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Parameter Extraction of Photovoltaic Models by Honey Badger
Algorithm and Wild Horse Optimizer

Highlights
< PV parameter estimation has been made with honey badger algorithm (HBA) and wild horse optimizer
(WHO)

PV cells and modules are modeled with single and double diode models and real measurement data are used

to test the problem.
< Objective function values are calculated between 9.9318E-04 and 1.7011E-03 with HBA and between

9.8602E-04 and 1.7298E-03 with WHO.
Graphical Abstract

In this article, the topic of PV parameter extraction has been studied and this optimization problem has been solved
with HBA and WHO.
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Figure. Optimization process for PV parameter extraction with HBA and WHO
Aim
In this study, it is aimed to extract PV parameters and obtain optimal parameters with HBA and WHO.

Design & Methodology

PV cells and modules are modeled with single and double diode models. The root mean square error was chosen as
the objective function and the results of HBA and WHO were compared with the evaluation metrics in terms of
computational accuracy and computational time.

Originality

HBA and WHO were used together and compared for the first time in this study.

Findings

When the algorithms are compared in terms of computational accuracy and computational time; it has been observed
that both WHO and HBA, with WHO in the first place, produce successful, stable and fast results in PV parameter
extraction.

Conclusion

As a result; It has been seen that HBA and WHO are effective and successful in PV parameter extraction and can be
used in the solution of such engineering problems with their competitive structure compared to the literature.
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ABSTRACT

Analyzing the processes ranging from the determination of the installation configuration of the photovoltaic (PV) systems to the
operation at the maximum power, from the technical and economic feasibility study to the positive contribution to the region where
the production is planned are just possible with the accurate and efficient simulation models of the PV systems. PV parameter
extraction, which is a topic frequently discussed recently, is crucial for the detailed modeling of PV cells and modules and
simulating the behavior of these systems. For this reason, the current study examined PV parameter extraction and solved this
optimization problem with the honey badger algorithm (HBA) and wild horse optimizer (WHO). PV cells and modules were
modeled with the single diode model (SDM) and double diode model (DDM) and tested with actual measurement data. The root-
mean-square error (RMSE) was chosen as the objective function, and the results were compared with the evaluation metrics for
computational accuracy and time. Based on four PV model results, RMSE values were calculated between 9.9318E-04 to 1.7011E-
03 for HBA and between 9.8602E-04 and 1.7298E-03 for WHO. As a result, even though both algorithms produce successful,
stable, and fast results in PV parameter extraction, the WHO yielded better results.

Keywords: Double diode PV model, honey badger algorithm, PV parameter extraction, single diode model, wild horse
optimizer.

Bal Porsugu Algoritmasi ve Vahsi At Optimize Edici
ile Fotovoltaik Modellerin Parametre Cikarimi

0z

Fotovoltaik (FV) sistemlerin kurulum konfigiirasyonunun belirlenmesinden, maksimum gii¢ noktasinda ¢aligtirtlmasina, teknik ve
ekonomik fizibilite caligmasindan iiretim yapmasi planlanan bolgeye saglayacagi pozitif katkisina kadar olan siireglerin analizinin
yapilmasi FV sistemlerin dogru ve verimli simiilasyon modellerine baglidir. FV hiicrelerin ve modiillerin detayli modellenmesi ve
bu sistemlerin davraniginin taklit edilebilmesi igin FV parametre ¢ikarimi son derece 6nemli olup son zamanlarda siklikla ¢aligilan
bir konudur. Bu sebeple bu ¢aligmada, FV parametre ¢ikarimi konusunda ¢alisilmig ve bu optimizasyon problemi bal porsugu
algoritmasi (BPA) ve vahsi at optimize edici (VAO) ile ¢oziilmiistiir. FV hiicre ve modiiller tek diyotlu model (TDM) ve ¢ift diyotlu
model (CDM) ile modellenmistir. Bu modellerin test edilmesinde ise gergek 6l¢tim verileri kullanilmigtir. Amag fonksiyonu olarak
hata kareler ortalamasinin karekdkii (RMSE) secilmis ve sonuglar, hesaplama dogrulugu ve zamani agilarindan degerlendirme
metrikleri ile karsilagtirilmigtir. Dért FV modelin sonuglarina gore; BPA 9,9318E-04 ile 1,7011E-03 araliginda ve VAO ise
9,8602E-04 ile 1,7298E-03 araliginda RMSE degerleri hesaplanmistir. Sonug olarak her iki algoritma da PV parametre ¢ikariminda
basarili, kararli ve hizli sonuglar vermesine ragmen VAO daha iyi sonuglar vermistir.

