
1035

A GA based Software Test Data to Generator Suitable Test Cases

Ali Norouzi

Department of Computer Engineering, Istanbul University / Avcilar, Istanbul, Turkey
norouzi@ieee.org

Abstract

This work presents a new concept that is applied in genetic algorithm based tester. Genetic
algorithm is sort of evolutionary algorithm that uses in searching problem for optimal solution.
In presented test input data generation application, the solution sought by genetic algorithm is a
set of test data that causes execution of all possible paths of a given program under test. The
proposed concept, repetition frequency is a tool to measure high frequented and also dead parts
of program. To experiment with proposed genetic generator, random test data generator was
implemented too. Both of these generators tested three programs that are benchmark for many
researchers in order to show our proposed tester efficiency.

Keywords: Software engineering, genetic algorithm, dynamic repetition frequency, test data
generator.

1. Introduction

Nowadays, technology incorporates
software systems which become
complicated over and over. These systems
applied in several fields such as business
and government that their failure is high
cost, hence distributed system has most
troublesome problems, due to any
component interacts in unpredictable ways.

The study is part of continuous research
stream focused on the application of Genetic
Algorithm (GA) in structural testing. We
intend to discover bugs and errors through
generating large volumes of test data.
Generally, the genetic algorithm is a process
which explores different execution of a

program to find misbehaviors. Several bugs
are discovered after many generations. This
is how, genetic algorithm based methods can
obtain solution which show rare error.

GA based testing is an optimization
technique used in test case generation to find
optimum solution. The considered test is
characterized by the use of Evaluation
Testing, where input domain of the test data
evaluates respected search aim.
Traditionally, GA operates on binary string
but other coding is possible. In this case,
each digit is represented by a gen that makes
up chromosomes. A collection of
chromosomes make up population. Each has
fitness value that determines probability of

1 Department of Computer Engineering, Istanbul University, norouzi@ieee.org

A GA based Software Test Data to Generator Suitable Test
Cases

Ali NOROUZI1

Abstract
This work presents a new concept that is applied in genetic algorithm based tester. Genetic
algorithm is sort of evolutionary algorithm that uses in searching problem for optimal solution. In
presented test input data generation application, the solution sought by genetic algorithm is a set
of test data that causes execution of all possible paths of a given program under test. The proposed
concept, repetition frequency is a tool to measure high frequented and also dead parts of program.
To experiment with proposed genetic generator, random test data generator was implemented too.
Both of these generators tested three programs that are benchmark for many researchers in order
to show our proposed tester efficiency.

Keywords: Software engineering, genetic algorithm, dynamic repetition frequency, test data
generator.

10.17932/ IAU.IJEMME.m.21460604.2015.5/4.1035-1042

1036

A GA based Software Test Data to Generator Suitable Test Cases

presence in the next generation as parent. In
fact, fitness value is a assigned weight to
each chromosome based on its content
pattern. After, the next generation is attained
from the percentage of current population in
which mainly chromosomes are mated and
rest of the percentage is mutated. This cycle
is terminated whenever stop criterion is
satisfied.

Generally, evolutionary testing including
GA based one are inspired by evolutionary
biology such as mutation, selection,
crossover, and inheritance. The study
focuses on selection process a.k.a. fitness
function which adopts robust and suitable
chromosomes which have fitness value on
or above specified threshold value.
Therefore GA based testing is categorized as
adoptive search technique where are not
guaranteed obtaining of optimal solution.
However, GA based operator with effective
fitness function finds very good solution in a
limit of time and definitely improves the
individuals over several generation iteration,
according to the Scheme theorem [4]. The
article is arranged as follows. Main idea in
software test is the subject of section2,
followed new algorithm is under
consideration in section 3. Section 4 deals
with the results of simulation and finally
come conclusion and future work
suggestions at section 5.

