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Geometric programming is an optimization tool that permits the development of design 
relationships.  Most researchers do not develop the design relationships, but only solve the specific 
optimization problem for a set of specific input parameters and a new solution must be developed 
for any changes.    
 
For some problems with few degrees of difficulty, design relations can be developed which given 
an insight into the importance of the input constants.  An example from a previous paper using the 
Cobb-Douglas production function is used to illustrate the development of design relationships.  
 
Keywords:  Geometric Programming, Design Equation Development, Cobb-Douglas production 
function 
 

Clarence Zener is credited as being the father 
of geometric programming with the 
publishing of the paper "A mathematical aid 
in optimizing engineering designs" in the 
Proceedings of the National Academy of 
Science[1] in 1961.  He is better known for 
the invention of the Zener diode. He later co-
authored with Richard Duffin and Elmor 
Peterson  the book "Geometr ic 
Programming"[2] in 1967 published by John 
Wiley.  Several books have been written 
about geometric programming, but few 
consider or emphasize the development of 
design equations. 
 
The mathematics of geometric programming 
are rather complex and presented in more 
detail in the references presented[3-5].  
Geometric programming is similar to linear 
programming in that it has both a primal and  

 
 
a dual formulation.  The primal problem 
formulation is somewhat  similar to the 
primal formulation in linear programming, 
and is often solved by traditional search 
methods.  The dual formulation is harder to 
formulate, but is much easier to solve.   The  
 
design equations can be found by utilizing the 
primal-dual relationships.  The example 
presented will be with zero degrees of 
difficulty to illustrate the solution procedure 
for finding the design equations.   It is easier 
to determine the design equations for cost 
models than it is for profit models. 
 
The example presented is that of Ibrahim 
Guney and Ersoy Oz in the paper " An 
Application of Geometric Programming"[6] 
in Vol. 2 of the Internal Journal of 
Electronics, Mechanical and Mathematics 
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Engineering.  This example concerns the 
minimization of production costs for a fixed 
production level using the Cobb-Douglas 
production function. 
 
The basic formulations of the primal and dual 
will be shown and then the example will be 
presented following the steps of the 
formulations.  One of the requirements for 
geometric programming is that the terms 
used are posynomials, that is, they are 
positive polynomials.   That prohibits 
functions such as the sin(x) and fractiona l 
powers that cannot be expanded, such as (2 + 
4x)3.3.   
 

The primal problem is formulated as: 
 
            Tm               N 
Ym(x) =∑σmtCmt  ∏ xmtn  for m=0,1,2..M
  (1) 
            t=1          n=1 
 
where 
   σmt = ±1   (signum function to indicate sign 
of 
                     term ) 
   Cmt > 0 positive constant coefficients 
   Ym(x) ≤1 for the constraints,  m=1,2,...  M  
   Y0(x) = objective function 
 
The dual formulation initially appears more 
complex, but it results in several linear 
equations which are easier to solve.  The dual 
objective function is not linear and is solved 
after the dual variables have been determined 
from the dual formulation model.  The dual 
objective function is : 

                    M    Tm 

  d(ω) = σ [  ∏     ∏   (Cmtωm0 /ωmt)σmtωmt ]σ  
  (2) 
                   m=0  t=1 
 
for       m = 0,1,2,...M and t = 1,2,....Tm 
 
where  
   σ = signum function for objective function 
   ( 1 for minimization and -1 for 
maximization) 
   σmt = signum function for dual constraints 
(± 1)  
   Cmt > 0 positive constant coefficients 
   ωm0 = dual variables from the linear 
inequality         
             constraints 
   ωmt = dual variables of dual constraints 
   σmt =  signum function for dual constraints 
   ω00 = 1 
The dual is formulated from four conditions 
 
 First, a normality condition is expressed by: 
 
    Tm 

    ∑    σ0t ω0t = σ where σ = ±1                      
 (3) 
   t=1 
 
 and  
 σ0t  = signum of dual objective function terms  
 ω0t  = dual variables for dual  objective 
function terms 
 
The second conditions are the N orthogonal 
conditions 
 
   M    Tm 
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 and  
 σ0t  = signum of dual objective function terms  
 ω0t  = dual variables for dual  objective 
function terms 
 
The second conditions are the N orthogonal 
conditions 
 
   M    Tm 

   ∑     ∑  σmt amtn  ωmt   =  0                           
 (4)    
m=0  t=1   
 
 where 
σmt    =  signum of constraint term 
amtn   =  exponent of design variable term in 
primal 
ωmt   =  dual variable of dual constraint 
 
The third condition is the T non-negativity 
conditions that require that the dual variables 
must not be negative, that is: 
 
   ωmt  ≥ 0 for  m= 0,1,2,.M and t=1,2,3,..Tm 
  (5) 
 