Anahtar Kelimeler: Cift diyotlu FV model, bal porsugu algoritmasi, FV parametre ¢ikarimi, tek diyotlu FV model, vahsi

at optimize edici.

1. INTRODUCTION reduce the entire system’s efficiency [3-4]. PV systems

PV systems attract the attention of researchers in theory ~ Néed to be modeled in detail in order to design PV
and investors in practice because of their ability to  SyStéms or to ensure that existing systems work at
transform solar energy directly into electrical energy and ~ OPtimum efficiency levels [5-6]. The model should also
their application in many fields [1-2]. PV systems contain the effects of environmental factors for an
operating in severe ambient conditions are affected by ~ OPtimum PV system design. Modeling of a PV system
many factors such as extreme temperatures, dust, starts with the PV cells, the smallest unit of the PV
pollution, rain, and snow. These factors, causing various ~ SyStém, and then the modules and arrays are handled,

malfunctions, shorten the life of the PV modules and  espectively. However, the information obtained from the
PV manufacturer data sheets alone is insufficient for

*Sorumlu Yazar (Corresponding Author) modeling PV cells, modules, and arrays. Therefore, it is
e-posta : kezbankoc@gazi.edu.tr necessary to create electrically equivalent circuit models
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to PV models and extract unknown parameters [7].
Equivalent circuit equations are non-linear due to the
diodes in the electrical equivalent circuits of PV cells.
The larger the number of diodes, the greater the variety
of parameters to be determined and the system
complexity. The most dominant elements of PV cells are
diodes. Therefore, the circuit models of PV systems get
their names according to the number of diodes. The most
common circuit models are the single diode model, the
double diode model, and the three diode model (TDM).
In addition, in the literature, PV circuit models are named
according to the unknown parameter counts in the
equivalent circuit. SDM, DDM, and TDM are also called
the 5-parameter model, the 7-parameter model, and the
9-parameter model, respectively. Accurate, fast, and
reliable estimation of the parameters of PV models is the
primary goal of an optimal operation [8-9].

The PV cell has a nonlinear mathematical infrastructure.
Solving the equations and getting optimal parameters for
PV systems is an optimization problem. A review of
valuable literature studies showed that analytical,
deterministic, and meta-heuristic methods generally
served in PV parameter extraction. Meta-heuristic
algorithms are popular among these methods. Many
researchers work on them because they have chief
advantages, such as not having problem constraints, ease
of use, being usable in multidimensional optimization
problems, and producing fast and reliable results [10].
Garip et al. used henon chaotic based whale optimization
algorithms (HBOA) to estimate the parameters of the
SDM model of three commercial modules PWP-201 (36
cells), STM-40/36 (36 cells), and STP6-120/36 (36 cells)
and compared HBOA with the classical whale
optimization algorithm. HBOA variants produced a
smaller RMSE than the classical whale optimization
algorithm [11]. Rizk et al. used the emended heap-based
optimizer (EHBO) to find the parameters of the SDM
model of three commercial modules PWP-201,
KC200GT (36 cells), and Shell solar PowerMax Ultra
85-P (54 cells). They compared the proposed algorithm
with particle swarm optimizer, interior search algorithm,
artificial ecosystem optimizer, equilibrium optimizer,
and heap-based optimizer algorithms. The RMSE value
of EHBO was 2.4170E-03 and produced better results
than other algorithms [12]. Wang et al. used the enhanced
ant lion optimizer (EALO) to estimate the SDM and
DDM parameters in the commercial model of RTC
France and the SDM parameters in the PWP-201
commercial model. RTC France-SDM results were
compared with artificial bee colony optimization (ABC),
chaos pattern search, generalized oppositional teaching
learning based optimization algorithm (GOTLBO),
artificial bee swarm optimization, and hybrid bee
pollinator flower pollination algorithm (FPA). EALO,
hybrid BPFPA, and ABC algorithms gave better results
than others by their RMSE values. RTC France-DDM
results were compared with pattern search, harmony
search-based algorithms, simulated annealing algorithm,
ABC, artificial bee swarm optimization, GOTLBO, and