2. Main Idea
Path testing is a comprehensive structural
testing where source code of program can be
represented by a directed graph called
Control Flow Graph (CFG). In this graph,
every statement and possible control flow

between statements are shown as node and
edge respectively and therefore path is a
sequence of node which is limited between
two special node called start and exit node.

This kind of testing is designed to execute
all paths of CFG, i.e. every statement and
every condition which has two paths in true
and false sides, are traversed at least once
time[1, 3]. In presented approach, GA based
testing is an application of genetic algorithm
to the path testing where utmost paths of
program are covered by generated test data.

There are two fundamental strategies for
improving GA based test data generation to
test software. The first one is direct
improvement of genetic algorithm
components. Selection component is one the
critical process in the GA operators where
individuals are adopted according to their
weight or other qualifications. The second
important component is stop process which
diagnoses suitable time to stop.

The second strategy is applying a system
oracle, models or simulation as a substitute
to the actual system. Any improvement to
the genetic algorithm component could
significantly effect on the solution
qualification and execution time.

3. New Algorithm
Formula 1 is proposed to evaluate each test
case, applying dynamic repetition frequency
concept. Given a CFG of program, each
edge which is represented by a character has
repetition number in traversed paths
collection called dynamic repetition
frequency. The more dynamic repetition

frequency of every edge, the more coverage
probability

This phenomenon causes to decrease own
fitness value, i.e. the fitness value of a path
is determined by summation of inversed
dynamic repetition frequency or briefly
repetition frequency number of edges
included. Clearly, fitness value of repeated
edge of a path (especially with cycle) will be
0 when it is traversed by a test data. In
actual, the fitness function implies that the
aim is to traverse low repetition frequency
edges.


n

j
f

j
pFitness

1
)/1()(

(1)

In this approach, Fitness Function is a
procedure which assigns a weight to each
chromosome based on covered edges. This
weight is called fitness value and is a
criterion to select chromosome from current
population to generate new population.

As fitness function has rationale role in the
GA based generator and biases candidate
data toward optimum ones, we introduce a
function which is explained below,
according to the repetition frequency
concept:

(1) Form CFG of program and determine
every frequency edges, (2) determine
branches and then find conditional
statements related to those branches in the
program, (3) form predicate according to the
distinct statements of previous step, using
conjunction (AND) and disjunction (OR)
operators. We apply disjunction operator

when you have composite conditions, such
as IF and CASE conditions which
simultaneous execution of all parts of a
condition with one test data is impossible.
For example, we use disjunction operator
between THEN and ELSE statements of an
IF.

We also apply conjunction operator to
remained statements, :(4) determine fitness
function: 1- we now manipulate remained
predications similar to previous step so that
replace any conjunction and disjunction
operators with minimum and maximum ones
in order, and 2- we finally replace every
condition statement with corresponding
function in Fig. 1. Final function will be
fitness function. Fig. 1 represents fitness
function formation formula [6, 7, 8].
Suppose 5th function. If difference between
x and y is equal to zero, the function will
return zero, unless it remains the real result.
Consider third function. We use very small
value  (e.g. 10-6) to distinguish between x
≠ y and x=y state.











































yxyx
yx

yxif

yxyx
yx

yxif

yxK
yx

yxif

yxyxabs
yx

yxif

FalseK
True

xif

)(
0

).....(

)(
0

)......(

0
)....(

)(
0

)....(

0
....).........(












1037INTERNATIONAL JOURNAL OF ELECTRONICS, MECHANICAL AND MECHATRONICS ENGINEERING Vol.5 Num.4 - 2015 (1035-1042)

Ali NOROUZI

presence in the next generation as parent. In
fact, fitness value is a assigned weight to
each chromosome based on its content
pattern. After, the next generation is attained
from the percentage of current population in
which mainly chromosomes are mated and
rest of the percentage is mutated. This cycle
is terminated whenever stop criterion is
satisfied.

