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Abstract- This work deals with an inversion technique that was developed to reconstruct a pulse after 

it has propagated along a pipe; a complex pulse that is progressively distorted as explained. The 

technique developed makes use of the theory of inverse problems. 
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INTRODUCTION 

An inverse problem is one that occurs in 

many branches of science and mathematics 

where the values of some model 

parameter(s) must be obtained from the 

observed data. Inverse methods can be 

basically considered as an approach for 

interpolating or smoothing a data set in 

space and time where a model acts as a 

dynamical constraint [1]. 

  

An inverse problem involves determining 

the parameters of a model that describes or 

explains a set of observed data.  

In geophysics, inverse problems require an 

understanding of the "forward process" that 

relates the model to its geophysical 

response. They also require knowledge of 

the statistical reliability of the observed 

data. Aspects that must be considered in 

inverse problems include the formulation 

and parameterization of the problem, the 

existence, uniqueness and resolution of 

solutions, strategies for dealing with over-

determined and under-determined model 

parameters, and strategies for introducing 

independent constraints into the solutions 

[2].             

 

FORWARD THEORY 

 

The (mathematical) process of predicting 

data based on some physical or 

mathematical model with a given set of 

model parameters (and perhaps some other 

appropriate information, such as geometry, 

etc.). 

As an example, consider a two-way vertical 

travel time t  of a seismic wave through M
, layers of  

thickness ih
and velocity iv

. Then t  is 

given by:             



M

i i

i

v

h
t

1

2 . 

The forward problem consists of predicting 

data (travel time) based on a (mathematical) 

http://en.wikipedia.org/wiki/Science
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Datum
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model of how seismic waves travel. 

Suppose that for some reason thickness was 

known for each layer (perhaps from 

drilling). Then only the M velocities would 

be considered model parameters. One 

would obtain a particular travel time t for 

each set of model parameters one chooses. 

Schematically, one might represent this as 

follows:  
 
 
 
 
 
 
 
 
 
As an example, one might invert the travel 

time t above to determine the layer 

velocities. Note that one needs to know the 

(mathematical) model relating travel time 

to layer thickness and velocity information. 

Inverse theory should not be expected to 

provide the model itself. 

The work as carried out by this research is 

made more difficult as there are no 

possibilities of making repeat trials, but 

fortunately this is made possible because 

the pulses propagate in a one-dimensional 

wave guide rather than the three 

dimensional interior of the Earth. 

 

THE INVERSE THEORY 

 

Inverse problems may be described as 

problems where the solutions are known, 

but not the causes. Alternatively, where the 

results, or consequences of the problem are 

known but not what must have caused it. 

Inverse theory therefore requires 

knowledge of a forward model capable of 

predicting data if the model parameters are 

already known. In an inverse problem 

measurements are taken of these effects and 

calculations made to establish what caused 

them. This requires a description of the 

data; in most inverse problems the data are 

simply a table of numerical values, of 

which a vector provides a convenient 

means of representing them.  

 

Inverse theory is inherently mathematical 

and as such does have its limitations.  It is 

best suited to estimating the numerical 

values of model parameters for some 

known or assumed mathematical model. It 

is good for extracting the model parameters 

that best fit the data.  

The basic theory of inverse methods is fully 

explained by Menke [3]. Briefly, it can be 

summarised as follows.  Suppose in the 

course of an experiment N measurements 

are obtained, these numbers may be 

considered as the elements of the vector d 

of length N . Also, the model parameters 

can be represented as the elements of the 

vector m, of length M . 

Thus, we can write, 

data: d =  TNdddd ...,,, 321              (1)                                   

  

model parameters: 

 m =  TMmmmm ,...,,, 321                     (2) 

 

In the statement of an inverse problem there 

is a relationship between the model 

parameters and the data. This relationship is 

referred to as the model. The model usually 

takes the form of one or more formulas that 

the model parameters and data are 

anticipated to follow. For example, in 

trying to determine the resistance of a wire 

by measuring its voltage and current, there 

will be two data sets, voltage d1 and current 

d2 respectively, and one unknown model 

parameter, resistance (
1m ). The model 

statement would be the resistance times the 

current equals voltage, which can be 

represented compactly by vector equation 

(3), 

 

d1 = d2 m1                                       (3)     

 

In more realistic situations the relationship 

between the data and model parameter is 

more complicated. In the most general case, 

 

Data 

 

Mode

l 

Predicted 

(or 

estimated 

model 

parameters 
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the data and model parameters are related 

by one or more implicit equation such as in 

equation (4), 

1l (d, m) = 0   

2l (d, m) = 0                                          

                                        (4) 

       . 

