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Abstract 

This work presents a new concept that is applied in genetic algorithm based tester. Genetic 
algorithm is sort of evolutionary algorithm that uses in searching problem for optimal solution. 
In presented test input data generation application, the solution sought by genetic algorithm is a 
set of test data that causes execution of all possible paths of a given program under test. The 
proposed concept, repetition frequency is a tool to measure high frequented and also dead parts 
of program. To experiment with proposed genetic generator, random test data generator was 
implemented too. Both of these generators tested three programs that are benchmark for many 
researchers in order to show our proposed tester efficiency.       

Keywords: Software engineering, genetic algorithm, dynamic repetition frequency, test data 
generator.  
 

1. Introduction 

Nowadays, technology incorporates 
software systems which become 
complicated over and over. These systems 
applied in several fields such as business 
and government that their failure is high 
cost, hence distributed system has most 
troublesome problems, due to any 
component interacts in unpredictable ways. 

The study is part of continuous research 
stream focused on the application of Genetic 
Algorithm (GA) in structural testing. We 
intend to discover bugs and errors through 
generating large volumes of test data. 
Generally, the genetic algorithm is a process 
which explores different execution of a 

program to find misbehaviors. Several bugs 
are discovered after many generations. This 
is how, genetic algorithm based methods can 
obtain solution which show rare error.  

GA based testing is an optimization 
technique used in test case generation to find 
optimum solution. The considered test is 
characterized by the use of Evaluation 
Testing, where input domain of the test data 
evaluates respected search aim. 
Traditionally, GA operates on binary string 
but other coding is possible. In this case, 
each digit is represented by a gen that makes 
up chromosomes. A collection of 
chromosomes make up population. Each has 
fitness value that determines probability of 
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presence in the next generation as parent. In 
fact, fitness value is a assigned weight to 
each chromosome based on its content 
pattern. After, the next generation is attained 
from the percentage of current population in 
which mainly chromosomes are mated and 
rest of the percentage is mutated. This cycle 
is terminated whenever stop criterion is 
satisfied. 

Generally, evolutionary testing including 
GA based one are inspired by evolutionary 
biology such as mutation, selection, 
crossover, and inheritance. The study 
focuses on selection process a.k.a. fitness 
function which adopts robust and suitable 
chromosomes which have fitness value on 
or above specified threshold value. 
Therefore GA based testing is categorized as 
adoptive search technique where are not 
guaranteed obtaining of optimal solution. 
However, GA based operator with effective 
fitness function finds very good solution in a 
limit of time and definitely improves the 
individuals over several generation iteration, 
according to the Scheme theorem [4]. The 
article is arranged as follows. Main idea in 
software test is the subject of section2, 
followed new algorithm is under 
consideration in section 3. Section 4 deals 
with the results of simulation and finally 
come conclusion and future work 
suggestions at section 5. 

2. Main Idea 
Path testing is a comprehensive structural 
testing where source code of program can be 
represented by a directed graph called 
Control Flow Graph (CFG). In this graph, 
every statement and possible control flow 

between statements are shown as node and 
edge respectively and therefore path is a 
sequence of node which is limited between 
two special node called start and exit node.  

This kind of testing is designed to execute 
all paths of CFG, i.e. every statement and 
every condition which has two paths in true 
and false sides, are traversed at least once 
time[1, 3]. In presented approach, GA based 
testing is an application of genetic algorithm 
to the path testing where utmost paths of 
program are covered by generated test data. 

There are two fundamental strategies for 
improving GA based test data generation to 
test software. The first one is direct 
improvement of genetic algorithm 
components. Selection component is one the 
critical process in the GA operators where 
individuals are adopted according to their 
weight or other qualifications. The second 
important component is stop process which 
diagnoses suitable time to stop.  

The second strategy is applying a system 
oracle, models or simulation as a substitute 
to the actual system. Any improvement to 
the genetic algorithm component could 
significantly effect on the solution 
qualification and execution time. 

3. New Algorithm 
Formula 1 is proposed to evaluate each test 
case, applying dynamic repetition frequency 
concept. Given a CFG of program, each 
edge which is represented by a character has 
repetition number in traversed paths 
collection called dynamic repetition 
frequency. The more dynamic repetition 

frequency of every edge, the more coverage 
probability 

This phenomenon causes to decrease own 
fitness value, i.e. the fitness value of a path 
is determined by summation of inversed 
dynamic repetition frequency or briefly 
repetition frequency number of edges 
included. Clearly, fitness value of repeated 
edge of a path (especially with cycle) will be 
0 when it is traversed by a test data. In 
actual, the fitness function implies that the 
aim is to traverse low repetition frequency 
edges.     
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In this approach, Fitness Function is a 
procedure which assigns a weight to each 
chromosome based on covered edges. This 
weight is called fitness value and is a 
criterion to select chromosome from current 
population to generate new population.    