Generally, evolutionary testing including
GA based one are inspired by evolutionary
biology such as mutation, selection,
crossover, and inheritance. The study
focuses on selection process a.k.a. fitness
function which adopts robust and suitable
chromosomes which have fitness value on
or above specified threshold value.
Therefore GA based testing is categorized as
adoptive search technique where are not
guaranteed obtaining of optimal solution.
However, GA based operator with effective
fitness function finds very good solution in a
limit of time and definitely improves the
individuals over several generation iteration,
according to the Scheme theorem [4]. The
article is arranged as follows. Main idea in
software test is the subject of section2,
followed new algorithm is under
consideration in section 3. Section 4 deals
with the results of simulation and finally
come conclusion and future work
suggestions at section 5.

2. Main Idea
Path testing is a comprehensive structural
testing where source code of program can be
represented by a directed graph called
Control Flow Graph (CFG). In this graph,
every statement and possible control flow

between statements are shown as node and
edge respectively and therefore path is a
sequence of node which is limited between
two special node called start and exit node.

This kind of testing is designed to execute
all paths of CFG, i.e. every statement and
every condition which has two paths in true
and false sides, are traversed at least once
time[1, 3]. In presented approach, GA based
testing is an application of genetic algorithm
to the path testing where utmost paths of
program are covered by generated test data.

There are two fundamental strategies for
improving GA based test data generation to
test software. The first one is direct
improvement of genetic algorithm
components. Selection component is one the
critical process in the GA operators where
individuals are adopted according to their
weight or other qualifications. The second
important component is stop process which
diagnoses suitable time to stop.

The second strategy is applying a system
oracle, models or simulation as a substitute
to the actual system. Any improvement to
the genetic algorithm component could
significantly effect on the solution
qualification and execution time.

3. New Algorithm
Formula 1 is proposed to evaluate each test
case, applying dynamic repetition frequency
concept. Given a CFG of program, each
edge which is represented by a character has
repetition number in traversed paths
collection called dynamic repetition
frequency. The more dynamic repetition

frequency of every edge, the more coverage
probability

This phenomenon causes to decrease own
fitness value, i.e. the fitness value of a path
is determined by summation of inversed
dynamic repetition frequency or briefly
repetition frequency number of edges
included. Clearly, fitness value of repeated
edge of a path (especially with cycle) will be
0 when it is traversed by a test data. In
actual, the fitness function implies that the
aim is to traverse low repetition frequency
edges.


n

j
f

j
pFitness

1
)/1()(

(1)

In this approach, Fitness Function is a
procedure which assigns a weight to each
chromosome based on covered edges. This
weight is called fitness value and is a
criterion to select chromosome from current
population to generate new population.

As fitness function has rationale role in the
GA based generator and biases candidate
data toward optimum ones, we introduce a
function which is explained below,
according to the repetition frequency
concept:

(1) Form CFG of program and determine
every frequency edges, (2) determine
branches and then find conditional
statements related to those branches in the
program, (3) form predicate according to the
distinct statements of previous step, using
conjunction (AND) and disjunction (OR)
operators. We apply disjunction operator

when you have composite conditions, such
as IF and CASE conditions which
simultaneous execution of all parts of a
condition with one test data is impossible.
For example, we use disjunction operator
between THEN and ELSE statements of an
IF.

We also apply conjunction operator to
remained statements, :(4) determine fitness
function: 1- we now manipulate remained
predications similar to previous step so that
replace any conjunction and disjunction
operators with minimum and maximum ones
in order, and 2- we finally replace every
condition statement with corresponding
function in Fig. 1. Final function will be
fitness function. Fig. 1 represents fitness
function formation formula [6, 7, 8].
Suppose 5th function. If difference between
x and y is equal to zero, the function will
return zero, unless it remains the real result.
Consider third function. We use very small
value  (e.g. 10-6) to distinguish between x
≠ y and x=y state.











