The fourth condition is the M linear 
inequality constraints expressed by: 
 
                 Tm 

ωm0   = σm  ∑ σmt   ωmt  ≥ 0   (6) 
                 t=1  
 
The complexity of a problem is indicated by 
the number of degrees of difficulty(D).  The 
higher the degree of difficulty, the more 
difficult the problem is to solve.  The formula 
for determining the degrees of difficulty is: 
 
D = T - (N + 1) (7) 
 
where  
T = number of terms in the primal 
formulation 
N=number of orthogonal conditions (which 
is equivalent to the number of primal 
variables) 
 

Once the dual variables are determined, the 
primal variables can be determined from the 
relationships between the primal and dual 
variables.  As in linear programming, the 
primal and dual objective functions must be 
equal and thus Y0(x) and d(ω) are equal.  The 
two equations relating the primal and dual  
for determining the primal variables are: 
 
        N 
C0t     ∏   xnmtn  = ω0t σ d(ω)     (8)  
       n=1   
  
and 
 
        N 
Cmt     ∏     xnmtn  = ωmt /  ωm0  (9)  
       n=1 
 
for t=1,2,...Tm and m = 1,2,...M 
 

The initial formulation is to minimize labor 
and capital costs to obtain a specific output 
level.  The model by Guney and Oz() is 
slightly modified and can be stated in its 
primal form as: 
 
Y(x) = r1x1 + r2x2 (10) 
 
subject to the Cobb-Douglas production 
constraint 
 
q = A x1α  x2 β (11) 
   
where 
x1 =  labor amount 
r1 =  labor rate 
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x2 = capital amount 
r2 =  capital rate 
q = desired output level 
A = total productivity factor 
α  = labor elasticity 
β = capital elasticity 
 
The constraints must be written in the form 
of inequalities with the right hand side being 
unity and thus the constraint becomes: 
 
(q/A) x1-α  x2-β  ≤ 1 (12 ) 
 
Thus the primal objective function is given in 
Eqn. 10 and Eqn 12.is the constraint.   The 
number of degrees of difficulty using Eqn 7 
is: 
 
D = 3 - (2 + 1) = 0 
 
The degrees of freedom must be greater than 
or equal to zero.   
 
Since all the terms in Eqns. 10 and 12 are 
positive, the signum values are all positive, 
that is 
  
       σ00  = 1 (objective function is 
minimization) 
       σ01  = 1 
       σ02  = 1 
       σ11  = 1 
       σ10  = 1 (RHS of constraint is positive) 
 
The dual can be formulated using Eqns.3,  4 
and 6 as: 
    Eqn 3            ω01  + ω02                        =1
 (13)
   

    Eqn 4 (x1)     ω01                      -α ω11         = 0
 (14) 
    Eqn 4 (x2)     ω01                      -β ω11         = 0
 (15) 
 
     Solving Eqns 13-15 for the dual variables 
one obtains: 
   
   ω01 =  (α / (α + β )) (16)
  
   ω02 =  (β / (α + β )) (17)
  
   ω11 =  (1 / (α + β )) (18)
  
 
Now   ω10 can be determined using Eqn 6 and 
is  
   
  ω10   = σ10  ∑ σmt   ωmt  = 1*(1 * (1/(α + β)))  
          = 1/(α + β)        (19) 
 
The dual objective function of Eqn 2 can now 
be determined and is: 
 
d(ω)= 1* [{r1*1/(α/(α+β))}(1*( α/(α+β))  * 
{r2*1/(β/(α+β))}(1*( β/(α+β))  * {q/A}(1*/(α+β))  ]1   
(20) 
  
Note that both ω11 and  ω10 are equal.  Now 
using the primal-dual relationship of Eqn. 8 
for the two terms of the objective function, 
one obtains: 
 
 r1x1 = (α(α +β)) *1*   d(ω)      (21) 
  
 r2x2 = (β(α +β)) *1*   d(ω)      (22) 
Solving Eqns. 21 and 22 for  x1 one obtains: 
 
x1 = (α/β) (r2 / r1  ) x2 (23) 
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Solving Eqns. 21 and 22 for  x1 one obtains: 
 
x1 = (α/β) (r2 / r1  ) x2 (23) 

Now using Eqn 22 in Eqn 11and solving for 
x2: 
 
x2 = (q/A)(1/(α + β))  (αr2/βr1)(-α/(α + β)) (24) 
 
Using Eqn 24 in Eqn 21 x1 is found to be 
 
 
x1 = (q/A)(1/(α + β))  (αr2/βr1)(β(α + β)) (25) 
 
The primal objective function can now be 
determined from the primal variables and 
Eqn 10 becomes  
 
Y(x) = r1 * (q/A)(1/(α + β))  (αr2/βr1)(β(α + β)) + 
            r2 *  (q/A)(1/(α + β))  (αr2/βr1)(-α/(α + β))

 (26) 
 
Equations 20 and 26 have quite different 
appearances, but the numerical values will be 
the same.   
 

