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Abstract  

In this paper, we deal with the numerical solution of Sawada-Kotera (SK) equation 

classified as the type of fifth order Korteweg-de Vries (gfKdV) equation. In the first step of our 

study consisting of several steps, nonlinear model problem is split into the system with the 

coupled new equations by using the transformation 𝑤!!! = 𝑣. In the second step, to get rid of the 

nonlinearity of  the problem,  Rubin-Graves type linearization is used. After these applications, 

the approximate solutions are obtained by using the trigonometric quintic B-Spline collocation 

method. The efficiency and accuracy of the present method is demonstrated with the tables and 

graphs. As it is seen in the tables given with the error norms 𝐿" and 𝐿# for different time and 

space steps, the present method is more accurate for the larger element numbers and smaller time 

steps. 

Keywords: Sawada-Kotera Equation; Collocation Finite Element Method; Trigonometric 

Quintic B-Spline; Rubin-Graves Type Linearization. 
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Sawada-Kotera Denklemi için Trigonometrik Beşli Baz Fonksiyonları Kollokasyon 

Yönteminin Bir Uygulaması 

Öz 

Bu çalışmada, beşinci dereceden Korteweg-de Vries (gfKdV) denklemlerinin türü olarak 

sınıflandırılan Sawada-Kotera (SK) denkleminin nümerik çözümü ele alınmaktadır. Birkaç 

adımdan oluşan çalışmamızın ilk adımında, lineer olmayan model problem 𝑤!!! = 𝑣  dönüşümü 

kullanılarak iki yeni denklem sistemine ayrıştırılmıştır. İkinci adımda, problemin lineer olmama 

durumundan kurtulmak için Rubin-Graves tipi lineerleştirme kullanılmıştır. Bu uygulamalardan 

sonra trigonometrik beşli B-Spline kollokasyon yöntemi kullanılarak yaklaşık çözümler elde 

edilmiştir. Mevcut yöntemin etkinliği ve doğruluğu tablolar ve grafiklerle gösterilmiştir. Farklı 

zaman ve konum adımı için 𝐿" ve 𝐿# hata normları ile verilen tablolardan görüldüğü üzere, 

mevcut yöntem daha büyük eleman sayıları ve daha küçük zaman adımları için yüksek 

doğruluktadır. 

Anahtar Kelimeler: Sawada- Kotera Denklemi; Kollokasyon Sonlu Eleman Yöntemi; 

Trigonometrik Beşli B-Spline; Rubin- Graves Tipi Lineerleştirme. 

1. Introduction 

Many problems in various areas of scientific and engineering fields can be expressed as 

partial differential equations. These equations frequently appear in the fields such as fluid 

dynamics, plasma physics,  mathematical biology, nonlinear optics, quantum mechanics etc. One 

of the most important problems studied in these fields is the generalized fifth order Korteweg-de 

Vries (gfKdV) equation. Although there isn’t  a general solution corresponding to the solution of 

the problem, the exact solutions are available for the special cases of solitary waves [1]. The 

generalized fifth order Korteweg-de Vries (gfKdV) equation is modelled with the relation 

         $%
$&
+ 𝛼𝑤" $%

$!
+ 𝛽 $%

$!
$!%
$!!

+ 𝛾w $"%
$!"

+ $#%
$!#

= 0,		                                                               (1) 

where 𝛼, 𝛽 and 𝛾 are random real parameters and 𝑤 is a differentiable function related to 𝑡 time 

and 𝑥 space variables. It should be noted here that equation (1) not only expresses the motion of 

the long waves in shallow water under gravity and in a one dimensional nonlinear lattice, but it is 

also a significant mathematical model for a chain of coupled non-linear oscillators and magneto-

sound propagation in plasmas [2]. In the last few years, many researchers have studied nonlinear 

gfKdV equations to obtain their exact solutions and numerical solutions. When the literature is 

investigated, there are many studies in which analytical and numerical solutions are obtained by 
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using the Adomian Decomposition Method [3-6], Variational Iteration Method [7, 8], Homotopy 

Perturbation Method [9, 10], Laplace Decomposition Approach [11, 12] and finite difference 

schemes based on a predictor-corrector algorithm [13]. Since the gfKdV equation doesn’t have 

general solution expect for special cases of solitary waves, their numerical solutions are 

commonly studied [3]. For the numerical solutions, Bakodah [4] generalized on appropriate 

polynomials for the gfKdV and implemented the new modified Adomian Decomposition Method,  

Kaya [5]  calculated explicit and numerical solutions for a various fifth-order KdV equations, 

Odibat and Momani [8] used the variational iteration method by obtaining a correction functional 

for the differential equation and Djidjeli and the others [13]  proposed two methods derived using 

central differences with a predictor-corrector time stepping and linearizing  implicit corrector 

scheme. In this study, different from the existing studies for numerical solutions, we are going to 

use the finite element collocation method. In order to obtain better and more effective numerical 

results, trigonometric quintic basis functions will be used. 