Nl (d, m) = 0    

 

where, N  is the number of equations.  

In the above problem concerning the 

measurements of the resistance, 1N and 

112 dmd   would constitute one equation 

of the form   

1l (d, m) = 0               (5)

  

These implicit equations, which can be 

compactly written as the vector equation l 

(d, m) = 0, summarize what is known about 

how the measured data and the unknown 

model parameter are related. The goal of 

inverse theory, therefore, is to solve, or 

invert, these equations for the model 

parameters. 

 

 

THE LINEAR INVEERSE PROBLEM 

 

The simplest form of a linear inverse 

problem as described by Menke [3], is 

given by, 

d = Gm                (6)  

 

where,  

d = measured data, G = data kernel m 

= model parameters 

The data and model parameters are 

functions )(xd  and )(xm , in which x  is 

some independent variable. Again using the 

problem of determining the resistance of a 

wire it is possible to formulate an inverse 

problem. Supposing that N  voltage 

measurements jV are made at current ji  in 

a circuit, then, the data form a vector d of 

N  measurements of voltage, where,  

d 
 TNVVVV .,..,,, 321

             (7) 

The current ji
 provides auxiliary 

information that describes the geometry of 

the experiment. If we assume a model in 

which the voltage is a linear function of the 

current; 

 biaV                  (8) 

The intercept a and the slope b  form the 

two model parameters of the problem, m =

 Tba,
. According to this model, each 

voltage observation must satisfy

biaV  : 

 

NN biaV

biaV

biaV







.

.

.

22

11

               (9) 

 

These equations can be arranged as the 

matrix equation d = Gm:  

 





)10(

1

..

..

..

1

1

.

.

.

2

1

2

1

m

G

N

d

N

b

a

i

i

i

V

V

V


































































 

For any real set of measurements with 

experimental errors equation (8) will not be 

satisfied exactly, but equation 10 can still 

be used for a least square solution to 

determine the model parameters a and b. 

 

 

INVERSE METHOD BASED ON 

LEAST SQUARES 

The two most common vectors that are 

concerned with inverse problems are the 

data-error or misfit vector and the model 

parameter vector [3]. The methods based on 
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data-error or misfit give rise to classic least 

squares solutions, while methods based on 

the model parameter give rise to what is 

called minimum length solutions.  

The improvements over simple least 

squares and the minimum length solutions 

include the use of information about noise 

in the data and a fore-knowledge about the 

model parameters.  

The most important application of these 

vectors is in data fitting. The best fit in the 

least square sense minimizes the sum of the 

squared residuals, a residual being the 

difference between an observed value and 

the fitted value provided by a model. 
 

Minimizing the Misfit-Least Squares (after 

Menke [3]) 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Least squares fitting of a straight 

line to ( di, ) pairs 

The error je  for each observation is the 

difference between the observed and 

predicted datum:  

 
pre

j

obs

jj dde 
  (11)                         

  

The j th predicted datum 
pre

jd  for the 

straight line problem is given by 

j

pre

j immd 21 
            (12)

 

where the two unknowns, 
1m  and 

2m , are 

the intercept and the slope of the line and 

ji is the value along the i axis where the j

th observation is made. 

For N points we have a system of N such 

equations that can be written in matrix form 

as: 

 
























































2

1

11

1

..

..

..

1

.

.

.

m

m

i

i

d

d

NN                       (13)

 

or  

 

 d      =    G        m            (14)
    

)1( N    )2( N )12(   

 

The total misfit E is given by 

E eTe =  
2

1





N

j

pre

j

obs

j dd            

(15)

 

  

 
2

1

21 )(



N

j

j

obs

j immd

    

(16) 
 

Dropping the “obs” in the notation for the 

observed data, we have 

 





















N

j jj

jjjj

immimm

imdmdd
E

22

2

2

121

21

2

2

22

              (17) 

Taking the partial derivatives of E with 

respect to 
1m and 

2m , and equating them to 

zero yields: 
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0222
1

2

1

1

1








N

j

j

N

j

j imdNm
m

E

              (18)  