As fitness function has rationale role in the 
GA based generator and biases candidate 
data toward optimum ones, we introduce a 
function which is explained below, 
according to the repetition frequency 
concept: 

(1) Form CFG of program and determine 
every frequency edges, (2) determine 
branches and then find conditional 
statements related to those branches in the 
program, (3) form predicate according to the 
distinct statements of previous step, using 
conjunction (AND) and disjunction (OR) 
operators. We apply disjunction operator 

when you have composite conditions, such 
as IF and CASE conditions which 
simultaneous execution of all parts of a 
condition with one test data is impossible. 
For example, we use disjunction operator 
between THEN and ELSE statements of an 
IF. 

We also apply conjunction operator to 
remained statements, :(4) determine fitness 
function: 1- we now manipulate remained 
predications similar to previous step so that 
replace any conjunction and disjunction 
operators with minimum and maximum ones 
in order, and 2- we finally replace every 
condition statement with corresponding 
function in Fig. 1. Final function will be 
fitness function. Fig. 1 represents fitness 
function formation formula [6, 7, 8]. 
Suppose 5th function. If difference between 
x and y is equal to zero, the function will 
return zero, unless it remains the real result. 
Consider third function. We use very small 
value   (e.g. 10-6) to distinguish between x 
≠ y and x=y state.  
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Figure 1: Standard fitness function for 
conditional relations 

3.1. GA-based Solution Pseudo code 
Fig. 3 represents psudocode where steps 4 
through 8 indicate genetic algorithm. In first 
step, using Fig. 2 which represents standard 
fitness functions, we make a fitness function 
and calculate binary of decimal numbers 
which is generated by user or random 
function as candidate (primary) 
chromosomes. We identify edges of 
program CFG to calculate the repetition 
frequency of edges while tester gets running. 
These edges are mentioned in coverage table 
that we initialize with primary 
chromosomes. Next step indicates main 
cycle of generation.   

Procedure GC ( )  
} 
Input:  Program: Changes version of 
program to be tested; 
InitData: Set of test data; EF: Edge 
Frequency; 
Output: Final: A solution test case set; 
CovTable: recorded EFs with status;    
#define  MaxTimes  m;  //Max acceptable 
time; 
Variables declaration: 
CanCH1&2: Candidate chromosomes; 
TP:Traversed Path; 
CovTable: Coverage Table; 
NextPop, CurPop: a set of test data; 
OpCH1&2: Optimal Chromosomes;  
Counter: iteration; 
     Begin 
Step1: Make CanCH 1&2 by InitData;  
            Get fitnessFUN() to Initial OpCH1 
and CovTable;       

            Initial CurPop; 
Step2: While (! fill CovTable with Y || 
counter < 
            MaxTimes ||! User request) { 

Use Crossover and Mutation 
operations;            
Compute fitnessFUN (); 
Compute NextPop and Save OpCH2; 

Step3: for each chromosome of NextPop 
If (IsDefect (NextPop)) 

  Replace with OpCH1 one; 
            CurPop = NextPop; OpCH1 = 
OpCH2; 
Step4:if(counter mod 10 == 0){  

Compute number of TPs by 
CovTable;  

Compute EF of every edge in 
CovTable; 

Show CovTable and Ask to 
continue;} Counter++;   
           }  Final = CurPop;          
            Return Final and CovTable; 
      End. 
}   
Boolean IsDefect (chromosome) 
{ v = Fitness value of best OPCH1; 
       if fitness value is less than v/l return 
true; 
           else return false; //l is an optional 
value 
}            

Figure 2: Proposed GA based-Algorithm 
Step 2, the algorithm calls crossover and 
sometimes mutation to generate new 
population. In fact, crossover generates 
offspring and mostly gets two chromosomes 
and remains two new ones. In next line, 
fitness function evaluates each 

chromosomes based on its dynamic 
repetition frequency of coverage table.  

The more fitness value, the more chance to 
participate in the next generation 

Since some suitable chromosomes probably 
will not present in the next generation, we 
save them in OPCH2 variable, i.e. however 
suitable chromosomes is saved or presented 
in the next generation but less fitness value 
one just can be mutated and the others will 
be removed from population.   