The model problem discussed in our study is the Sawada-Kotera [14] problem which is the 

special form of the gfKdV equation for the parameters 𝛼 = 45, 𝛽 = 15 and 𝛾 = 15 is given as 

         $%
$&
+ 45𝑤" $%

$!
+ 15 $%

$!
$!%
$!!

+ 15w $"%
$!"

+ $#%
$!#

= 0	,																																																								         (2) 

subject to initial and boundary conditions  

𝑤(±𝐿, 𝑡) = 𝑤!(±𝐿, 𝑡) = 0,								𝑥 ∈ (−𝐿, 𝐿),				𝑡 > 0, 

𝑤(𝑥, 0) = 𝑓(𝑥, 𝑘, 𝜆), 

where 𝑘 and 𝜆 are constant numbers. 

The organization of this study is built on the main steps given in the following sections. In 

section 2, the used method and its application schemes are given. In section 3, initial matrix 

systems are composed. The obtained numerical results are discussed in the last section 4. 

2. Implementation of the Collocation Finite Element Method with Trigonometric 

Quintic B-Spline Basis 

In this section, first of all, by using the relation $
"%
$!"

= 𝑤!!! = 𝑣, two different equations 

will be obtained corresponding the equation  (2). The new coupled equations can be written as 

𝑤!!! − 𝑣 = 0,																																																																																																																																			(3) 

𝑤& + 45𝑤"𝑤! + 15𝑤!𝑤!! + 15𝑤𝑣 + 𝑣!! = 0.																																																																							(4) 
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So, we can create the scheme for equation systems (3) and (4) using the collocation finite 

element method based on trigonometric quintic B-spline functions. For this purpose, firstly, we 

consider the domain [−𝐿, 𝐿] divided uniformly into sub intervals from the 𝑥' knots as −𝐿 =

𝑥( < 𝑥) < 𝑥" <. . . < 𝑥' = 𝐿 where spatial step size Δ𝑥 = ℎ = 𝑥'*) − 𝑥', for all 𝑚, 𝑚 =

−2,−1,0,1, . . . , 𝑀 + 1,𝑀 + 2. The group of trigonometric quintic B-spline basis 

{𝜙+"(𝑥), 𝜙+)(𝑥), . . . , 𝜙,*)(𝑥), 𝜙,*"(𝑥)} forms a basis for the solution region [−𝐿, 𝐿]. In this 

way,,the approximate solutions of functions 𝑤(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) can be represented with   

𝑊'(𝑥, 𝑡) and 𝑉'(𝑥, 𝑡).  Also these approximate values can be expressed with the terms 𝜙'(𝑥), 

𝛿'(𝑡), 𝜎'(𝑡) as  

𝑊'(𝑥, 𝑡) = K
,*"

'-+"

𝜙'(𝑥)𝛿'(𝑡), 𝑉'(𝑥, 𝑡) = K
,*"

'-+"

𝜙'(𝑥)𝜎'(𝑡), 

where 𝜙'(𝑥) are values of the 𝑥' knots and 𝛿'(𝑡), 	𝜎'(𝑡) are time-dependent coefficients which 

can be found by using the boundary conditions and trigonometric quintic B-spline collocation 

conditions [15-17]. In our paper, we use the symbolization of 𝑊', 𝑉' for the approximate 

solutions at the knots 𝑥 = 𝑥'. Numerical solutions at the knots 𝑥' derived by using the 

trigonometric quintic B-splines 		𝜙'(𝑥) are found to be: 

