of the subspace of $S_4(\Gamma_0(31))$. Explicit formulas are obtained for the number of representations of positive integers by all direct sum of three quadratic forms $F_1 = x_1^2 + x_1x_2 + 8x_2^2$, $\Phi_1 = 2x_1^2 + x_1x_2 + 4x_2^2$, $\Phi_1' = 2x_1^2 - x_1x_2 + 4x_2^2$.

Keywords: Positive Definite Quadratic Forms, Spherical Functions, Theta Series, Cusp Forms, Eisenstein Series

1.INTRODUCTION

Modular forms have played an significant role in the mathematics of the 19th and 20th centuries, mostly in the theory of elliptic functions and quadratic forms. Quadratic forms occupy a central place in number theory, linear algebra, group theory, differential geometry, differential topology, Lie theory, coding theory and cryptology.

In this study, we focus on how to find a formula which solve problem of representation numbers of quadratic forms with discriminant -31. All calculations have been done by Maple.

Here, we will follow the method described in [1,2,6] to determine the number of representations of some direct sum of quadratic forms of discriminant -31.

Let Δ be a negative integer such that

 $\Delta = \begin{cases} 4d & if \ d \equiv 2,3 \bmod 4 \\ d & if \ d \equiv 1 \bmod 4 \end{cases}$

where d is square-free integer. It is called fundamental discriminant. Let r(n; Q) denote the number of representations of n by Q. Let r(n; Q) denote the number of representations of *n* by *Q*. It is known that there exists a ont-to-one correspondence between $SL(2, \mathbb{Z})$ equivalence classes of positive definite binary quadratic forms

$$Q = ax^2 + bxy + cy^2$$

with integral coefficients of fundamental discriminant Δ and ideal classes of imaginary quadratic field $Q(\sqrt{d})$. In this correspondence, the number r(n; Q) of representations of integer *n* by Q

$$Q = n$$

is equal to the number w of roots of 1 in $Q(\sqrt{d})$ times the number of ideals in the corresponding ideal class of norm n. Let

$$\Theta_{Q}(q) = \sum_{(x,y\in\mathbb{Z}\times\mathbb{Z})} q^{Q(x,y)} = \sum_{n=0}^{\infty} r(n;Q) q^{n}$$

be the theta function associated to positive definite quadratic form Q.

In this formulas Φ_1 can be replaced by its

CUSP FORMS AND NUMBER OF REPRESENTATIONS OF POSITIVE INTEGERS BY DIRECT SUM OF BINARY QUADRATIC FORMS Muberra GUREL

It is known that it is a modular form of weight 1 with Dirichlet character

$$\chi(a) = \left(\frac{\Delta}{a}\right)$$

expressed by Kronecker symbol. In fact it is Legendre symbol if *a* is an odd prime.

There exist 3 inequivalent classes of binary quadratic forms of discriminant -31 whose reduced primitive binary quadratic forms are

$$F_{1} = x_{1}^{2} + x_{1}x_{2} + 8x_{2}^{2}$$

$$\Phi_{1} = 2x_{1}^{2} + x_{1}x_{2} + 4x_{2}^{2}$$

$$\Phi_{1}' = 2x_{1}^{2} - x_{1}x_{2} + 4x_{2}^{2}$$

Here, F_1 is the identity element. Φ'_1 is the inverse of Φ_1 .

Since -31 is prime number then there is only one genus, i.e., the principal genus.

 F_k, Φ_k denote the k direct sum of F_1, Φ_1 respectively for $k \ge 1$. These binary quadratic forms form a group whose order is 3 such that

$$\Phi_1, \Phi_1^2 = \Phi_1', \Phi_1^3 = F_1$$

In this paper, formulas for r(n; Q) are derived for any positive integer associated tot he following quadratic forms

$$Q = F_4, \Phi_4, F_1 \oplus \Phi_3, F_2 \oplus \Phi_2, F_3 \oplus \Phi_1.$$

inverse Φ_1' .