yxyx
yx

yxif

yxyx
yx

yxif

yxK
yx

yxif

yxyxabs
yx

yxif

FalseK
True

xif

)(
0

).....(

)(
0

)......(

0
)....(

)(
0

)....(

0
....).........(












1038

A GA based Software Test Data to Generator Suitable Test Cases

Figure 1: Standard fitness function for
conditional relations

3.1. GA-based Solution Pseudo code
Fig. 3 represents psudocode where steps 4
through 8 indicate genetic algorithm. In first
step, using Fig. 2 which represents standard
fitness functions, we make a fitness function
and calculate binary of decimal numbers
which is generated by user or random
function as candidate (primary)
chromosomes. We identify edges of
program CFG to calculate the repetition
frequency of edges while tester gets running.
These edges are mentioned in coverage table
that we initialize with primary
chromosomes. Next step indicates main
cycle of generation.

Procedure GC ()
}
Input: Program: Changes version of
program to be tested;
InitData: Set of test data; EF: Edge
Frequency;
Output: Final: A solution test case set;
CovTable: recorded EFs with status;
#define MaxTimes m; //Max acceptable
time;
Variables declaration:
CanCH1&2: Candidate chromosomes;
TP:Traversed Path;
CovTable: Coverage Table;
NextPop, CurPop: a set of test data;
OpCH1&2: Optimal Chromosomes;
Counter: iteration;
 Begin
Step1: Make CanCH 1&2 by InitData;
 Get fitnessFUN() to Initial OpCH1
and CovTable;

 Initial CurPop;
Step2: While (! fill CovTable with Y ||
counter <
 MaxTimes ||! User request) {

Use Crossover and Mutation
operations;
Compute fitnessFUN ();
Compute NextPop and Save OpCH2;

Step3: for each chromosome of NextPop
If (IsDefect (NextPop))

 Replace with OpCH1 one;
 CurPop = NextPop; OpCH1 =
OpCH2;
Step4:if(counter mod 10 == 0){

Compute number of TPs by
CovTable;

Compute EF of every edge in
CovTable;

Show CovTable and Ask to
continue;} Counter++;
 } Final = CurPop;
 Return Final and CovTable;
 End.
}
Boolean IsDefect (chromosome)
{ v = Fitness value of best OPCH1;
 if fitness value is less than v/l return
true;
 else return false; //l is an optional
value
}

Figure 2: Proposed GA based-Algorithm
Step 2, the algorithm calls crossover and
sometimes mutation to generate new
population. In fact, crossover generates
offspring and mostly gets two chromosomes
and remains two new ones. In next line,
fitness function evaluates each

chromosomes based on its dynamic
repetition frequency of coverage table.

The more fitness value, the more chance to
participate in the next generation

Since some suitable chromosomes probably
will not present in the next generation, we
save them in OPCH2 variable, i.e. however
suitable chromosomes is saved or presented
in the next generation but less fitness value
one just can be mutated and the others will
be removed from population.

Step 3: if fitness value of some chromosome
is less than threshold, it will be removed
from current population because it has been
corrupted, i.e. it is not enough qualified to
traverse some uncovered part. This
chromosome will be replaced with one from
OPCH2 is being completed from previous
population.

In the last step, we compute required
iteration and update coverage table too in
order to present it to the user. Algorithm can
stop the process based on user request. This
step is controlled by counter variable that
controls number of iteration.

4. Discussion of Results
To investigate the efficiency of proposed
algorithm, we experimented with some
programs such as triangle classifier. These
programs are benchmark for many
researchers in software testing [2, 5, 10].
Below, we explain briefly these programs.

Find.c: Lines of code: 66, Given array P[],
and index I, places all elements less than or
equal to P[I] to the left of P[I], and all

elements that are greater to or equal to P[I]
to the right of P[I]. [2]

Fourballs.c: Lines of code: 82. Given four
integers representing the weights of balls,
determines the weights of the balls relative
to each other. [2]

Triangles-classifier.c: Lines of code: 61.
Given three integers representing triangular
side lengths subdivide into valid, equilateral,
isosceles and scalene classes.