𝑊' = 𝑊(𝑥') = 𝑎)𝛿'+" + 𝑎"𝛿'+) + 𝑎.𝛿' + 𝑎"𝛿'*) + 𝑎)𝛿'*", 

𝑊'/ = 𝑊/(𝑥') = 𝑏)𝛿'+" + 𝑏"𝛿'+) − 𝑏"𝛿'*) − 𝑏)𝛿'*", 

𝑊'// = 𝑊//(𝑥') = 𝑐)𝛿'+" + 𝑐"𝛿'+) + 𝑐.𝛿' + 𝑐"𝛿'*) + 𝑐)𝛿'*", 

𝑊'	
$$$ = 𝑊///(𝑥') = 𝑑)𝛿'+" + 𝑑"𝛿'+) − 𝑑"𝛿'*) − 𝑑)𝛿'*", 

𝑉' = 𝑉(𝑥') = 𝑎)𝜎'+" + 𝑎"𝜎'+) + 𝑎.𝜎' + 𝑎"𝜎'*) + 𝑎)𝜎'*", 

𝑉'/ = 𝑉/(𝑥') = 𝑏)𝜎'+" + 𝑏"𝜎'+) − 𝑏"𝜎'*) − 𝑏)𝜎'*", 

𝑉'// = 𝑉//(𝑥') = 𝑐)𝜎'+" + 𝑐"𝜎'+) + 𝑐.𝜎' + 𝑐"𝜎'*) + 𝑐)𝜎'*", 

where 

𝑎) =
123#(5/")

8
, 

𝑎" =
2sin9(ℎ/2)cos(ℎ/2)(16cos"(ℎ)/2 − 3)

𝜃
, 
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𝑎. =
2sin9(ℎ/2)(1 + 48cos:(ℎ/2) − 16cos"(ℎ)/2)

𝜃
, 

𝑏) = −
5sin:(ℎ/2)cos(ℎ/2)

2𝜃
, 

𝑏" = −
5sin: Zℎ2[ cos

" Zℎ2[ Z8cos
" Zℎ2[ − 3[

𝜃
, 

𝑐) =
5sin. Zℎ2[ Z5cos

" Zℎ2[ − 1[
4𝜃

, 

𝑐" =
5sin.(ℎ/2)cos(ℎ/2)(−15cos"(ℎ/2) + 16cos:(ℎ/2) + 3)

2𝜃
	, 

𝑐. = −
5sin. Zℎ2[ Z16cos

; Zℎ2[ − 5cos
" Zℎ2[ + 1[

2𝜃
	, 

𝑑) = −
5sin" Zℎ2[ cos Z

ℎ
2[ Z25cos

" Zℎ2[ − 13[
8𝜃

	, 

𝑑" = −
5sin" Zℎ2[ cos

" Zℎ2[ Z8cos
: Zℎ2[ − 35cos

" Zℎ2[ + 15[
4𝜃

	, 

 for  𝜃 = sin(ℎ/2)sin(ℎ)sin(3ℎ/2)sin(2ℎ)sin(5ℎ/2) [18].  

 In the collocation finite element method, a differential equation is satisfied at the 

collocation points. We use the Crank-Nicolson approach and forward difference approximation 

for equations (3) and (4) at two time levels 𝑛 and 𝑛 + 1  

										𝑤' = %%&'(*%%&

"
		and	𝑣' = <%&'(*<%&

"
	,																																																																																												(5) 

𝑤
•
' =

𝑤'>*) −𝑤'>

Δ𝑡
	and	𝑣

•
' =

𝑣'>*) − 𝑣'>

Δ𝑡
, 

where 𝑤'> , 𝑣'>  are the parameters at the time 𝑛Δ𝑡, Δ𝑡 = 𝑘 = 𝑡?*) − 𝑡?  is time step and	𝑛 =

0,1, . . . , 𝑁  and "	• " demonstrates the derivative with respect to 𝑡.  Before placing these equations 

in equations (3) and (4),  we must apply the Rubin-Graves type linearization method [19] to the 

non-linear terms of the equation given in equation (4). By applying Rubin-Graves to the non-

linear terms return the form 
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(𝑤"𝑤!)>*) = 2𝑤>𝑤>*)𝑤!> + (𝑤>)"𝑤!>*) − 2(𝑤>)"𝑤!>, 

										(𝑤!𝑤!!)>*) = 𝑤!>*)𝑤!!> +𝑤!>𝑤!!>*) −𝑤!>𝑤!!> 	,																																																																							(6) 

(𝑤𝑣)>*) = 𝑤>*)𝑣> +𝑤>𝑣>*) −𝑤>𝑣>. 