2.POSITIVE DEFINITE FORMS

Let $Q = ax^2 + bxy + cy^2$. A binary quadratic form is primitive if the integer *a*, *b* and *c* are relatively prime. Moreover, if $\Delta = b^2 - 4ac < 0$ and a > 0 then Q(x, y) is positive definite. $M_k(\Gamma_0(N), \chi_{\Delta})$ denotes the space of modular forms on $\Gamma_0(N)$ of weight *k*, with character χ_{Δ} . $S_{k+2}(\Gamma_0(N), \chi_{\Delta})$ denotes the space of all cusp forms of weight *k*, with character χ_{Δ} . Definition 1 Let *Q* be a positive definite quadratic form of 2k variables

$$Q = \sum_{1 \le i \le j \le 2k}^{2k} b_{ij} x_i x_j, b_{ij} \in \mathbb{Z}$$

and the matrix A defined by

 $\begin{array}{l} a_{ii} = 2 \, b_{ii}, a_{ji} = a_{ij} = b_{ij} \ for \ i < j \\ Let \ D \ be \ the \ determinant \ of \ the \ matrix \ A \ and \\ A_{ij} \ the \ cofactors \ of \ A \ for \ 1 \leq i,j \leq 2k. \ If \\ \delta = gcd \left(\frac{A_{ii}}{2}, A_{ij} \ for \ 1 \leq i,j \leq 2k\right), \ then \\ N := \frac{D}{\delta} \ is \ the \ smallest \ positive \ integer, \ called \\ the \ level \ of \ Q, \ for \ which \ NA^{-1} \ is \ again \ an \\ even \ integral \ matrix \ like \ A. \ \Delta = (-1)^k D \ is \\ called \ the \ discriminant \ of \ the \ form \ Q. \\ Theorem \ 1 \ Let \ Q: \mathbb{Z}^{2k} \rightarrow \mathbb{Z} \ be \ a \ positive \end{array}$

definite integer valued form of 2k variables of level N and discriminant Δ . Then

1. The theta function

$$\begin{split} & \Theta_Q(q) = \sum_{(n_1, n_2, \dots, n_k) \in \mathbb{Z} \times \mathbb{Z} \times \dots \times \mathbb{Z}} q^{Q(n_1, n_2, \dots, n_k)} = 1 + \sum_{n=1}^{\infty} r(n; Q) \ q^n, q = e^{2\pi i z} \ (*) \\ & \text{ is a modular form on } \Gamma_0(N) \ of \ weight \ k \ and \ character \ \chi_{\Delta}, \ i.e., \ \Theta_Q \in M_k(\Gamma_0(N), \chi_{\Delta}), \ where \\ & \chi_{\Delta}(d) := \left(\frac{\Delta}{d}\right), d \in (\mathbb{Z}/N\mathbb{Z})^{\times}, \ \left(\frac{\Delta}{d}\right) \ is \ the \ Kronecker \ character. \end{split}$$

2. The homogeneous quadratic polynomials in 2k variables $\varphi_{ij} = x_i x_j - \frac{1}{2k} \frac{A_{ij}}{D} 2Q, 1 \le i, j \le 2k$ are spherical functions of second order with respect to Q. (**)

- 3. The theta series $\Theta_{Q,\varphi_{ij}}(q) = \sum_{n=1}^{\infty} (\sum_{Q=n} \varphi_{ij}) q^n$ is a cusp form in $S_{k+2}(\Gamma_0(N), \chi_{\Delta})$. (***)
- 4. If two quadratic forms Q_1, Q_2 have the same level N and the characters $\chi_1(d), \chi_2(d)$ respectively, then the direct sum $Q_1 \oplus Q_2$ of the quadratic forms has the same level N and the character $\chi_1(d), \chi_2(d)$.

CUSP FORMS AND NUMBER OF REPRESENTATIONS OF POSITIVE INTEGERS BY DIRECT SUM OF BINARY QUADRATIC FORMS Muberra GUREL

Now, let's look at the positive definite quadratic forms of discriminant -31.

1- For the quadratic form $F_1 = x_1^2 + x_1 x_2 + 8x_2^2,$

$$2F_1 = 2x_1^2 + 2x_1x_2 + 16x_2^2 = (x_1, x_2) \begin{pmatrix} 2 & 1 \\ 1 & 16 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

the determinant of the matrix and cofactors are $D = 31, A_{11} = 16, A_{12} = A_{21} = -1, A_{22} = 2$. So $\delta = 1, N = D = 31$ and the discriminant is $\Delta = (-1)^{2/2} 31 = -31$. The character of F_1 is the Kronecker Symbol $\chi(d) = \left(\frac{-31}{d}\right)$.