Step 3: if fitness value of some chromosome 
is less than threshold, it will be removed 
from current population because it has been 
corrupted, i.e. it is not enough qualified to 
traverse some uncovered part. This 
chromosome will be replaced with one from 
OPCH2 is being completed from previous 
population.  

In the last step, we compute required 
iteration and update coverage table too in 
order to present it to the user. Algorithm can 
stop the process based on user request. This 
step is controlled by counter variable that 
controls number of iteration. 

4. Discussion of Results 
To investigate the efficiency of proposed 
algorithm, we experimented with some 
programs such as triangle classifier. These 
programs are benchmark for many 
researchers in software testing [2, 5, 10]. 
Below, we explain briefly these programs. 

Find.c: Lines of code: 66, Given array P[], 
and index I, places all elements less than or 
equal to P[I] to the left of P[I], and all 

elements that are greater to or equal to P[I] 
to the right of P[I]. [2] 

Fourballs.c: Lines of code: 82. Given four 
integers representing the weights of balls, 
determines the weights of the balls relative 
to each other. [2]  

Triangles-classifier.c: Lines of code: 61. 
Given three integers representing triangular 
side lengths subdivide into valid, equilateral, 
isosceles and scalene classes.  

In the first step, the fitness function was 
supposed to operates based on presented 
algorithm. These Figurs show the average of 
iteration by our tester and random one to 
cover the program under the test. The 
population was 500 individuals with 
mutation rate .5 in two random and 
presented methods.       
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Figure 3. Runs of proposed and Random 

tester for Find.c 

Fig. 3 summarizes graphically the results of 
experiment with Find.c-proposed tester on 
the top and Random is on the bottom. In 
each diagram, the horizontal axis shows the 
number of generation required by a run. The 
left vertical axis gives the frequency that 
such a random occurred. As it’s shown, 
seven of total runs of proposed tester 
required 20 iterations to achieve full 
coverage while this mount is more than 40 
iterations for random tester.  

 

Figure 4. Runs of proposed and Random 
tester for Triangles-classider.c 

Fig. 4 shows that random generator tested 
all of possible path of execution of program 
by 185 iterations while this mount was 
reduced to 33 generations for our tester. 
Obviously, more complicated program 
needs more time and iterations to test 
entirely. This increase grows fewer for our 
tester rather than random, because proposed 
tester trains input data to cover possible 
parts of program. 

 

 

Figure 5. Runs of proposed and Random 
tester for Four balls 

These differences for Four balls are 
significant. By comparison, Random could 
not achieve 100% coverage with fewer than 
2700 iterations. More than half of the 
Random runs required 2600 or more 
iterations to achieve full coverage.  

The experiments show that our proposed 
tester outperforms random generator over a 
number of runs dramatically for source code 
of program with high complexity. Our tester 
performs better than random one especially 
when the source code of program contains 
nested conditions or loops that are difficult 
to satisfy.   

 

Figure 6. Total duration coverage time for 
Random and proposed tester 

Fig. 6 shows the total duration coverage of 
several mentioned programs measured in 
second. When the diagram gets straight line, 
the red points shows that our stopping 
criterion is satisfied. Consider green line, it 
shows classical GA-tester. Clearly, the green 
line makes up disorder lines. It shows that 
the tester can’t lead the generated data, i.e. 
the data generates entirely stochastically, 
regardless of kinds of source codes and 
uncovered parts. While our tester has 
ascending manner, i.e. our tester can 
remember whatever has traversed and lead 
the new generated test data based on 
previous records. 
 

5. Conclusion 
This article investigates the performance of 
the proposed GA-based tester based on 
program path coverage criterion. To 
compare with related work [1, 2, 3, 7, 8, 9], 
using dynamic repetition frequency concept 
reduces time-order and number of iteration 
of tester to achieve full coverage. While this 
improvement helps programmer to precisely 
monitor execution trace and high frequented 
parts of the program. These facts were 
experimented with three complicated 
program. Applying different fitness 
function, this structural-oriented tester is 
able to identify path which are not 
executable. The next step is to experiment 
the proposed tester with more complex 
program especially instrumentation helps 
other data types to inspect this algorithm for 
more real world.        
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experimented with three complicated 
program. Applying different fitness 
function, this structural-oriented tester is 
able to identify path which are not 
executable. The next step is to experiment 
the proposed tester with more complex 
program especially instrumentation helps 
other data types to inspect this algorithm for 
more real world.        
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