By substituting equations (5) and (6) into equations (3) and (4), we obtain the following equations 

𝑤!!!>*) − 𝑣>*) = −𝑤!!!> + 𝑣>                                                                                           (7) 

b1 + 45Δ𝑡𝑧'(𝑧')! +
15Δ𝑡
2

𝑔'e𝑤>*) + b
45Δ𝑡
2

(𝑧')" +
15Δ𝑡
2

(𝑧')!!e (𝑤!)>*) 

+ )9@&
"
(𝑧')!(𝑤!!)>*) +

)9@&
"
𝑧'𝑣>*) +

@&
"
(𝑣!!)>*)                                                   (8) 

= 𝑤> + :9@&
"
(𝑧')"(𝑤!)> −

@&
"
(𝑣!!)>, 

where Δ𝑡 is the time step, the values 𝑧' = 𝑤, 𝑔' = 𝑣 and their derivatives (𝑧')! = 𝑤! ,

(𝑧')!! = 𝑤!! approximation values are used for the purpose of the linearization of nonlinear 

terms in the finite element schemes at time step. 

Then, by substituting the nodal values 𝑊', 𝑉' and their required derivatives at the 

collocation points into equations (7) and (8),  the following finite element schemes are obtained 

as 

𝑑)𝛿'+">*) + 𝑑"𝛿'+)>*) − 𝑑"𝛿'*)>*) − 𝑑)𝛿'*">*)  

−𝑎)𝜎'+">*) − 𝑎"𝜎'+)>*) − 𝑎.𝜎'>*) − 𝑎"𝜎'*)>*) − 𝑎)𝜎'*">*)  

= −𝑑)𝛿'+"> − 𝑑"𝛿'+)> + 𝑑"𝛿'*)> + 𝑑)𝛿'*">  

+𝑎)𝜎'+"> + 𝑎"𝜎'+)> + 𝑎.𝜎'> + 𝑎"𝜎'*)> + 𝑎)𝜎'*"	> ,																																																															(9) 

 

	𝜆)𝛿'+">*) + 𝜆"𝛿'+)>*) + 𝜆.𝛿'>*) + 𝜆:𝛿'*)>*) + 𝜆9𝛿'*">*)  

+𝜇)𝜎'+">*) + 𝜇"𝜎'+)>*) + 𝜇.𝜎'>*) + 𝜇:𝜎'*)>*) + 𝜇9𝜎'*">*)  

	= 𝜆;𝛿'+"> + 𝜆A𝛿'+)> + 𝜆B𝛿'> + 𝜆C𝛿'*)> + 𝜆)(𝛿'*">*)  

+𝜇;𝜎'+"> + 𝜇A𝜎'+)> + 𝜇B𝜎'> + 𝜇C𝜎'*)> + 𝜇)(𝜎'*"	> ,                                                    (10) 

for		𝑚 = 0,1, . . . , 𝑀  where the coefficients of the 𝛿 values are 

 𝜆) = 𝛼) + 		45𝑎)Δ𝑡𝑧'(𝑧')! +
)9D(@&

"
𝑔' 		+

:9E(@&
"

(𝑧')" +
)9E(@&

"
(𝑧')!! 		+

)9F(@&
"

(𝑧')!	,  
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	𝜆" = 𝛼" + 		45𝑎"Δ𝑡𝑧'(𝑧')! +
)9D!@&

"
𝑔' 		+

:9E!@&
"

(𝑧')" +
)9E!@&

"
(𝑧')!! 		+

)9F!@&
"

(𝑧')!	, 

	𝜆. = 𝛼. + 		45𝑎.Δ𝑡𝑧'(𝑧')! +
)9D"@&

"
𝑔' 		+

)9F"@&
"

(𝑧')! , 

𝜆: = 𝛼" + 		45𝑎"Δ𝑡𝑧'(𝑧')! +
)9D!@&

"
𝑔' 	−

:9E!@&
"

(𝑧')" −
)9E!@&

"
(𝑧')!! 		+

)9F!@&
"

(𝑧')! , 

𝜆9 = 𝛼) + 		45𝑎)Δ𝑡𝑧'(𝑧')! +
)9D(@&

"
𝑔' 	−

:9E(@&
"

