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Abstract- In this study; medical images were denoising with multiresolution analyses using real-valued wavelet transform
(RVWT), complex-valued wavelet transform (CVWT), ridgelet transform (RT), real-valued first-generation curvelet transform
(RVFG CT), real-valued second-generation curvelet transform (RVSG CT), complex-valued second-generation curvelet
transform (CVSG CT) and results are compared. First and second-generation curvelet transformations are used for real-
valued curvelet transform as two techniques. For the evaluation of the proposed system, we used 32 lung CT images. These
images include 10 images with benign nodules and 22 images with malign nodules. Different types of noise like the Random
noise, Gaussian noise and Salt & Pepper noise were added to these images and they are removed separately. The
performances of used transforms are compared using Peak Signal to Noise Ratio (PSNR) parameter. Obtained results
showed that complex-valued wavelet transform are suited for removal of random noise and Gaussian noise. In case of
Gaussian noise in images, PSNRs of first generation curvelet transform and complex-valued wavelet transform are around
33 dB. The ridgelet transform provides high PSNR value (30.4dB) for denoising of salt & pepper noise in images.
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1. INTRODUCTION

Image processing is an engineering discipline that
has been studied extensively and also contains
obtaining new images by analyzing the various
images. The importance of image processing,
especially after digital image recording‘s being
widespread, has been increasing day by day. Image
processing techniques are used a wide variety of
fields like face / fingerprint identification security
systems, electromagnetic radar systems, medical
systems, geology and astronomy research, mapping
and control systems. Fourier analysis which is used
for obtaining the information about frequency of
image is the basic argument of image processing.
Since it is unknown that which or when signals are
active, some problems can be occur while
implementing the process conversely to unstable
frequency valued signals. On the other hand, there

is no problem with the signals have time-invarient
frequency value.
Since Fourier analysis is inefficient in time-
frequency plane, wavelet analysis which is the basic
of multi-resolution analysis is detected. Continous
wavelet analysis is firstly implemented in field of
geophysics in 1982 by Morlet [1]. Although
Grossman and Morlet [2] studied on this subject in
1984, basic wavelet transform developed by Chui
[3] in 1992 and Meyer [4] in 1993. Discrete form of
this analysis is improved by Mallat[5] in 1989 and
Daubechies [6] in 1992. Wavelet package analysis
is the complex form of discrete wavelet analysis
and formed by Coifman and Wickerhauser [7] in
1992. It is proved that wavelets have complex
solutions by Lawton [8] in 1993 and Lina [9] in
1997. First applications of wavelet analysis about
noise removal is implemented for uni-dimensional
signals by Lang et. al. [10]. In 1996, wavelet
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analysis began to be implemented on medical
images with the study of Mojsilovic et. al. [11].
Studies of Chang et. al. [12] in 2000 was about
noise removal for wavelet transform on two-
dimensional images. Some other scientists studied
on denoising with wavelet transform as Portilla et.
al. [13], Chen and Bui [14], Abdulmunim [15] and
Benjaminsen [16] who used complex valued
wavelet transform to remove noises in 2007.
Wavelet transform is suitable to use for identifying
the images but this transform can only be used for
horizontal, vertical or diagonal (450). Because of
this restrictive situation, changes on the other angle
block is ignored, thus Ridgelet transform is
developed by Candes and Donoho [17] to get over
this problem. The difference between Ridgelet and
wavelet analyses is that angular windows are
identified in Ridgelet analysis and so images can be
expressed with much and effective coefficients.
Ridgelet transform is firstly used for removing
noise by Do and Vetterli [18].
Curvelet analysis is based on wavelet analysis but
uses curves not lines like wavelet for windowing.
Curvelet analysis came out in 1999 by Candes and
Donoho [19] and it is built up on Ridgelet analysis.
Donoho et. al. developed this analysis’s digital [20]
and discrete [21] versions in time. Starck[22]
established that Curvelet analysis is more suitable
to find images’ edge regions. Starck et. al. used
Curvelet transform to remove noises in 2002. Also
Gyaourova et. al. [23] studied on this subject in the
same year. In 2007, Sivakumar [24] removed noises
from CT images. A similar study is gone over in
2010 by Rayudu et. al. [25].
Although real types of transforms are used for
denoising noises many times individually, there are
really a few studies use some of them with or
compare them with the each other. In addition,
usually just one type noise is implemented to image
and then it is removed in these studies. Number of
the studies about performance evaluations for more
than one noise is really a few. Studies about
complex-valued wavelet and complex curvelet
transform keep developing.
In this study, a denoising application is
implemented on CT lung images with three type of
noise using real-valued and complex-valued
wavelet transforms, ridgelet transform, first and
second-generation curvelet transforms and
denoising algorithms. PSNR value is calculated
between acquired images and original images.