In the first step, the fitness function was
supposed to operates based on presented
algorithm. These Figurs show the average of
iteration by our tester and random one to
cover the program under the test. The
population was 500 individuals with
mutation rate .5 in two random and
presented methods.

1039INTERNATIONAL JOURNAL OF ELECTRONICS, MECHANICAL AND MECHATRONICS ENGINEERING Vol.5 Num.4 - 2015 (1035-1042)

Ali NOROUZI

Figure 1: Standard fitness function for
conditional relations

3.1. GA-based Solution Pseudo code
Fig. 3 represents psudocode where steps 4
through 8 indicate genetic algorithm. In first
step, using Fig. 2 which represents standard
fitness functions, we make a fitness function
and calculate binary of decimal numbers
which is generated by user or random
function as candidate (primary)
chromosomes. We identify edges of
program CFG to calculate the repetition
frequency of edges while tester gets running.
These edges are mentioned in coverage table
that we initialize with primary
chromosomes. Next step indicates main
cycle of generation.

Procedure GC ()
}
Input: Program: Changes version of
program to be tested;
InitData: Set of test data; EF: Edge
Frequency;
Output: Final: A solution test case set;
CovTable: recorded EFs with status;
#define MaxTimes m; //Max acceptable
time;
Variables declaration:
CanCH1&2: Candidate chromosomes;
TP:Traversed Path;
CovTable: Coverage Table;
NextPop, CurPop: a set of test data;
OpCH1&2: Optimal Chromosomes;
Counter: iteration;
 Begin
Step1: Make CanCH 1&2 by InitData;
 Get fitnessFUN() to Initial OpCH1
and CovTable;

 Initial CurPop;
Step2: While (! fill CovTable with Y ||
counter <
 MaxTimes ||! User request) {

Use Crossover and Mutation
operations;
Compute fitnessFUN ();
Compute NextPop and Save OpCH2;

Step3: for each chromosome of NextPop
If (IsDefect (NextPop))

 Replace with OpCH1 one;
 CurPop = NextPop; OpCH1 =
OpCH2;
Step4:if(counter mod 10 == 0){

Compute number of TPs by
CovTable;

Compute EF of every edge in
CovTable;

Show CovTable and Ask to
continue;} Counter++;
 } Final = CurPop;
 Return Final and CovTable;
 End.
}
Boolean IsDefect (chromosome)
{ v = Fitness value of best OPCH1;
 if fitness value is less than v/l return
true;
 else return false; //l is an optional
value
}

Figure 2: Proposed GA based-Algorithm
Step 2, the algorithm calls crossover and
sometimes mutation to generate new
population. In fact, crossover generates
offspring and mostly gets two chromosomes
and remains two new ones. In next line,
fitness function evaluates each

chromosomes based on its dynamic
repetition frequency of coverage table.

The more fitness value, the more chance to
participate in the next generation

Since some suitable chromosomes probably
will not present in the next generation, we
save them in OPCH2 variable, i.e. however
suitable chromosomes is saved or presented
in the next generation but less fitness value
one just can be mutated and the others will
be removed from population.

Step 3: if fitness value of some chromosome
is less than threshold, it will be removed
from current population because it has been
corrupted, i.e. it is not enough qualified to
traverse some uncovered part. This
chromosome will be replaced with one from
OPCH2 is being completed from previous
population.

In the last step, we compute required
iteration and update coverage table too in
order to present it to the user. Algorithm can
stop the process based on user request. This
step is controlled by counter variable that
controls number of iteration.

4. Discussion of Results
To investigate the efficiency of proposed
algorithm, we experimented with some
programs such as triangle classifier. These
programs are benchmark for many
researchers in software testing [2, 5, 10].
Below, we explain briefly these programs.