hybrid FPA. The best RMSE value was 9.8247E-03
produced by the EALO. In the PWP-201-SDM results,
the best RMSE value from the proposed algorithm was
2.4248E-03 [13]. Yesilbudak used the african vulture
optimization algorithm to determine the SDM and DDM
parameters in the commercial RTC France and the SDM
parameters in the PWP-201 commercial model. The
proposed algorithm, compared with many algorithms in
the cell and module model, worked successfully [14]. Ndi
etal. determined the optimal parameters of the DDM and
SDM equivalent circuit models in RTC France using the
balance optimizer algorithm and found the RMSE values
9.8553E-04 and 9.8603E-04 for DDM and SDM,
respectively. The proposed algorithm gave successful
results in parameter extraction [15]. Pourmousa et al.
found DDM and SDM parameters in the RTC France
commercial cell model and SDM parameters in the
STM6-40 commercial module with an improved Lozi
map-based chaotic optimization algorithm. The RMSE
values of DDM, SDM, and PV modules were 8.8257E-
04, 9.8602E-04, and 1.6932E-02, respectively [16]. Long
et al. used the enhanced adaptive butterfly optimization
algorithm to find the DDM, SDM equivalent circuit
models in the RTC France model, and the SDM
parameters in the PWP-201 commercial module. The
RMSE values of the DDM cell, SDM cell, and PV
module were found at 9.8607E-04, 9.8602E-04, and
2.4252E-03, respectively [17].

The literature review has revealed that many algorithms,
methods, and techniques for optimum PV parameter
extraction were available, but no single algorithm or
method could solve all problems. Therefore, unknown
SDM and DDM parameters in PV models (modules and
cells) were estimated using HBA and WHO algorithms,
and their performances were compared using evaluation
metrics. The current study employing HBA and WHO for
optimizing PV parameter extraction might remarkably
contribute to the literature for future studies.

This article comprises five parts. After the introduction,
Section 2 covers the PV parameter extraction problem.
Section 3 explains the optimization algorithms and
mathematical background, which are the tools for solving
this problem. The results and discussion sections are in
Section 4, while Section 5 covers the conclusion part.

2. DEFINITION OF PROBLEM

It is possible to come across different circuit models
while expressing the current-voltage relationship of PV
systems [18]. In this study, PV parameter extraction,
which is the main topic of this study, was carried out
through four models: single diode cell (SDM-C), double
diode cell (DDM-C), single diode module (SDM-M), and
double diode module (DDM-M). In this direction, the
current study covered the equivalent circuit models and
mathematical infrastructure of the PV cell and module in
the following subsections and defined the objective
function for the unknown parameter identification.
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2.1. Single Diode Model (SDM)

The single diode cell consisted of one diode, parallel and
series resistors, and a photo/generated current source.
Figure 1(a) shows the equivalent circuit model of the
SDM-C model. While Equation 1 shows the general
representation of the output current (Ispy,) of the SDM
equivalent circuit, Equation 2 shows the output current
(Ispm—c) of the SDM-C [19]-[22]. In these equations, L,
is the photo/generated current, V is the output voltage of
the cell, I, is the reverse saturation current, R, and R,
are the series and parallel resistance, respectively, T is the
operating temperature, « is the diode ideality factor, q is
the electron charge (1.60217646x1071°C) and k is the
Boltzmann constant (1,3806503x10723J/K). Figure
1(b) shows the equivalent circuit model of the SDM-M.
No parallel cells were available in this study. Equation 3
shows the output current (Ispp—p) 0f SDM-M [21]-[24].
In SDM-M, N; refers to cells connected in series. There
were five parameters to be estimated in the SDM-C and
SDM-M models, namely I, I,, @, R, and Rgp,.

Ispy = Iph —Ig — sy (1)

(V+IRs)
N it T
AW +IRsNS)
Ispm-m = Iph -1, [e akTNg — 1] _ V;SI:;ISVS (3)
MV
Iy | | R, —[P +
lph T D th ,
(a) SDM-C
T MN— °
Iy I [sh‘ R, -r +
D,
=
]ph CT) Ns E Rsh 3 v
1
Dy,
l .
(b) SDM-M

Figure 1. SDM equivalent circuits of PV cell and module

2.2. Double Diode Model (DDM)

DDM-C consisted of two diodes, parallel and series
resistors, and a photo/generated current source. Figure
2(a) shows the equivalent circuit model of DDM-C. The
common representations of the output current (Ipp,,) of
DDM and the output current (Ippp—c) of DDM-C are in
Equations 4 and 5, respectively [20]-[23]. In these
equations, 1, and I, are the diode currents, a; and a,

are ideality factors of the 1% and the 2" diodes, and I,
and I,, are the reverse saturation currents. Figure 2(b)
shows the equivalent circuit DDM-M. The study
assumed that all cells in the PV module were series-
connected. This module's output current (Ippp—p) IS in
Equation 6 [25]. Seven parameters were defined in cell
and module models: I, Ip1, lo2, @1, @z, Rs, and Rgp,.