2. METHOD

2.1. Wavelet Transform

Wavelet is a useful tool for representing
nonlinearity [26]. A function f (x) can be
symbolized by the superposition of daughters ψ a,b

(x) of a mother wavelet ψ (x) . Where ψ a,b (x) can
be denoted as

1( , )( ) ( )x ba b x
aa

 


 (1)

a є R+ and b є R are, separately, called dilation and
translation parameters. The continuous wavelet
transform of f (x) is described as
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and the function f (x) can be reconstructed by the
reverse wavelet transform
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The continuous wavelet transform and its inverse
transform are not suitable to implement directly on
digital computers. When the reverse wavelet
transform is discretized, f (x) has the following
approach wavelet-based representation form:
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where the wk, bk and ak are weight coefficients,
translations and dilations for each daughter wavelet
[26]. It is perceived that the wavelet transform is
an significant tool for analysis and processing of
signals and images. In spite of its efficient
computational algorithm, the wavelet transform
suffers from three essential disadvantages: shift
sensitivity, poor directionality and absence of phase
information [27-32].
Most DWT applications use sectional filtering with
real coefficient filters associated wih real wavelets
resulting in real-valued approximations and details.
Such DWT implementations cannot ensure the local
phase information. All natural signal are
fundamentally real-valued, hence to avoid the local
phase information, complex-valued filtering is
necessary [33, 34]. Latest research in the
improvement of complex wavelet tarnsforms
(CWTs) can be broadly classified in two groups;
RCWT (Redundant CWTs) and NRCWT (Non-
redundant CWTs). The RCWT contains two almost
similar CWTs. They are denoted as DT-DWT
(Dual-Tree DWT based CWT, see Figure 1) with
two almost similar models namely Kingsbury’s and
Selesnick’s [35]. In this paper, we used
Kingsbury’s CWT [34, 36] for image denoising.



COMPARISON OF REAL AND COMPLEX-VALUED VERSIONS OF WAVELET TRANSFORM,
CURVELET TRANSFORM AND RIDGELET TRANSFORM FOR MEDICAL IMAGE DENOISING

Huseyin YASAR, Murat CEYLAN, Ayse Elif OZTURK

429

2.2. Ridgelet Transform

The achievement of the wavelets essentially
depends on the good performance brought by the
one-dimensional (1-D) piecewise smooth functions.
Unfortunately, this success is not acceptable in the
two-dimensional (2-D) case. Fundamentally,
wavelets are good at catching zero-dimensional or
point singularities. However, 2-D signals (i.e.,
images) generally include 1-D singularities
(i.e.,edges and corners). The edges separate the
smooth regions by creating discontinuity across the
edge while the edges themselves are also regular
along the edge. By sentience, 2-D wavelet
transforms are created by the tensor products of 1-D

wavelets and they will so isolate the discontinuity
across the edge by missing the smoothness along
the edge.
In order to get over the weakness of wavelet
transform in two or more dimensions, Candès and
Donoho [17] improved a new system of
representations called “ridgelets” which can
effectively cover the line singularities in two
dimensions. Nowadays, Ridgelets have been
applied in image processing [37,38]. For each a >
0, each b є R and each θ є [0, 2π], the bivariate
ridgelet : R2 → R is described as