(𝑧')" −
)9E(@&

"
(𝑧')!! 		+

)9F(@&
"

(𝑧')! , 

𝜆; = 𝛼) +
:9E(@&

"
(𝑧')",  𝜆A = 𝛼" +

:9E!@&
"

(𝑧')",  𝜆B = 𝛼.,		 

𝜆C = 𝛼" −
45𝑏"Δ𝑡
2

(𝑧')",			𝜆)( = 𝛼) −
45𝑏)Δ𝑡
2

(𝑧')", 

and the coefficients of the 𝜎 values are 

 𝜇) =
)9D(@&

"
𝑧' 		+

F(@&
"
, 𝜇" =

)9D!@&
"

𝑧' 		+
F!@&
"
,	 𝜇. =

)9D"@&
"

𝑧' 		+
F"@&
"

, 

𝜇: =
)9D!@&

"
𝑧' 		+

F!@&
"
, 	𝜇9 =

)9D(@&
"

𝑧' 		+
F(@&
"

 ,	𝜇; = − F(@&
"
,		  

𝜇A = − F!@&
"
, 	𝜇B = − F"@&

"
, 𝜇C = − F!@&

"
, 𝜇)( = − F(@&

"
. 

The pentadiagonal matrix system (9) and (10) consists 		of 2𝑀 + 2 linear equations and 

2𝑀 + 10 unknown parameters 𝛅' = (𝛿+", 𝛿+), . . . , 𝛿,*), 𝛿,*")G and 𝛔' =

(𝜎+", 𝜎+), . . . , 𝜎,*), 𝜎,*")G . To solve this system uniquely, we must eliminate eight unknowns 

from this system. We can obtain these equations from the left and right boundary conditions and 

use them in the system to eliminate the fictitious values 𝛿+", 	𝛿+), 	𝛿,*), 	𝛿,*", 	𝜎+",

𝜎+), 	𝜎,*), 	𝜎,*".  So, the system becomes matrix in the following form 

𝐴𝛿'>*) = 𝐵𝛿'> + 𝐸,																																																																																																																							(11) 

𝐶𝜎'>*) = 𝐷𝜎'> + 𝐹,																																																																																																																							(12) 

where 𝐴, 𝐵, 𝐶 and 𝐷 are (𝑀 + 1) × (𝑀 + 1) pentadiagonal matrixes and 𝐸, 𝐹 are (𝑀 + 1) 

column vectors. This system can be solved by a suitable numerical method. To obtain the solution 

at the (𝑛 + 1)𝑡ℎ time level, we need to know the solution at the 𝑛𝑡ℎ time level. Thinking 

iteratively, we should firstly know initial vectors 𝛅'( = (𝛿((, 𝛿)(. . . , 𝛿,( )G and 𝛔'( =

(𝜎((, 𝜎)(. . . , 𝜎,( )G for initializing the iterative solution. 
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3. Initial Vector 

To start time evaluation of the approximate solution firstly, we must determine the initial 

vectors 𝛅'(  and 𝛔'( . For this aim, the initial conditions  

𝑎)𝛿'+"( + 𝑎"𝛿'+)( + 𝑎.𝛿'( + 𝑎"𝛿'*)( + 𝑎)𝛿'*"( = 𝑊(𝑥', 0), 

𝑎)𝜎'+"( + 𝑎"𝜎'+)( + 𝑎.𝜎'( + 𝑎"𝜎'*)( + 𝑎)𝜎'*"( = 𝑉(𝑥', 0), 

are used at the initial time 𝑡( for 𝑚 = 0,1, . . . , 𝑀. To attain a solvable system, we need to remove 

the fictitious eight parameters 𝛿+", 	𝛿+), 	𝛿,*), 	𝛿,*", 	𝜎+", 	𝜎+), 	𝜎,*), 	𝜎,*". After eliminating 

the fictitious parameters in the system, we can uniquely solve the system which is the 		type of 