- [d2 - Ish (4)

Ippm = Ipn — I

q(V+IRg)
e ai1kT _1]

Ippy—c = [ph — I [

q(V+IRs)
1, | @ _1]_% ©)
Rsp
q(V+IRgN)
Ippm-m = Ipn = Ip1 [e @i kTNs  — 1]
q(V+IRsN)
I, [eiazms - 1] — LHBsMy ©)
shiVs
- ANv
Lgi lg> kh* R, T +
b 'V b Ra v
(2) DDM-C
M
lgi | Li | Lt R, _]’ *
D, D>
H H >
Iph Ns i Nq E RSh:? v
[ ] ]
D]n D2n
| l -
(b) DDM-M

Figure 2. DDM equivalent circuits of PV cell and module

2.3. Objective Function

The present work has solved the PV parameter
extraction problem by transforming it into an
optimization problem. As with all optimization
problems, the objective function must be specified for
analyzing and evaluating the selected algorithms. The
parameter extraction optimization is usually performed
according to the error between the calculated and
measured currents. Therefore, parameter extraction is a
minimization problem. Most previous studies have
selected RMSE as an objective function (fitness
function) to solve this problem. To compare the study
results with the literature, the RMSE given in Equation
7 was chosen as the objective function. Equation 8
shows the decision variables of the objective function:
Lyn, Iy, @, Rs, and Ry, for SDM-C and SDM-M; Ly,
Ip1, Ly, a4, @y, Rg, and Ry, for DDM-C and DDM-M.
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K
1
RMSE = Ez F(0)?
k=1
— [1yk 2
- \/EZk=1(Imeasured - calculated) (7)

SDM — C and SDM — M )
DDM — C and DDM — M ()

{Iph, I, a,R5, Rgp,
X =

Iphl 101' 102' ay,ay, Rsl Rsh

3. OPTIMIZATION ALGORITHMS

Two metaheuristic algorithms, HBA and WHO, were preferred
to find a solution to the optimal PV parameter extraction
problem. The source of inspiration, solution steps, and
mathematical design and equations of the algorithms are in the
subsections.

3.1. Honey Badger Algorithm (HBA)

Proposed and published in 2022 by Hassim et al., HBA
was inspired by the foraging behavior of honey badgers.
The HBA algorithm has two basic steps. The first step is
the digging phase. This step imitates the honey badger's
smell sense to approach its prey and dig to hunt it. The
second stage is the honey phase. During the honey phase,
the honey badger follows the honeyguide birds to reach
the beehive location. There is teamwork between the
honeyguide bird and the honey badger—which is
unskilled at finding beehives. Equation 9 shows the
processes and mathematical background of the HBA
algorithm, including initialization, density definition,
updating density factor, escaping from the local
optimum, and updating the agent positions. Algorithm 1
presents the pseudocode of the HBA. Figure 3 also shows
the flowchart of the algorithm. After defining the initial
parameters, random locations of the candidate solutions,
namely honey badgers, are assigned. The fitness of the
positions of each honey badger is evaluated. Hunting
continues until the stopping criterion is met.

Algorithm 1. Pseudo-code of HBA

Determination of Ty, Nyga, C, B

Initialize the honey badger population with random
location

Asses the fitness of each honey badger position x;
using objective function and designate to f;, i € [1, 2,
.....N]

Record best honey badger position x,,., and
designate fitness to fp,.¢,
while t < Typ, do
Modify the decreasing factor o
for i=1to Nyg, do
Calculation the intensity I;
if r < 0.5 then
Modify the position x,., using digging
phase equation in Eqg. (9)
else

Modify the position x,,.,, using honey phase
equation in Eq. (9)

end if

Asses new position and assign to f,eu

Set x; = Xpey and fprey = frew

If fnew < fprey then
Set Xprey = Xnew and fprey = fnew
end if
end for
end while stop criteria satisfied
return X,

1,2 .3 D
ey . . X;: = x.’x.,x.,...’x,
Initialization phase i [ i X X i ]
Xi = lbl + 15 X (ubl — lbL)
Ii =" X _4-7le-2

Defining intensity S = (x; — x141)?
4 4

d; = Xprey — Xi

HBA = a=C><exp(_t) ©)

Update density factor

Ts <0.5

Tipa
1
Escaping from local optimum F = {

Updating the agents’ positions
Honey phase

Where, x; is honey badger position, lb; is the lower
bound, ub; is the upper bound, D is the dimension, I; is
smell intensity of prey, ry, 1y, 13, 13, 5, T, 17 are random
numbers between [0,1], S is source strength, d; is prey
distance and i is the badger, « is the density factor, C is