2. For the quadratic form $\Phi_1 = 2x_1^2 + x_1x_2 + 4x_2^2,$

$$2\Phi_1 = 4x_1^2 + 2x_1x_2 + 8x_2^2 = (x_1, x_2) \begin{pmatrix} 4 & 1 \\ 1 & 8 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

the determinant of the matrix and cofactors are $D = 31, A_{11} = 8, A_{12} = A_{21} = -1, A_{22} = 4$. So $\delta = 1, N = D = 31$ and the discriminant is $\Delta = (-1)^{2/2} 31 = -31$. The character of Φ_1 is the Kronecker Symbol $\chi(d) = \left(\frac{-31}{d}\right)$. Consequently, F_1, Φ_1 are quadratic forms whose theta series are in $M_1\left(\Gamma_0(31), \left(\frac{-31}{d}\right)\right)$. Hence $F_2, \Phi_2, F_1 \oplus \Phi_1$ are quadratic forms whose theta series are in $M_2\left(\Gamma_0(31)\right)$. Obviously there are only two inequivalent cusps i^{00} and 0 for $\Gamma_0(31)$.

Theorem 2 Let Q be a positive definite form of 2k variables, $\mathbf{k} = 4,6,8,...$, whose theta series Θ_Q is in $M_k(\Gamma_0(p))$, p prime, then the Eisenstein part of Θ_Q is

$$E(q; Q) = 1 + \sum_{n=1}^{\infty} (\alpha \sigma_{k-1}(n) q^n + \beta \sigma_{k-1}(n) q^{pn})$$

Where

$$\alpha = \frac{i^{k}}{\rho_{k}} \frac{p^{k/2} - i^{k}}{p^{k} - 1}$$

$$\beta = \frac{1}{\rho_{k}} \frac{p^{k} - i^{k} p^{k/2}}{p^{k} - 1}$$

$$\rho_{k} = (-1)^{k/2} \frac{(k-1)!}{(2\pi)^{k}} \zeta(k)$$

Corollary 1 Let Q be a positive definite quadratic form of 8 variables whose theta series Θ_0 is in $M_4(\Gamma_0(31))$, then the Eisenstein

part of
$$\Theta_Q$$
 is
 $E(q; Q) = 1 + \sum_{n=1}^{\infty} (\alpha \sigma_3(n) q^n + \beta \sigma_3(n) q^{31n})$

Where

$$\rho_4 = \frac{3!}{(2\pi)^4} \zeta(4) = \frac{1}{240}$$
$$\alpha = 240 \frac{31^2 - 1}{31^4 - 1} = \frac{120}{481}$$
$$\beta = 240 \frac{31^4 - 31^2}{31^4 - 1} = \frac{115320}{481}$$

3.SELECTION OF SPHERICAL FUNCTIONS

In order to find the generalized theta series corresponding to spherical functions, we will determine the sphericalfunctions of second order with respect to Q, see[3,9].

1.For the quadratic form

$$2F_2 = 2x_1^2 + 2x_1x_2 + 16x_2^2 + 2x_3^2 + 2x_3x_4 + 16x_4^2$$

$$= (x_1, x_2, x_3, x_4) \begin{pmatrix} 2 & 1 & 0 & 0 \\ 1 & 16 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 16 \end{pmatrix}$$

the determinant $D = 31^2$, $A_{11} = 16.31$.

$$\varphi_{11} = x_1 x_1 - \frac{1}{4} \frac{A_{11}}{D} 2F_2 = x_1^2 - \frac{8}{31} F_2$$

which will be spherical function of second order with respect to F_2 .

2.For the quadratic form

$$2\Phi_2 = 4x_1^2 + 2x_1x_2 + 8x_2^2 + 4x_3^2 + 2x_3x_4 + 8x_4^2$$

the determinant

$$D = 31^2, A_{11} = 8.31, A_{12} = -31$$

CUSP FORMS AND NUMBER OF REPRESENTATIONS OF POSITIVE INTEGERS BY DIRECT SUM OF BINARY QUADRATIC FORMS Muberra GUREL

$$\varphi_{11} = x_1 x_1 - \frac{1}{4} \frac{A_{11}}{D} 2\Phi_2 = x_1^2 - \frac{4}{31} \Phi_2$$
$$\varphi_{12} = x_1 x_2 - \frac{1}{4} \frac{A_{12}}{D} 2\Phi_2 = x_1 x_2 + \frac{1}{62} \Phi_2$$

which will be spherical functions of second order with respect to Φ_2 .