(2𝑀 + 2) × (2𝑀 + 2). Here, the essential equations are obtained by using the first and the second 

derivatives of approximate initial conditions based on trigonometric quintic B-Splines. So, the 

initial matrix systems are written with the following form 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑎)) 𝑎)" 𝑎). 0 0 0 . . . 0
𝑎") 𝑎"" 𝑎". 𝛼) 0 0 . . . 0
𝛼) 𝛼" 𝛼. 𝛼" 𝛼) 0 . . . 0
0 𝛼) 𝛼" 𝛼. 𝛼" 𝛼) . . . 0
0 ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ 0
0 . . . 0 𝛼) 𝛼" 𝛼. 𝛼" 𝛼)
0 . . . 0 0 𝛼) 𝑎",*),", 𝑎",*),",*) 𝑎",,",*"
0 . . . 0 0 0 𝑎",*",", 𝑎",*",",*) 𝑎",*",",*"⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝛿'+"
(

𝛿'+)(

⋮
𝛿,(

𝜎'+"(

𝜎'+)(

⋮
𝜎,( ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑊(𝑥(, 0)
𝑊(𝑥), 0)
⋮
𝑊(𝑥, , 0)
𝑉(𝑥(, 0)
𝑉(𝑥), 0)
⋮
𝑉(𝑥, , 0) ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

where the entries of  the matrix are given the following equations 

𝑎)) = 𝑎",*",",*" = 𝛼. +
𝛼)𝛽"𝛾. − 𝛼"𝛽)𝛾.
𝛽)𝛾" − 𝛽"𝛾)

,		 

𝑎") = 𝑎",,",*" = 𝛼" −
𝛼)𝛽)𝛾.

𝛽)𝛾" − 𝛽"𝛾)
, 

𝑎)" = 𝑎",*",",*) =
2𝛼)𝛽"𝛾" − 2𝛼"𝛽"𝛾)

𝛽)𝛾" − 𝛽"𝛾)
,		 

	𝑎"" = 𝑎",*),",*) = 𝛼. −
𝛼)𝛽)𝛾" + 𝛼)𝛽"𝛾)
𝛽)𝛾" − 𝛽"𝛾)

, 

𝑎). = 𝑎",*",", =
2𝛼)𝛽)𝛾" − 2𝛼"𝛽)𝛾)

𝛽)𝛾" − 𝛽"𝛾)
,								 

𝑎". = 𝑎",*),", = 𝛼" −
2𝛼)𝛽)𝛾)

𝛽)𝛾" − 𝛽"𝛾)
. 
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4. Numerical Results and Discussion 

In this section, the accuracy, efficiency and computational complexity of the present 

scheme is demonstrated on the model problem (2). To measure the accuracy of the present method 

and see how the approximation of the numerical solution approaches to exact ones, we used the 

error norms given as following equations 

𝐿" = ‖𝑊 −𝑊,‖" ≃ zℎ ∑
,

I-(
|𝑊I − (𝑊,)I|

", 

and  

𝐿# = ‖𝑊 −𝑊,‖# ≃ max
I-(

|𝑊I − (𝑊,)I|. 

The exact soliton solution of the model problem Sawada-Kotera is 

𝑤(𝑥, 𝑡) = 2𝑘"secℎ"[𝑘(𝑥 − 16𝑘:𝑡 − 𝜆)], 

with the initial condition 

𝑤(𝑥, 0) = 2𝑘"secℎ"[𝑘(𝑥 − 𝜆)], 

where 𝜆 = 0 [4]. 

The numerical values obtained by applying the collocation finite element method are shown 

in Table 1. For the numerical calculations, the values are used as  Δ𝑡 = 0.01, 𝑡 = 10, 𝑘 = 0.2 

and the solution region is taken as [−20,20]. In order to view the convergence of the method, 𝐿" 

and 𝐿# error norms are given with the different values of 𝑡 and smaller space steps ℎ = Δ𝑥 =

0.25, 0.1, 0.05 and 0.025. It is seen from Table 1 that the method provides a reasonable 

approximation for the increasing element numbers. The process can be associated with the 

efficiency of collocation method based on space knots. It should also be noted here, the method 

can be used with the accuracy desired for the smaller step sizes. 