Digging phase {

-1 Ts > 0.5

Xnew = Xprey T F X B X1 X Xprey + -
FXryXaxd; X|cos(2mr) X (1 —cos(2mrsg))l
Xnew = Xprey + F X 17 X a X d;

the constant number (C = 1, default 2), x,,., is the
position of the prey, 8 is the constant number (8 > 1,
default 6), x,,.,, is the new position of the honey badger,
F is the flag, and Ty, and t are the maximum numbers
of iterations and current iteration, respectively, [26].
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End

Figure 3. Flowchart of HBA algorithm

3.2. Wild Horse Optimizer (WHO)

Recommended and published by Naruei et al. in 2021,
WHO was inspired by non-terrestrial horses. These
horses are usually in a herd consisting of several mares,
foals, and a stallion led by the most dominant mare.
WHO simulates these horses' behaviors and group
dominance, leadership, grazing, and mating
characteristics within the group. Equation 10 shows the
WHO algorithm processes and their mathematical

— — —>
{xll X2, X3,

Creatinganinitialpopulation
g pop [Nwro X PS]

55:
G =

P =R, <TDR

Grazingbehaviour IDX =P =0)

backgrounds, including population formation, grazing,
mating, group leadership, and leader selection. After
defining the initial parameters, the random initial
positions of the candidate solutions, horses, are
determined. The compatibility of each wild horse is
evaluated according to its objective function. Solution
seeking process continues until the stopping criterion is
met. Algorithm 2 shows the pseudocode of the WHO,
while Figure 4 shows the flowchart of the algorithm.

X}

XJ;¢ = 2Zcos(2mRZ) X (Stallion — X7, ;) + Stallion

WHO =

Z = R,0IDX + R;0(IDX)
1
TDR=1-t X (tw)

(10)
XP sk = Crossover(X9s;, X% ;)

Horsematingbehaviour {i #j=kp=q=end

Groupleadership

Crossover = Mean

2Zcos(2nRZ) x (WH — Stalliong;)) + WH R3 > 0.5

2Zcos(2nRZ) x (WH — Stalliong;)) —WH R3 <0.5
X ifcost(Xg;) < cost(Stalliong;)

Stalliong; ifcost(Xg,;) > cost(Stalliong;)

{Stallionai = {

Stalliong; = {

position, r is pi-number, R is the uniform number inside

Where, x is horse population, Ny, is the number of
populations, G is the number of groups, PS is the
percentage of stallions, X/; ; is group members’ current

[-2, 2], Stallion’ position of stallion, Z is an adaptive
mechanism, X/; ; is the group members’ new position, P
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v No o Yes [ .
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4
Return the final solution (X.)
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Figure 4. Flowchart of WHO algorithm

is a vector, R,, R,, and R are random vectors, IDX are
indexes of the random vectors, TDR is the adaptive
parameter, t is current iteration, Ty o IS the maximum
number of iterations, W H is the position of a suitable area
(the water hole), X*¢ ; is the position of the horse z in

group j, Stalliong; is following position of the leader of
the i group (stallion position), X7 « is the position of
horse p from group k, X9 ; is the position of the foal in
group i, Stalliong; is the current position of the leader of
the group [27].

4. RESULTS AND DISCUSSION

In this part, the optimization problem of parameter
extraction was solved using HBA and WHO, and the
results were analyzed in detail. The control parameter
values of the algorithms are given in Table 1. For the
solution of the parameter extraction optimization

problem, the number of agents is generally taken as 50
and the number of iterations as 10000 in the literature.
Therefore, in this study the HBO and WHO algorithms
were run in 10000 iterations over 50 populations. After
30 independent studies, 300000 functions were
evaluated. There were two control parameters in the
HBA and three in the user-adjusted WHO. These control
parameters are based on the values reported in the
original article. p and C were 6 and 2 in the HBA
algorithm, respectively. In WHO, percent cross (PC),
percent stallion (PS), and crossover parameters were
taken as 0.13, 0.2, and Mean, respectively. RTC France
[28] and Schutten Solar STM6-40/36 [29] panel data
served to test the optimization performance of HBA and
WHO. Table 2 shows the upper and lower limits of the
decision variables in the objective function. Parameter
extraction results and comparison of optimization results
according to evaluation metrics are in the subtitles.
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Algorithm 2. Pseudo-code of WHO

Table 1. Control parameter values of algorithms

Determination of Ny o, Twro, PC, PS,

Nstartion = PS X NWHO'Nfoal = Nwno — Nstaution

Compute the fitness of all horses
Create foal groups and select stallions
Discover best horse as the optimum
while t < Ty, do