1/ 2
, , 1 2( ) . (( .cos .sin ) / )a b x a x x b a     

(5)
A ridgelet is stable along the lines x1 cos θ + x2 sin
θ = constant. Transverse to these ridges it is a
wavelet and given an integrable bivariate image f
(x1, x2), we can describe its ridgelet coefficients as

, , 1 2 1 2( , , ) . ( , )a bR a b f x x dx dx   (6)

The ridgelet transform can be indicated in terms of
the Radon transform. The Radon transform of an
image f (x1, x2) is described as

1 2 1 2 1 2( , ) ( , ). ( .cos .sin )RA t f x x x x t dx dx     
(7)

where δ is the Dirac distribution.

Thus the ridgelet transform is precisely the
implementation of a 1D wavelet transform to the
slices of the Radon transform where the angular
variable θ is stable and t is varying. Ridgelets are
different from wavelets in a sense that ridgelets
exhibit so high directional susceptibility and are
highly anisotropic. A fast ridgelet transform can be
applied in the Fourier domain. The 2D FFT is
computed firstly. Then it is interpolated along a few
straight lines equal to the selected number of
projections. Each line passes through the centre of
the 2D frequency space, with an inclination equal to

the projection angle, and a number of interpolation
points equal to the number of rays per projection.
After the 1D reverse FFT along each interpolated
ray, we perform a 1D wavelet transform. Pay
attention to that the ridgelet coefficients so obtained
are not represented in the Fourier frequency
domain. The Fourier transform used is only a tool
to succeed a fast application of the ridgelet
transformation. Actually, it is equivalent to
applying 1D wavelet transform to the Radon slices
of the original pattern image.

Figure 1: Complex Wavelet Transform with two
level

Figure 2: Ridgelet samples
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2.3. Curvelet Transform

The idea of curvelets is to represent a curve as a
superposition of functions of a variety of lengths
and widths corresponding the scaling law width ≈
length2 [19]. This can be done by decomposing the
image into subbands firstly, i.e., separating the
object into series of disjoint scales. Each scale is
then evaluated by means of a local ridgelet
transform. Curvelets are based on multiscale
ridgelets combined with a spatial bandpass filtering
process to isolate different scales. This spatial
bandpass filter nearly kills all multiscale ridgelets
which are not in filter’s frequency range. In other
words, a curvelet is a kind of multiscale ridgelet
which lives in a prescribed frequency band. The
bandpass is set so the curvelet length and width at
fine scales are interrelated by a scaling law width ≈
length2 and so the anisotropy increases with
decreasing scale like a power law. There is a very
special correlation between the index of the dyadic
subbands and the depth of the multiscale pyramid;
the edge length of the localizing windows is
doubled at per other dyadic subband, thus
maintaining the fundamental property of the
curvelet transform which says that elements of
length about 2- j serve for the analysis and synthesis
of the j th subband [2j, 2j+1]. Curvelets have a
scaling corresponding 2 width ≈ length2

while multiscale ridgelets have random dyadic
length and random dyadic widths. Loosely
speaking, the curvelet dictionary is a subset of the
multiscale ridgelet dictionary, however which
allows reconstruction.

The discrete curvelet transform of a continuos
function f (x1,x2) makes use of a dyadic sequence of
scales, and a bank of filters ( P0 f, ∆1 f, ∆2 f ) with
the feature that the passband filter ∆s is
concentrated near the frequencies [22s, 22s+2 ], e.g.,

= x , = x (8)

In wavelet theory, a decomposition into dyadic
subbands [2s, 2s+1 ] is used. Contrarily, the subbands
used in the discrete curvelet transform of
continuum functions have the non-standard form
[22s, 22s+2 ] . This is non-standard characteristic of
the discrete curvelet transform well worth
considering. The curvelet decomposition is the
sequence of the following steps with the notations
of section above,
Subband Decomposition. f is decomposed into

subbands
f → ( , , ) (9)

Smooth Partitioning. Each subband is smoothly
windowed into an appropriate scale’s “squares”
(sidelength 2-s )

→ (10)

Renormalization. Each resulting square is
renormalized to unit scale

= (11)

Figure 3: Scheme of ridgelet transform
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Ridgelet Analysis. The discrete ridgelet transform is
used for analysing each square.
In the definition, the ridgelet transform is applied
after the two dyadic subbands [22s, 22s+1 ] and [22s+1,
22s+2 ]  are merged.

