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Abstract

Geometric programming is an optimization tool that permits the development of design relationships.
Most researchers do not develop the design relationships, but only solve the specific optimization
problem for a set of specific input parameters and a new solution must be developed for any changes.

For some problems with few degrees of difficulty, design relations can be developed which given
an insight into the importance of the input constants. An example from a previous paper using the
Cobb-Douglas production function is used to illustrate the development of design relationships.
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1. Introduction

Clarence Zener is credited as being the father
of geometric  programming with the
publishing of the paper "A mathematical aid
in optimizing engneering designs" i the
Proceedings of the National Academy of
Science[1] n 1961. He is better known for
the mvention of the Zener diode. He later co-
authored with Richard Duffin and Elmor
Peterson the  book  "Geometric
Programming"[2] in 1967 published by John
Wiley.  Several books have been written
about geometric programming, but few
consider or emphasize the development of
design equations.

The mathematics of geometric programming
are rather complex and presented in more
detail in the references presented[3-5].
Geometric programming is similar to linear
programming in that it has both a primal and

a dual formulation. The primal problem
formulation is somewhat similar to the
primal formulation in linear programming,
and is often solved by traditional search
methods. The dual formulation is harder to
formulate, but is much easier to solve. The

design equations can be found by utilizing the
primal-dual relationships. The example
presented will be with zero degrees of
difficulty to illustrate the solution procedure
for finding the design equations. It is easier
to determine the design equations for cost
models than it is for profit models.

The example presented is that of Ibrahim
Guney and Ersoy Oz in the paper " An
Application of Geometric Programming"[6]
m Vol 2 of the Internal Journal of
Electronics, Mechanical and Mathematics
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Engmeering.  This example concerns the
minimization of production costs for a fixed
production level using the Cobb-Douglas

production function.

The basic formulations of the primal and dual
will be shown and then the example will be
presented following the steps of the
formulations. One of the requirements for
geometric programming is that the terms
used are posynomials, that is, they are
positive  polynomials. That prohibits
functions such as the sin(x) and fractional
powers that cannot be expanded, such as (2 +
4x)33.

2. Primal and Dual Formulations
The primal problem is formulated as:

Tm N
Ym(X) :sztCmt H xmtn for m=0,1,2..M
(1)
t=1 n=1

where
omt==1 (signum function to indicate sign
of
term )
Cmt > 0 positive constant coefficients
Ym(x) <I for the constraints, n¥1,2,... M
Yo(x) = objective function

The dual formulation initially appears more
complex, but it results in several linear
equations which are easier to solve. The dual
objective function is not linear and is solved
after the dual variables have been determined
from the dual formulation model. The dual
objective function is :
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M Tn
d((l)) =0 [ H H (CmtOJmO/(,Omt)Gmtwmt ]6
)
=0 t=1

for m=0,1,2,.Mand t=1,2,... Tm

where

o = signum function for objective function

( 1 for mmimization and -1 for
maximization)

omt = signum function for dual constraints
1)

Cmt > 0 positive constant coeflicients

®mo = dual variables from the linear
inequality

constraints

omt = dual variables of dual constraints

omt = signum function for dual constraints

®o0 =1
The dual is formulated from four conditions

First, a normality condition is expressed by:

Tm
> oot ot = o where o = =1

)
=1

and

oot =signum of dual objective function terms
oot = dual variables for dual objective
function terms

The second conditions are the N orthogonal
conditions

M Tnm



Z Z Omt dmtn  Omt = 0
“)
m=0 t=1
where
omt = signum of constraint term

amtn = exponent of design variable term in
primal
omt = dual variable of dual constraint

The third condition is the T non-negativity
conditions that require that the dual variables
must not be negative, that is:

Omt >0 for n= 0,1,2,. M and t=1,2,3,..Tim
(5)

The fourth condition 18 the M Ilnear
inequality constraints expressed by:

T
MmO = Om ZGmt Omt >0 (6)
t=1

The complexity of a problem is indicated by
the number of degrees of difficulty(D). The
higher the degree of difficulty, the more
difficult the problem is to solve. The formula
for determning the degrees of difficulty is:

D=T-(N+1) (7)
where

T = number of terms in the primal
formulation

N=number of orthogonal conditions (which
is equivalent to the number of primal
variables)
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Once the dual variables are determined, the
primal variables can be determined from the
relationships between the primal and dual
variables. As i lmear programming, the
primal and dual objective functions must be
equal and thus Yo(x) and d(w) are equal. The
two equations relating the primal and dual
for determming the primal variables are:

N

Cot [] x™" =wmoto dw) (8)
n=1

and
N

Chmt H X" = ©Omt/ Omo (9)
n=1

for =1,2,.. Tmand m =1,2,..M

3. Cobb-Douglas Cost Minimization
Model

The itial formulation is to minimize labor
and capital costs to obtain a specific output
level. ~The model by Guney and Oz) is
slightly modified and can be stated in its
primal form as:

Y(X) = rixi + nx (10)

subject to the Cobb-Douglas production
constraint

q=Axi*x P (11)

where
x1 = labor amount
r1 = labor rate
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x2 = capital amount

r2 = capital rate

q = desired output level

A = total productivity factor
a = labor elasticity

B = capital elasticity

The constraints must be written in the form
of nequalities with the right hand side being
unity and thus the constraint becomes:

(@/A) x1* xP <1 (12)

Thus the primal objective function is given in
Eqn. 10 and Eqn 12.is the constramt. = The
number of degrees of difficulty using Eqn 7
is:

D=3-Q2+1)=0

The degrees of freedom must be greater than
or equal to zero.