Calculate TDR by Eg. (10)

for i= 110 Ny;g11i0n dO

Calculate Z by Eq. (10)
for i= 110 Nfoq do

Modify the position of the all foals by Eqg. (10)

else

Modify the position of the all foals by Eq. (10)

end for
if rand > 0.5

Modify the position Stalliong, by Eq. (10)

else

Modify the position Stalliong, by Eg. (10)

end if

if cost(Stalliong,) < cost(stallion)

Stallion=Stalliong,
end if
Classify foals of groups by cost
Choose foal with lowest cost

Exchange foal and stallion position Eq. (10)

end for
Modify optimum
end while

Algorithm Control Parameter Value

B 6
HBA c 5
PC 0.13
WHO PS 0.2
Crossover Mean

4.1. Results of SDM-C and SDM-M

Table 3 shows the results of the decision variables of the
problem and the objective function for the SDM-C and
SDM-M. The most successful algorithm for single diode
cells and single diode modules was HBA because this
algorithm produced the smallest RMSE value between
these two models. The RMSE result produced with the
WHO was 4.97117E-10%, which was higher than HBA.
Figure 5 shows the P-V and I-V curves obtained from the
voltage and current results and the results of the HBA and
WHO. The curves in Figure 5(a) belong to SDM-C, and
the curves in Figure 5(b) belong to SDM-M. The
comparison of SDM-C and SDM-M shows that measured
and simulation data overlap successfully, and both
algorithms are successful in parameter estimation.

4.2. Results of DDM-C and DDM-M

Table 4 shows the PV parameter extraction results of the
DDM-C and DDM-M. For DDM-C, WHO vyielded the
smallest RMSE, and the RMSE result of HBA was
1.08896 percent greater than WHO. As in SDM-C and
SDM-M, the HBA was the most successful algorithm in
DDM-M. Figure 6 shows the P-V and |-V curves
obtained from the voltage and current results and also the
results of the HBA and WHO. As in SDM, the measured
data and simulation data matched perfectly, and both

Table 2. Lower and upper limits of PV models

algorithms were successful in parameter extraction.

Limit Limit .
Model Parameter Model  Parameter Unit
Upper Lower Upper Lower
Lyy 1 0 Lyp 2 0 A
I 1 0 I,4,1 50 0 HA
SDM-C 0 SDM-M o1 ‘o2
R, 0.5 0 R, 0.36 0 Q
a 2 1 aq, y 60 1 -
Table 3. Parameter extraction results of SDM-C and SDM-M
Model  Alg. Ip,n(A) I,(A) Ry () R (Q) a RMSE Rank
9.8602E-04
oMm.C HBA 0.76078 0.32302 53.71853 0.03638 1.48119 0.00098602187789178933 1
9.8602E-04
WHO 0.76078 0.32302 53.71857 0.03638 1.48119 0.00098602187789669101 2
1.7298E-03
oMM HBA 1.66390 1.73866 15.92831 0.00427 1.52030 0.00172981370994954660 1
WHO 166155 550511 23.55866 0.00000 1.65853 3.3299E-03

0.00332985093708718660
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Figure 5. P-V and I-V curves for SDM-C and SDM-M
Table 4. Parameter extraction results of DDM-C and DDM-M
Model  Alg.  Ip(A) I,y (mA) I, (MA) Ry () Ry () a, a, RMSE Rank
HBA 076079 010014 100000 57.65219 003727 139050 18258 000993183779783;357'23 2
DDM-C .
9.8248E-04
WHO 0.76078 0.22574 0.75136  55.49025 0.03674 1.45093 2.00000 0.00098248491200868542 1
1.7011E-03
COMM HBA 1.66382 4.62062 0.00060 17.95595 0.00899 1.71338  1.00000 0.00170114625497150680 1
WHO 166390 000000 173866 1592829 0.00427 60.00000 1.52030 1.7298E-03

0.00172981370994071620

In order to fully reveal the performances of the HBA and
WHO algorithms, the RMSE results of the algorithms
used in parameter extraction in the literature were
compared with the RMSE results of the HBA and WHO
of this study. This comparison is given in Table 5.

When Table 5 is examined, the RMSE results produced
by the HBA and WHO algorithms are within the range
reported in the literature. Therefore, these two algorithms
can be used successfully in parameter extraction
problem.