3.For the quadratic form

$$2(F_1 \oplus \Phi_1) = 2x_1^2 + 2x_1x_2 + 16x_2^2 + 4x_3^2 + 2x_3x_4 + 8x_4^2$$

 $=(x_1,x_2,x_3,x_4)\begin{pmatrix} 2 & 1 & 0 & 0 \\ 1 & 16 & 0 & 0 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 1 & 8 \end{pmatrix},$

the determinant

 $D = 31^{2}, A_{11} = 16.31, A_{12} = -31, A_{33} = 8.31$ $\varphi_{11} = x_{1}x_{1} - \frac{1}{4}\frac{A_{11}}{D}2(F_{1} \oplus \Phi_{1}) = x_{1}^{2} - \frac{8}{31}(F_{1} \oplus \Phi_{1})$ $\varphi_{12} = x_{1}x_{2} - \frac{1}{4}\frac{A_{12}}{D}2(F_{1} \oplus \Phi_{1}) = x_{1}x_{2} + \frac{1}{62}(F_{1} \oplus \Phi_{1})$ $\varphi_{23} = x_{2}x_{3} - \frac{1}{4}\frac{A_{22}}{D}2(F_{1} \oplus \Phi_{1}) = x_{3}^{2} - \frac{4}{31}(F_{1} \oplus \Phi_{1})$

which will be spherical functions of second order with respect to $(F_1 \oplus \Phi_1)$.

Now, we will construct a basis of a subspace $S_4(\Gamma_0(31))$ of dimension 6. The general information about the modular forms $M_k(\Gamma_0(N), \chi)$ of weight k of the group $\Gamma_0(N)$ with Dirichlet character χ and the cusp forms $S_k(\Gamma_0(N), \chi)$ of weight k of the group $\Gamma_0(N)$ with Dirichlet character χ are given in details in [5,3,4,8].

Theorem 3 The set of the following generalized 6 generalized theta series is a basis of the subpace of $S_4(\Gamma_0(31))$ spanned by all generalized theta series of the form (**) induced by spherical functions of the form (***).

$$\Theta_{F_2,\varphi_{11}} = \frac{1}{31} \sum_{n=1}^{\infty} \left(\sum_{F_2=n} 31 x_1^2 - 8F_2 \right)$$

$$\begin{split} \Theta_{\Phi_{2},\varphi_{11}} &= \frac{1}{31} \sum_{n=1}^{\infty} \left(\sum_{F_{2}=n} 31x_{1}^{2} - 4\Phi_{2} \right) \\ \Theta_{\Phi_{2},\varphi_{12}} &= \frac{1}{62} \sum_{n=1}^{\infty} \left(\sum_{F_{2}=n} 62x_{1}x_{2} + \Phi_{2} \right) \\ \Theta_{(F_{1} \oplus \Phi_{1}),\varphi_{11}} &= \frac{1}{31} \sum_{n=1}^{\infty} \left(\sum_{F_{2}=n} 31x_{1}^{2} - 8\left(F_{1} \oplus \Phi_{1}\right) \right) \\ \Theta_{(F_{1} \oplus \Phi_{1}),\varphi_{12}} &= \frac{1}{62} \sum_{n=1}^{\infty} \left(\sum_{F_{2}=n} 62x_{1}x_{2} + \left(F_{1} \oplus \Phi_{1}\right) \right) \\ \Theta_{(F_{1} \oplus \Phi_{1}),\varphi_{33}} &= \frac{1}{31} \sum_{n=1}^{\infty} \left(\sum_{F_{2}=n} 31x_{2}^{2} - 4\left(F_{1} \oplus \Phi_{1}\right) \right) \end{split}$$

1

١

Proof. The series are cusp forms because of Theorem 1.