And 

 








N

j

jj

N

j

j imid
m

E

1

1

12

22

 

                             

02
1

2

2 


N

j

jim

             (19) 

Rewriting equations (5.18) and (5.19) 

above 

 

(20)21  
j

j

j

j dimNm

     

and  

 

(21)
2

21  
j

ji

j

j

j

j idimim

     

    

Combining the two equations in matrix 

notation in the form Am = b gives 

 














































jj

j

jj

j

id

d

m

m

ii

iN

2

1

2

                 (22) 

or, simply 

   A        m     =     b             (23) 

)22(   )12(      )12(      

 

Equation (23) above shows that the 

problem has been reduced from one with 

N equations to two unknowns ( 1m  and 2m

) in Gm = d to one with two equations in 

the same unknowns as in Am = b. 

The matrix equation Am = b can also be 

rewritten in terms of the original G and d 

when it is observed that the matrix A can be 

factored as: 

GG

1

..

..

..

1

1

...

1...11
T

2

1

21
2





















































 



N

Njj

j

i

i

i

iiiii

iN

                                                                 

(24)   

Also, b above can be written similarly as 

dG

.

.

.

...

1...11
T

2

1

21

























































N

Njj

j

d

d

d

iiiid

d

     

                                                              (25) 

Substituting equations (24) and (25) into 

equation (22), gives the equations for the 

least squares problem: 

GTGm = GTd             (26) 

The least squares solution mLS is then 

obtained as 

mLS = [GTG]-1GTd            (27) 

assuming that [GTG]-1 exists. 

This solution implies that the forward 

problem as in equation (13) can be used to 

obtain an explicit relationship between the 

model parameters ( 1m  and 2m ) and a 

measurement of the misfit to the observed 

data E . The value E  is then minimized by 

taking the partial derivatives of the misfit 

function with respect to the unknown model 

parameters, equating the partial derivatives 
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to zero, and solving for the model 

parameters [4]. 

 

APPLICATION OF LINEAR 

INVERSE TO PULSE 

PROPAGATION IN PIPELINES 

 

Consider again the pipeline illustrated in 

Figure 2 To formulate the problem into a 

least-squares inverse problem, we can use 

the rule governing the attenuation between 

sensors 2 and 3: that the attenuation 

coefficient defining propagation is not only 

frequency dependent, but is proportional to 

frequency squared [5], and then work 

backwards from sensor 2 to the event site. 

Though pulse propagation in a pipeline is in 

reality non-linear, it is only weakly so if the 

dispersion effect is not too strong.  In this 

section the assumption of local linearity is 

made by neglecting dispersion, and so that 

the problem can be approached by the 

least–squares inverse method.   

The technique developed works in the 

frequency domain. The pulse signals at the 

sensor locations 2 and 3 are first 

transformed into the frequency domain 

using the fast fourier transform (FFT).  

Assuming exponential attenuation 

proportional to the square of each 

frequency component a best-fit coefficient 

for the attenuation between locations 2 and 

3 is found.  Applying this to the pulse signal 

from sensor 2 the original pulse at the event 

site is reconstructed in the frequency 

domain, and finally transformed back into 

the time domain using the inverse FFT.  
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Pulses propagating in fluid filled pipelines 

can be expressed in the form: 

 

)exp()(),( xtptxp o 
           (28) 

where 
p

is the description of the pulse 

which is a function of time and distance 

along the pipe, op
 is the function defining 

the pulse at 0x ,   is frequency 

dependent attenuation factor, proportional 

to frequency squared.  This formulation is 

general and is not restricted to any 

particular pulse shape. 

 

 

Relating this to the Fourier spectrum in the 

frequency domain,  
1,001 x

jj ePP



                                   (29) 

or  
1,0

2
01 xaf

jj
jePP




            (30) 

 

Where 

10
and jj PP

 are the pulse functions 

transformed into the frequency domain, the 

subscripts denoting the index of the Fourier 

spectrum components and the superscripts 

the location of the pulse, 0 being the event 

location and 1, 2, 3 being locations of the 

sensors as defined in Figure 2. 

fj = the frequency of the jth Fourier 

component, 

1,0x
= distance between the event 0 and 

sensor 1. 

a = a proportionality constant to be 

determined 

 

Considering now, the Fourier spectrums of 

the pulse signals at sensors 2 and 3 along 

the pipeline in Figure 2,  

 

3,2
2

23 xaf

jj
jePP




            (31) 

Taking the natural logarithm of both sides 

of the expression in equation 31 makes this 

into a linear inverse problem of the form, 

 

3,2

232
xafLnPLnP jjj 

            (32)
 

In matrix form, this becomes: 

 


m

G

NN

d

N

a

fxLnP

fxLnP

fxLnP

LnP

LnP

LnP



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






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
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
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
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







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






















1

..