4.3. Results of Parameter Extraction Based on
Evaluation Metrics

After independently running HBA and WHO algorithms
30 times, the results were recorded. The recorded
objective function results and calculation times were
analyzed using evaluation metrics. Table 6 shows the
standard deviation (SD), the minimum, average, and
maximum results of the objective function. WHO
produced the lowest minimum values in SDM-C, DDM-
C, and SDM-M. WHO algorithm had the lowest mean
and maximum RMSE in all models, and HBA produced
the highest objective function value. The smallest SD in
all models belonged to the WHO algorithm.
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Figure 6. P-V and I-V curves for DDM-C and DDM-M
Table 5. RMSE comparison results of PV models and algorithms
Algorithm SDM-C SDM-M DDM-C DDM-M
HBA 9.8602E-04  1.7298E-03  9.9318E-04  1.7011E-03
WHO 9.8602E-04  3.3299E-03  9.8248E-04  1.7298E-03
Equilibrium optimizer [15] 9.8603E-04 - 9.8553E-04 -
Adaptive harris hawks optimization [30] 9.8933E-04 - 9.9486E-04 -
Improved chaotic optimization algorithm [16] 9.8602E-04  1.6932E-02  9.8257E-04 -
Cat swarm optimization [31] 9.8602E-04 - 9.8252E-04 -
Complex evolution algorithm [32] 9.8602E-04  1.7298E-03  9.8248E-04
Artificial ecosystem-based optimization algorithm [35] 9.8602E-04  1.7298E-03  9.8602E-04  1.7298E-03
Flexible particle swarm optimization [33] 9.8602E-04  1.6743E-02  9.8253E-04
Artificial bee colony optimization [34] 9.8629E-04 - 9.8619E-04 -
Runge kutta optimizer [35] 1.0062E-03  1.7330E-03  9.8631E-04  1.8393E-03
Grey wolf optimizer [35] 3.6574E-03  3.1076E-01  2.5667E-03  5.0353E-03
Weighted mean of vectors optimization algorithm [35] 9.8602E-04  1.7298E-03  9.8248E-04  1.6949E-03
Artificial hummingbird algorithm [35] 9.8602E-04  1.7298E-03  9.8375E-04  1.7091E-03
Reptile search algorithm [35] 3.7211E-02  1.7714E-02  5.6100E-02  6.8145E-03
Grey wolf optimizer with dimension learning [36] 9.8602E-04 - 9.8248E-04 -

In addition, both algorithms showed a determined
approach to providing successful solutions. Table 7
shows the results of the evaluation metrics for calculation

times. HBA had the lowest minimum, average, and
maximum calculation time. HBA had the lowest SD in
the SDM-C, DDM-C, and DDM-M models, while WHO
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had the lowest SD in the SDM-M model. However, the
is not a sufficient criterion.
Although it varies according to the purpose of the
the algorithm performances should be
evaluated together with the computational accuracy and

calculation time alone

problem,

computational time.

4.4. Convergence Curves

Figure 7 shows the process of producing solutions to the
parameter extraction optimization problem of the HBA
and WHO algorithms for the four models. The
convergence curves showed that the results obtained by

statistical methods and evaluation metrics converged.
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Figure 7. Convergence curves
Table 6. RMSE values for 30 runs
Model Alg. Minimum Average Maximum SD SD Rank
HBA 9.8602E-04 6.3480E-03 4.6014E-02 1.3538E-02 )
SDM-C 0.00098602187789165793  0.00634804181783911110  0.04601356782948297400  0.01353793060590704900
WHO 9.8602E-04 1.1403E-03 2.4480E-03 3.1383E-04 1
0.00098602187789151698  0.00114032872604427630  0.00114032872604427630  0.00031383106734804580
HBA 9.8264E-04 3.8184E-03 4.6014E-02 9.9143E-03 )
DDM-C 0.00098264011744690649  0.00381841049961808300  0.04601356782948298100  0.00991429450862335060
WHO 9.8248E-04 1.0875E-03 1.4385E-03 1.8936E-04 1
0.00098248488734911437  0.00108754751229876580  0.00143847589736776350  0.00018935544657424784
HBA 1.7298E-03 5.4262E-02 3.1076E-01 1.1667E-01 )
SDM-M 0.00172981370994070080  0.05426210555185624600  0.31075740938424645000  0.11667187601222467000
WHO 1.7298E-03 9.0574E-03 1.5548E-01 2.8222E-02 1
0.00172981370994066390  0.00905739476217793520  0.15548108439011429000  0.02822202932953198800
HBA 1.7011E-03 3.4372E-02 3.1076E-01 9.3710E-02 2
DDM-M 0.00170114625497150680  0.03437157918835451900  0.31075740938424645000  0.09371039366414607400
WHO 1.7298E-03 2.8868E-03 5.3604E-03 1.2361E-03 1