Therefore, the generalized theta series associated to spherical functions can be calculated as follows:

$$\Theta_{F_2,\varphi_{11}} = \frac{1}{31} \sum_{n=1}^{\infty} \left(\sum_{F_2=n} 31x_1^2 - 8F_2 \right)$$

$$=\frac{1}{31}(30q + 60q^2 + 120q^4 + 300q^5 + \cdots)$$

$$\Theta_{\Phi_2,\varphi_{11}} = \frac{1}{31} \sum_{n=1}^{\infty} \left(\sum_{F_2=n} 31x_1^2 - 4\Phi_2 \right)$$

$$=\frac{1}{31}(30q^2-4q^4-18q^5-68q^6-26q^7+\cdots)$$

$$\Theta_{\Phi_2,\varphi_{12}} = \frac{1}{62} \sum_{n=1}^{\infty} \left(\sum_{F_2=n} 62x_1 x_2 + \Phi_2 \right)$$

$$=\frac{1}{31}(4q^2 + 16q^4 - 52q^5 + 24q^6 - 20q^7 + \cdots)$$

$$\Theta_{(F_1 \oplus \Phi_1), \varphi_{11}} = \frac{1}{31} \sum_{n=1}^{\infty} \left(\sum_{F_2 = n} 31 x_1^2 - 8 (F_1 \oplus \Phi_1) \right)$$

 $=\frac{1}{31}(46q - 32q^2 + 28q^3 + 120q^4 - 116q^5 + 236q^6 - 112q^7 + \cdots)$

$$\Theta_{(F_1 \oplus \Phi_1), \varphi_{12}} = \frac{1}{62} \sum_{n=1}^{\infty} \left(\sum_{F_2 = n} 62x_1 x_2 + (F_1 \oplus \Phi_1) \right)$$

 $=\frac{1}{31}(q+2q^2+6q^3+8q^4+15q^5+24q^6+7q^7+\cdots)$

$$\Theta_{(F_1 \oplus \Phi_1), \varphi_{33}} = \frac{1}{31} \sum_{n=1}^{\infty} \left(\sum_{F_2 = n} 31 x_3^2 - 4 (F_1 \oplus \Phi_1) \right)$$

$$=\frac{1}{31}(-8q+46q^2+76q^3-64q^4-58q^5+56q^6+6q^7+\cdots)$$

4.CONCLUSION

According to (*) we can obtain $\Theta_{F_1} = 1 + 2q + 2q^4 + \cdots$ and $\Theta_{\Phi_1} = 1 + 2q^2 + 2q^4 + 2q^5 + 2q^7 + \cdots$.

Then we can obtain theta series of quadratic forms F_4 , Φ_4 , $F_1 \oplus \Phi_3$, $F_2 \oplus \Phi_2$, $F_3 \oplus \Phi_1$ by direct sum of Θ_{F_1} and Θ_{Φ_1} . By subtracting any one of these theta series by Eisenstein series, we get a linear combination of the generalized theta series.

5. REFERENCES

[1] Kendirli B., *Number Theory with Cryptographic Applications*, Yalin Yayincilik, Istanbul, 2006.

[2] Kendirli B., "Formulas fort he fourier coefficients of cusp form for some quadratic forms (in press)", *Turkish Journal of Mathemtics*.

[3] Schoeneberg B., *Elliptic Modular Functions*, Springer-Verlag, 1974.

[4] Hecke E., *Mathematische Werke*, Vandenhoeck&Ruprecht, 1983.

[5] Diamond F. And Shurman J., A First Course in Modular Forms, Springer, 2005.

[6] Lomadze G., "On the number of representations of positive integers by a direct sum of binary quadratic forms with discriminant -23", *Georgian Math. J.* 4 (1997), no.6, 523-532.

[7] Iwaniec H., Kowalski E., *Analytic Number Theory*, American Mathematical Society, 2000.

[8] Milne J. S. Modular Functions and Modular Forms, 2009, available at www.jmilne.org/math/version1.20

[9] Miyake T., *Modular Forms*, Springer, Berlin, Germany, 1989.

$$r(n; Q) = \Theta_Q(q) - E(q; Q) = c_1 \Theta_{F_2,\varphi_{11}}(q) + c_2 \Theta_{\Phi_2,\varphi_{12}}(q) + c_4 \Theta_{F_1 \oplus \Phi_1,\varphi_{11}}(q) + c_5 \Theta_{F_1 \oplus \Phi_1,\varphi_{12}(q)} + c_6 \Theta_{F_1 \oplus \Phi_1,\varphi_{33}}(q)$$

By equating the coefficients of q^n in both sides for n = 1,2,3,4,5,6,7, we can find out $c_1, c_2, c_3, c_4, c_5, c_6$. From these identities, we get the formulas for $r(n; F_4), r(n; \Phi_4), r(n; F_1 \oplus \Phi_3), r(n; F_2 \oplus \Phi_2), r(n; F_3 \oplus \Phi_1)$. (See [6])