Find.c: Lines of code: 66, Given array P[],
and index I, places all elements less than or
equal to P[I] to the left of P[I], and all

elements that are greater to or equal to P[I]
to the right of P[I]. [2]

Fourballs.c: Lines of code: 82. Given four
integers representing the weights of balls,
determines the weights of the balls relative
to each other. [2]

Triangles-classifier.c: Lines of code: 61.
Given three integers representing triangular
side lengths subdivide into valid, equilateral,
isosceles and scalene classes.

In the first step, the fitness function was
supposed to operates based on presented
algorithm. These Figurs show the average of
iteration by our tester and random one to
cover the program under the test. The
population was 500 individuals with
mutation rate .5 in two random and
presented methods.

1040

A GA based Software Test Data to Generator Suitable Test Cases

Figure 3. Runs of proposed and Random

tester for Find.c

Fig. 3 summarizes graphically the results of
experiment with Find.c-proposed tester on
the top and Random is on the bottom. In
each diagram, the horizontal axis shows the
number of generation required by a run. The
left vertical axis gives the frequency that
such a random occurred. As it’s shown,
seven of total runs of proposed tester
required 20 iterations to achieve full
coverage while this mount is more than 40
iterations for random tester.

Figure 4. Runs of proposed and Random
tester for Triangles-classider.c

Fig. 4 shows that random generator tested
all of possible path of execution of program
by 185 iterations while this mount was
reduced to 33 generations for our tester.
Obviously, more complicated program
needs more time and iterations to test
entirely. This increase grows fewer for our
tester rather than random, because proposed
tester trains input data to cover possible
parts of program.

Figure 5. Runs of proposed and Random
tester for Four balls

These differences for Four balls are
significant. By comparison, Random could
not achieve 100% coverage with fewer than
2700 iterations. More than half of the
Random runs required 2600 or more
iterations to achieve full coverage.

The experiments show that our proposed
tester outperforms random generator over a
number of runs dramatically for source code
of program with high complexity. Our tester
performs better than random one especially
when the source code of program contains
nested conditions or loops that are difficult
to satisfy.

Figure 6. Total duration coverage time for
Random and proposed tester

Fig. 6 shows the total duration coverage of
several mentioned programs measured in
second. When the diagram gets straight line,
the red points shows that our stopping
criterion is satisfied. Consider green line, it
shows classical GA-tester. Clearly, the green
line makes up disorder lines. It shows that
the tester can’t lead the generated data, i.e.
the data generates entirely stochastically,
regardless of kinds of source codes and
uncovered parts. While our tester has
ascending manner, i.e. our tester can
remember whatever has traversed and lead
the new generated test data based on
previous records.

5. Conclusion
This article investigates the performance of
the proposed GA-based tester based on
program path coverage criterion. To
compare with related work [1, 2, 3, 7, 8, 9],
using dynamic repetition frequency concept
reduces time-order and number of iteration
of tester to achieve full coverage. While this
improvement helps programmer to precisely
monitor execution trace and high frequented
parts of the program. These facts were
experimented with three complicated
program. Applying different fitness
function, this structural-oriented tester is
able to identify path which are not
executable. The next step is to experiment
the proposed tester with more complex
program especially instrumentation helps
other data types to inspect this algorithm for
more real world.

1041INTERNATIONAL JOURNAL OF ELECTRONICS, MECHANICAL AND MECHATRONICS ENGINEERING Vol.5 Num.4 - 2015 (1035-1042)

Ali NOROUZI

Figure 3. Runs of proposed and Random

tester for Find.c

Fig. 3 summarizes graphically the results of
experiment with Find.c-proposed tester on
the top and Random is on the bottom. In
each diagram, the horizontal axis shows the
number of generation required by a run. The
left vertical axis gives the frequency that
such a random occurred. As it’s shown,
seven of total runs of proposed tester
required 20 iterations to achieve full
coverage while this mount is more than 40
iterations for random tester.