Since all the terms in Eqns. 10 and 12 are
positive, the signum values are all positive,
that is

600 = 1 (objective function is
minimization)

co1 =1

co2 =1

o1l =1

c10 = 1 (RHS of constraint is positive)

The dual can be formulated using Eqns.3, 4
and 6 as:
Eqn 3 ®o1 +®02 =1

(13)
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-0 O11 =0
(14)

Eqn 4 (x2) o1 -Borr =0

(15)

Eqn 4 (x1) o1

Solving Eqns 13-15 for the dual variables
one obtains:

wo1 = (a/(a+p)) (16)
w2= (B/(atp)) (17)
oi1=(1/(a+p)) (18)

Now m1ocan be determined using Eqn 6 and
is

®10 =0G10 ), 0mt Omt = 1*(1 * (1/(a + B)))
= 1/(a +B) (19)

The dual objective function of Eqn 2 can now
be determined and is:

d(w)= 1* [{ri*1/(a/(a+B))} 1€ atp)) =
{r2* 1/(B/(0+B))} (1 BB * /AL (/o) 1
(20)

Note that both w11 and w10 are equal. Now
using the primal-dual relationship of Eqn. 8

for the two terms of the objective function,
one obtains:

rix1 = (a(a +B)) *1* d(®) Q1)

% = (Bo +B) *1* d(o) (22)
Solving Eqns. 21 and 22 for xi1 one obtains:

x1=(a/B) (r2/11 ) %2 (23)



Now using Eqn 22 in Eqn 11and solving for
X2:

x2 = (q/A) V@B (ory/Bry )@+ B (24)

Using Eqn 24 in Eqn 21 x; is found to be

X] = (q/A)(l/(a +B)) (arz/Brl )(B(U. +B)) (25)

The primal objective function can now be
determined from the primal variables and
Eqn 10 becomes

Y(x) =11 * (q/A) 1@+ B) (ora/Bry ) B+ B) +
¥ (AYV@ B (ary/Bro)-w/e+ B)
(26)

Equations 20 and 26 have quite different
appearances, but the numerical values will be
the same.

4. Model Results and Validation

The equations developed were used to
compare with the data reported by Guney and
O7]6] on the construction sector in Turkey.
The mput values are given in Table 1and the
output values are in Table 2. The nput
values of A, a, and f were fixed at 1.0, 0.53,
and 0.47 for all four reported cases.
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Table 1. Yearly Input Data for Estimate

Calculations
Year | Production | Labor Capital
Index q Index Index
I V)
2006 | 118.4 121.88 114.32
2007 | 124.9 137.80 122.32
2008 | 115.6 153.85 140.06
2009 | 96.4 158.53 131.48

The results for x; and x2, the labor and capital
estimates, were in complete agreement with
those of Guney and Oz6] so only one set
are included m results given nTable 2. The
primal and dual values of the objective
function from Equations 20 and 26 are
identical as expected and although the
objective function was not given in the
reference[6], it would most likely have been
the same. Inthe model equations presented,
the values for A, a, and B from the Cobb-
Douglas production equation could be varied
and a sensitivity analysis of these parameters
could be evaluated and would not require
resolving the adjusted problem.
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Table 2. Out put Values of Model for

Estimates.
Yea | Labor | Capita | Primal | Dual
r Estima |1 Total Total
te Estima | Cost Cost
X1 te Y) d(m)
X2
200 | 121.56 | 114.93 | 27955. | 27955.
6 11 11
200 | 124.96 | 124.84 | 32488. | 32488.
7 98 98
200 | 117.03 | 114.00 | 33973. | 33973.
8 0 08 08
200 | 93..41 | 99.88 |[27941. | 27941.
8 39 39

5. Conclusions

The development of design equations for a
geometric programming model of from data
of the construction sector in Turkey. These
design equations ( Eqns. 20,24,25,and 26)
give the solutions for the model outputs and
the model does not need to be resolved. The
design equations for the variables x1 and x2
can then be used to determine the total cost to
meet the desired production level.

The design equations also permit easy
analysis of the impact of the Cobb-Douglas
elasticity exponents and total productivity
factor upon the total cost. The development
of design equations takes considerable effort,
but the equations permit a more rapid
analysis of the impact of the input variables
upon the output.
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