We proposed a non-aliasing Curvelet transform to
overcome the aliasing in Curvelet transform,
namely complex Curvelet transform. The key
innovation can be universalized as follows: 2D and
1D complex wavelet transform.

2.4. Peak Signal-to-Noise Ratio (PSNR)

Any processing implemented to an image may
cause an significant loss of information or quality.
Image quality estimation methods can be
subdivided into objective and subjective methods
[37, 38]. Subjective ways are based on human
judgment and operate without reference to explicit
criteria [39]. Objective ways are based on
comparisons using explicit numerical criteria [40,
41], and several references are feasible such as the
ground truth or prior knowledge expressed in terms
of statistical parameters and tests [42, 43]. Given a
reference image f and a test image g, both M×N
sized, the PSNR between f and g is defined by:

2
10( , ) 10.log (255 / ( , ))PSNR f g MSE f g

(12)

2
, ,

1 1

1( , ) . ( )
M N

i j i j
i j

MSE f g f g
MN  

 

(13)

The PSNR value approaches infinity as the MSE
approaches zero; this shows that a higher PSNR
value provides a higher image quality. At the other
tip of the scale, a small value of the PSNR implies
high numerical distinctions between images.

3. USED DATA

In this study, 32 CT images taken from Baskent
University Konya Research Hospital are used.
Image collection is labeled as benign or malign by
an expert radiologist using biopsy reports. This
labeled image database includes 32 images (12
benign and 20 malign nodules) [44].

4. RESULTS AND DISCUSSION

Real-valued wavelet transform (RVWT), complex-
valued wavelet transform (CVWT), ridgelet
transform (RT), real-valued first-generation
curvelet transform (RVFG CT), real-valued second-
generation curvelet transform (RVSG CT),
complex-valued second-generation curvelet
transform (CVSG CT) are implemented on the
images and their parameters are obtained. Random,
gaussian, salt & pepper noises are implemented to

Figure 4: Scheme of curvelet transform
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the image. PSNR is calculated between the noisy
image and the original image. These processes
repeated one hundred times for all images.
Averaged value of obtained results is calculated
(see Table 1). In Table 1, B signfiy an image with
benign nodule and M signify an image with malign
nodule. According to Table 1, highest PSNR values
for removal of random noise and Gaussian noise
were obtained using CWT as 34.01 dB and 32.89

dB, respectively. In case of Gaussian noise in
images, PSNRs of first generation curvelet
transform and complex-valued wavelet transform
are around 33 dB. The ridgelet transform provides
high PSNR value (30.4dB) for denoising of salt &
pepper noise in images. The resulting denoised
output images for random selected input image
(with benign nodule) are given in Figure 5, Figure 6
and Figure 7.

Table 1: Obtained results for medical image denoising process
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5. CONCLUSIONS

In this study, multi-resolution analyses are
implemented for medical image denoising and
obtained results are concluded above:

1- Ability of defining images from best to worst is:
curvelet transform, ridgelet transform, wavelet
transform.

2- Denoising algorithm which is improved for
ridgelet analysis did not provide the expected
results for random noise and gaussian noise. On the
other hand, although been worse than the other
transformations, it was more useful for denoising
salt&pepper.
3- For the future, multi-resolution analyses can
improve to other medical image denoising
problems. In addition, other multi-resolution
analyses can be used to make the denoising scheme
more effective. The performance of this study
shows the advantage of proposed method: complex
version of multi-resolution analyses is very suitable
for noise removal from medical images.
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