Figure 4. Runs of proposed and Random
tester for Triangles-classider.c

Fig. 4 shows that random generator tested
all of possible path of execution of program
by 185 iterations while this mount was
reduced to 33 generations for our tester.
Obviously, more complicated program
needs more time and iterations to test
entirely. This increase grows fewer for our
tester rather than random, because proposed
tester trains input data to cover possible
parts of program.

Figure 5. Runs of proposed and Random
tester for Four balls

These differences for Four balls are
significant. By comparison, Random could
not achieve 100% coverage with fewer than
2700 iterations. More than half of the
Random runs required 2600 or more
iterations to achieve full coverage.

The experiments show that our proposed
tester outperforms random generator over a
number of runs dramatically for source code
of program with high complexity. Our tester
performs better than random one especially
when the source code of program contains
nested conditions or loops that are difficult
to satisfy.

Figure 6. Total duration coverage time for
Random and proposed tester

Fig. 6 shows the total duration coverage of
several mentioned programs measured in
second. When the diagram gets straight line,
the red points shows that our stopping
criterion is satisfied. Consider green line, it
shows classical GA-tester. Clearly, the green
line makes up disorder lines. It shows that
the tester can’t lead the generated data, i.e.
the data generates entirely stochastically,
regardless of kinds of source codes and
uncovered parts. While our tester has
ascending manner, i.e. our tester can
remember whatever has traversed and lead
the new generated test data based on
previous records.

5. Conclusion
This article investigates the performance of
the proposed GA-based tester based on
program path coverage criterion. To
compare with related work [1, 2, 3, 7, 8, 9],
using dynamic repetition frequency concept
reduces time-order and number of iteration
of tester to achieve full coverage. While this
improvement helps programmer to precisely
monitor execution trace and high frequented
parts of the program. These facts were
experimented with three complicated
program. Applying different fitness
function, this structural-oriented tester is
able to identify path which are not
executable. The next step is to experiment
the proposed tester with more complex
program especially instrumentation helps
other data types to inspect this algorithm for
more real world.

1042

A GA based Software Test Data to Generator Suitable Test Cases

REFERENCES
[1] P. R. Srivastava, P. Gupta, Y.

Arrawatia, and S. Yada. “Use of
Genetic Algorithm in Generation of
Feasible Test Data”; ACM SIGSOFT
Software Engineering Notes, 34(2), pp.
1-4, 2009.

[2] R. P. Pargas, M. J. Harrold, R. Pech,
“Test Data Generation Using Genetic
Algorithm”, Journal of Software
Testing, Verification and Reliability,
John Wiley, 1999.

[3] A. A. Sofokleous, A. S. Andreou.
“Automatic, Evolutionary Test Data
Generation for Dynamic Software
Testing”; the journal of System and
Software, 81(11), pp. 1883-1898, 2008.

[4] D. E. Goldberg. “Genetic Algorithm in
a Search Optimization and Machine
Learning”; Addison Wesley, 1989.

[5] N. Mansour, M. Salame, “Data
Generation for Path Testing”; Software
Quality Journal, 12, 121-136, 2004.

[6] P. R. Srivastava, and T. Kim. “Applied
to Genetic Algorithm in Software
Engineering”; International Journal of
Software Engineering and its
Applications, 3(4), pp. 87-96, October
2009.

[7] J. Yan, J. Zhang. “An Efficient Method
to Generate Feasible Paths for Basis
Path Testing”; Information Process
Letters, vol.107, pp.87-92, 2008.

[8] T. Manterea, J. T. Alander.
“Evolutionary Software Engineering, a
review”; Applied Soft Computing,
vol.5, pp.315-331, 2005.

[9] J. Miller, M. Reformat, H. Zhang.
“Automatic Test Data Generation using
Genetic Algorithm and Program
Dependence Graphs”; Information and
Software Technology, vol.48, pp.586-
605, 2006.

[10] G. Myer, “the Art of Software Testing”,
John Wiley, 2004.