0.00172980864681144640

0.00288684546378478780

0.00536036853218376480

0.00123612186837523560
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Table 7. Computational time values for 30 runs

Model Alg. Minimum Average Maximum SD SD Rank
SDM-C HBA 1.4859E+01 1.6572E+01 1.9783E+01 1.3490E+00 1
WHO 2.7135E+01 2.9517E+01 3.3453E+01 1.7139E+00 2
DDM-C HBA 1.7345E+01 1.8065E+01 1.9282E+01 6.0430E-01 1
WHO 2.5676E+01 2.7602E+01 3.0571E+01 1.4302E+00 2
SDM-M HBA 1.3643E+01 1.5229E+01 1.9042E+01 1.6866E+00 2
WHO 2.3984E+01 2.5047E+01 2.6649E+01 6.4504E-01 1
DDM-M HBA 1.5566E+01 1.6636E+01 1.9505E+01 9.6358E-01 1
WHO 2.6425E+01 2.9744E+01 3.9331E+01 3.5869E+00 2

5. CONCLUSION

Correct parameter extraction and working with optimum
parameters are critical issues in PV systems. Besides, the
maximum power point directly affects the monitoring
performance, especially in converters connected to PV
panels. Therefore, the current study used HBA and WHO
algorithms to solve the parameter extraction optimization
problem. The RMSE results for the four models,
including SDM-C, SDM-M, DDM-C, and DDM-M,
were 9.8602E-04, 1.7298E-03, 9.9318E-04, 1.7011E-03
for HBA, respectively. For WHO, they were 9.8602E-04,
3.3299E-03, 9.8248E-04 and 1.7298E-03, respectively.
In addition, the algorithm performances were determined
with evaluation metrics over RMSE. In computational
accuracy and time, both algorithms—especially WHO-
were effective and successful in PV parameter extraction
and such engineering problem solutions.

In the next stages, the authors of this study plan to study
MPPT efficiency in a real-time PV system with the data
obtained from this study. The compatibility of the
modeled PV system according to the data calculated by
parameter estimation will be compared with the data
obtained from a real PV system. Another work planned

for the future, a hybrid algorithm can be designed by
combining HBA and WHO algorithm to obtain more
stable parameter values.
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NOMENCLATURE
a density factor Ts random numbers between [0,1]
ABC artificial bee colony optimization g random numbers between [0,1]
C constant number (C = 1, default 2) 5 random numbers between [0,1]
DDM double diode model R uniform number
DDM-C  double diode model based on PV cell ﬁl random vectors between [0,1]
DDM-M  double diode model based on PV module ﬁz random vectors between [0,1]
D dimension of HBA §3 random vectors between [0,1]
d; prey distance and i is the badger RMSE root mean square error
EHBO emended heap-based optimizer N, number of series cells
F flag R, series resistance
FPA flower pollination algorithm Ropn shunt resistance
G number of groups S source strength of HBA
GOTLB  generalized oppositional teaching learning Stallion/ position of stallion
0 based optimization algorithm
HBA honey badger algorithm SDM single diode model
IDX indexes of the random vectors SDM-C  single diode model based on PV cell
I; smell intensity of prey SDM-M  single diode model based on PV module
11 first diode current Stalliong; Next position of the leader of the i group
1y second diode current Stalliong; current position of the leader
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Ippm output current of DDM T operating temperature

Ippm—c output current of DDM-C TDM three diode model

Ippm—-m output current of DDM-M TDR adaptive parameter

I, diode reverse saturation current Tupa maximum number of iterations of HBA
Iy first diode reverse saturation current Twro maximum number of iterations of WHO
Iy, second diode reverse saturation current ub; upper bound of HBA

L, photo-generated current % output voltage of the PV cell

Ispm output current of SDM WHO wild horse optimizer

Ispm—c output current of SDM-C WH position of the water hole

IspM—m output current of SDM-M Z adaptive mechanism

Ly, shunt resistor current x horse population

k boltzmann constant X; honey badger position

lb; lower bound of HBA Xprey position of the prey

Nypa number of populations of HBA Xnew new position of the honey badger

Ny wo number of populations of WHO Xic group members’ current position

PS percentage of stallions ELG group members’ new position

PV photovoltaic X% is the position of the horse z in group j
P a vector XPox position of horse p from group k

q electron charge X, position of the foal in group i

" random numbers between [0,1] a diode ideality factor

) random numbers between [0,1] a, first diode ideality factor

T3 random numbers between [0,1] a, second diode ideality factor

A random numbers between [0,1] B constant number (8 > 1, default 6)
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