..

..

.

.

.

2

3,2

3

2

23,2

3

2

2

13,2

3

1

2

2

2

2

1

  

     

                             (33) 

 

which is of the same basic form as equation 

13. 

Forming the matrix products 

 

GTG= 















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


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

















2
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3

2
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3

2

2

13,2

3

1

2

3,2

2

23,2

2

13,2
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2

3

1

..

..

..
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NN

N

N

fxLnP

fxLnP

fxLnP

fxfxfx

LnPLnPLnP

  





















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3,2
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3,2

2

3,2
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)()(

jjj

jjj

fxLnPfx

fxLnPLnP

     

                                                  (34) 

and  
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GTd= 












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
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

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


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2

2

2

2

1

2
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2
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1
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.
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N

N
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LnPfx

fxLnPLnP

LnP

LnP
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fxfxfx
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                                                             (35)  

mLS = [GTG]-1GTd  

        = 
1

42

3,2
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3,2

2

3,2

323

)(

)()(
























jjj

jjj

fxLnPfx
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











 




22

3,2

2

3,2

32
)(

jj

jjj

LnPfx

fxLnPLnP

       
                                                              (36) 

Equation (36) gives a linear solution to the 

least square inverse problem obtained 

based on the general form of the solution set 

out, from which the estimate of the model 

parameter a, which defines the frequency 

dependent attenuation in         mLS = [1 a]T 

is determined. This value of the estimated 

model parameter a in mLS can then be 

applied to the Fourier spectrum of the pulse 

signal at sensor 2 to compute the estimated 

Fourier spectrum of the form of the pulse to 

be reconstructed at the start of the event 

using equation (33) 
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1

..
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.

.

              (37) 
Since, the Fourier spectrum of the pulse 

signal at sensor 2 is known, this allows for 

the computation of the log Fourier spectrum 

of the pulse at the event that is to be 

reconstructed, and from which it is a simple 

matter to convert to the time domain using 

the inverse FFT.  
 

RECONSTRUCTION OF SIMPLE 

PULSE BY THE INVERSE METHOD 

 

This involved the use of the simple pulse 

data described containing a single 

frequency component of 53 Hz. 

 Case 1: close sensor spacing of 110 

m from the event site to sensor 2 

and 300 m between sensors 2 and 

3.  

Figures 3 and 4 show the reconstructed 

pulses obtained using the inverse method. 

 
Figure 3 Reconstructed simulated pulse at 

event by inverse method (single frequency 

with sensors close to the event) in time domain 

 

 
(a) original pulse (b) reconstructed 

pulse 
Figure 4 Reconstructed simulated pulse at 

event by inverse method (single frequency 

with sensors close to the event) in time domain  

The reconstructed pulse in Figure 3 shows 

a good fit to the original pulse. This 
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impression is confirmed by the Fourier 

spectra of the pulses in Figure 4, which 

have the same fundamental frequency of 53 

Hz and differ by only 4% in magnitude 

compared with the 7% using the 

deconvolution filter method. 

Case 2: wide sensor spacing of 800 m from 

the event site to sensor 2 and 1000 m 

between sensors 2 and 3 

Figures 5 and 6 shows the simple pulse 

reconstructed by the inverse method in the 

time and frequency domains, respectively. 

 
Figure 5 Reconstructed simulated pulse at 

event by inverse method (single frequency 

with sensors widely spaced) in time domain 

 

 
(a) original pulse (b) reconstructed 

pulse 
Figure 6 Reconstructed simulated pulse at event 

by inverse method (single frequency with 

sensors widely spaced) in frequency domain 

 

The fit of the reconstructed pulse with the 

original looks better using the inverse 

method, though this impression is not 

confirmed by Figure 5 where the height of 

the 53Hz peak is 20% different from the 

original, compared with 15% using the 

deconvolution filter.  