The equations developed were used to 
compare with the data reported by Guney and 
Oz[6] on the construction sector in Turkey.   
The input values are given in Table 1 and the 
output values are in Table 2.  The input 
values of A, α, and β were fixed at 1.0, 0.53, 
and 0.47 for all four reported cases.  
 

 
 
 
 
 
 
 

Table 1. Yearly Input Data for Estimate 
Calculations 

 
Year Production 

Index   q 
Labor 
Index 
r1 

Capital 
Index 
r2 

2006 118.4 121.88 114.32 
2007 124.9 137.80 122.32 
2008 115.6 153.85 140.06 
2009 96.4 158.53 131.48 

 
The results for x1 and x2, the labor and capital 
estimates, were in complete agreement with 
those of  Guney and Oz[6]  so only one set 
are included in results given inTable 2.  The 
primal and dual values of the objective 
function from Equations 20 and 26 are 
identical as expected and although the 
objective function was not given in the 
reference[6], it would most likely have been 
the same.     In the model equations presented, 
the values for A, α, and β from  the Cobb-
Douglas production equation could be varied 
and a sensitivity analysis of these parameters 
could be evaluated and would not require 
resolving the adjusted problem. 
 
   

 
 
 
 
 
 
 
 
 
 



Table 2.  Out put Values of Model for 
Estimates. 

 
Yea
r 

Labor 
Estima
te 
x1 

Capita
l 
Estima
te 
x2 

Primal 
Total 
Cost 
(Y) 

Dual 
Total 
Cost 
d(ω) 

200
6 

121.56 114.93 27955.
11 

27955.
11 

200
7 

124.96 124.84 32488.
98 

32488.
98 

200
8 

117.03 114.00
0 

33973.
08 

33973.
08 

200
8 

93..41 99.88 27941.
39 

27941.
39 

 

The development of design equations for a 
geometric programming model of from data 
of the construction sector in Turkey.  These 
design equations ( Eqns. 20,24,25,and 26)  
give the solutions for the model outputs and 
the model does not need to be resolved.  The 
design equations for the variables x1 and x2 
can then be used to determine the total cost to 
meet the desired production level.   
 
The design equations also permit easy  
analysis of the impact of the Cobb-Douglas 
elasticity exponents and total productivity 
factor upon the total cost.  The development 
of design equations takes considerable effort, 
but the equations permit a more rapid 
analysis of the impact of the input variables 
upon the output.   
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OPTIMIZING BUS LINES in URBAN PUBLIC TRANSPORTATION by COST and 
TRIP CALCULATION METHODS: A SOFTWARE MODEL DESIGN 
 

Ferdi Sönmez 

Abstract 

Planning of a public transport system in an ordered way is the key which offers potential users a 

mode of transport. To attract travelers from other modes of transport, sufficiently attractive 

overall journey times must be provided, so reducing traffic congestion and obtaining delivered 

benefits like road safety and lower atmospheric and noise pollution. The congestion that close with 

increasing demand is becoming a part of our lives and it is complicating our lives. Some work is 

done to reduce the traffic congestion. If we want to provide an efficient and balanced layout in 

public transport system, we must place the right stop at the right places. Hence, we consider some 

components like cost, security, noise pollution, etc. In this study, it is aimed to solve a set covering 

problem for locating the smallest number possible of bus stops. 

Keywords: Bus Stop Spacing, Bi-Level Optimization Model, Trip Demand, O-D Matrix. 

 

Purpose of this work is to make an optimal 
bus stop location and spacing model which 
minimizes the operator cost of all the 
transport system, examine the equilibr ium 
travel costs by installing the route under 
travel costs among the studied O-D (Origin–
Destination Matrix) pairs, stated by the travel 
distribution [1, 2]. Firstly, we calculate 
operator cost, later we will compare these 
costs. We will determine analysis of the 
operator cost between two routes and identify 
routes that cause the most cost [1, 2, 3]. Our 
focus will be on optimizing these routes. If 
we need to change stops, we will change stop 
places. We need to put the best stops on the 
most appropriate places and to solve this  
 

 
 
problem we use the estimation method [2, 3]. 
Once a decision is made to modify the  
 
location of bus stops in an area then changes 
will be made to the initial conditions [1] on 
which travelers in all the system base their 
modal choice decision. 
 
Operators can use these data. It is aimed to 
ensure traveling comfortably [4, 5] and safe 
movement for passengers from a place to 
another. 
 

Trip generation determines the frequency of 
origins or destinations of trips in each zone 
by trip purpose, as a function of land uses and 