 

COMPLEX PULSE 

RECONSTRUCTION BY INVERSE 

METHOD 

 

This entailed the reconstruction of a 

complex pulse with eight frequency 

components as described under the same 

conditions of cases 1 and 2.  

 Case 1: closely spaced sensors 

Figures 7 and 8 shows the reconstructed 

pulses obtained using the inverse method 

under the conditions of case 1. 

 
Figure 7 Reconstructed simulated pulse at 

event by inverse method (multiple frequencies 

with sensors closer to the event) in time 

domain 

The reconstructed pulse in Figure 7 using 

the inverse method shows a better 

approximation to the original pulse than 

that obtained using the deconvolution filter. 

This is confirmed in Figure 8 where the first 

three peaks reduce in a similar progression. 

The magnitude of these three low modes 

are all underestimated by this inverse 

reconstruction technique, and this effect is 

progressively more marked in the higher 

frequency modes so that the fourth and 

subsequent modes are not reconstructed at 

all. As in the deconvolution filter 

reconstruction method, this is because these 

components attenuate fast and so did not 
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reach the second sensor, so they would not 

have appeared in the inverse calculation. 

 

(a) original pulse (b) reconstructed pulse 

Figure 8 Reconstructed simulated pulse at 

event by inverse method (multiple frequencies 

with sensors closer to the event) in frequency 

domain 

 Case 2: widely spaced sensors 

Reconstruction of the same complex pulse 

with the widely spaced sensors is shown in 

Figures 9 and 10 in the time and frequency 

domains. 

 
Figure 9 Reconstructed simulated pulse at 
event by inverse method (multiple frequencies 
with sensors far apart to the event) in time 
domain 

 

(a) original pulse (b) reconstructed pulse 

Figure 10 Reconstructed simulated pulse at 

event by inverse method (multiple frequencies 

with sensors far apart to the event) in 

frequency domain 

  

From Figure 9 it can be seen that virtually 

all the high frequency components in the 

original simulated pulse at the event are not 

seen in the reconstructed pulse, and this is 

confirmed in Figure 10 where only the first 

two modal peaks of the reconstructed pulse 

are visible, and the second is very small. 

Nevertheless, even with this very wide 

sensor spacing and the very limited signal 

produced at the more remote sensor the 

reproduced pulse does still contain useful 

information about the magnitude and decay 

rate of the original pulse. From these test 

results obtained using the developed pulse 

propagation model, it is evident that the 

inverse method of pulse reconstruction 

gives better results than the deconvolution 

filter method. However, it should be noted 

that the inverse method consistently 

underestimated the pulse magnitude, 

whereas the deconvolution filter 

overestimated it, so there could be a case for 

using both methods in a practical 

application to obtain the best possible 

estimate. 
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EXPERIMENTAL WORK 

AND RESULTS 
 

To investigate the use of inverse methods in 

the reconstruction of the pulse at the event 

site, the event to be reconstructed was 

similarly taken as the pulse as it passes 

through the first sensor. As before, the 

pressure pulse data at the first sensor was 

recorded but not used in the subsequent 

calculations. The same pressure pulse 

measurements obtained from sensors 2 and 

3,   and , in the previous section were used 

and later transformed into the frequency 

domain using the fast Fourier transform 

(FFT) function in Matlab to obtain their 

respective Fourier spectra. Based on the 

Fourier spectrum of the measured pressure 

pulses, a solution to the least square inverse 

problem was obtained to determine the 

estimate of the required model parameter 

mLS following the procedures outlined. 

This value of the estimated model 

parameter was then used to calculate the 

Fourier spectrum of the pressure pulse to be 

reconstructed. The exponential of the log 

Fourier spectrum was then taken   

and transformedinto the time domain using 

the inverse fast Fourier transform (IFFT) 

function in Matlab 

 

 
Figure 11 Reconstructed pulse at sensor 1 by 

inverse method 

 

  

From Figure 11 the shapes of the 

reconstructed and measured original pulse 

at sensor 1 agree quite well. The magnitude 

of the reconstructed pulse in this case can 

be seen to have underestimated the 

measured pulse by 20%. This result is 

typical of the fifteen repeat tests, in which 

the underestimate ranged between 20 % and 

22 %.   

These experimental results are consistent 

with the model results which gave a similar 

level of underestimation.  
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