Table 1: Comparison of the error norms L! and L" for the values Δt = 0.01, k = 0.2 and different values 
of 	t and Δ𝑥 

    																																Δ𝑥 = 0.25   																																										Δ𝑥 = 0.1  

 𝑡   𝐿!   𝐿"   𝐿!   𝐿"  

 2   3.896238 × 10#$  1.632945 × 10#$   2.377189 × 10#%   1.285998 × 10#%  
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4   7.100182 × 10#$   2.888393 × 10#$   3.421736 × 10#%   1.695229 × 10#%  

6   1.063679 × 10#&   4.651501 × 10#$   4.672788 × 10#%   2.163092 × 10#%  

8   1.506294 × 10#&   6.774396 × 10#$   5.614304 × 10#%   2.370217 × 10#%  

10   2.036621 × 10#&   8.864584 × 10#$   7.370401 × 10#%    3.021153 × 10#%  

  																																						Δ𝑥 = 0.05   																																						Δ𝑥 = 0.025  

 𝑡   𝐿!   𝐿"   𝐿!   𝐿"  

 2   5.279064 × 10#'   3.082057 × 10#'   1.306097 × 10#'  7.658709 × 10#()  

4   7.279155 × 10#'   4.075803 × 10#'   1.787015 × 10#'   1.010783 × 10#'  

6   9.740206 × 10#'   5.405006 × 10#'   2.364103 × 10#'   1.338265 × 10#'  

8   1.163328 × 10#%   6.400158 × 10#'   2.928870 × 10#'   1.637632 × 10#'  

10   1.284928 × 10#%   6.645599 × 10#'   3.050049 × 10#'   1.597710 × 10#'  

 

In Table 1 which is composed of decreasing  Δ𝑥 and increasing final times t, it is aimed 

to see the variation of the error norms 𝐿" and 𝐿# in a broad perspective. According to the obtained 

results, it is seen that the error norms 𝐿" and 𝐿# are minimum at final time 𝑡 = 2 and Δ𝑥 = 0.025 

spatial step size. In order to investigate the effect of temporal and spatial step sizes on the error 

norms 𝐿" and 𝐿#, the newly obtained error norms 𝐿" and 𝐿# at different temporal and spatial 

step sizes based on a constant final time t are presented in Tables 2 and 3. 

Table 2 shows the approximate solutions for the fixed values 𝑡 = 10, 𝑘 = 0.2, Δ𝑥 = 0.1 

and the decreasing values of time step Δ𝑡. It can be clearly seen from the table, the error norms 

𝐿" and 𝐿# have decreased with the temporal mesh Δ𝑡. 

Table 2: Comparison of the error norms for the values t = 10,Δx = 0.1 and different values of Δ𝑡 

Δ𝑡  𝐿!   𝐿"  

0.04 1.864118 × 10#$ 5.589674 × 10#% 

0.02 1.450729 × 10#$ 4.430777 × 10#% 

0.01 7.370401 × 10#% 3.021153 × 10#% 

0.005 1.912650 × 10#% 6.346669 × 10#% 

 



Karabenli et al. (2022)  ADYU J SCI, 12(2), 269-282 
 

 279 

For the smaller space step, the error norms 𝐿" and 𝐿# are given in Table 3 for different 

space steps Δ𝑥 and the fixed values 𝑡 = 10, 𝑘 = 0.2, Δ𝑡 = 0.01. The numerical results have 

smallest errors with the larger element numbers. 

Table 3: Comparison of the error norms for the values t = 10, Δt = 0.01 and different values of Δx. 

Δ𝑥  𝐿!   𝐿"  

0.25 2.036621 × 10#& 8.864584 × 10#$ 

0.1 7.370401 × 10#% 3.021153 × 10#% 

0.05 1.284928 × 10#% 6.645599 × 10#' 

0.025 9.852056 × 10#() 5.924715 × 10#() 

 

In Table 2 and Table 3, the error norms 𝐿" and 𝐿# obtained by decreasing spatial and 

temporal time steps, respectively, are compared. As it can be seen from the tables, the decrease 

of the spatial step sizes seriously affects the shrinking of the the error norms 𝐿" and 𝐿#. Since the 

collocation finite element method based on location points has been used, it is expected that the 

error norms in Table 3 will also decrease significantly for much more smaller values of spatial 

step sizes. 

The model problem Sawada-Kotera equation often accompanies the non-linear  wave 

phenomena occur  in shallow water, acoustic waves in plasma, fluid dynamics etc. In order to 

understand the behavior of the physical phenomena for Sawada-Kotera problem, the graphics and 

simulations of the problem are pictured for the different values of 𝑘 = 0.2 and 𝑘 = 0.4. Figure 1 

and Figure 2 illustrate the wave’s behavior for the Δ𝑡 = 0.01, Δ𝑥 = 0.1 and different values of 𝑡. 

Both of the parameters 𝑘 = 0.2 and 𝑘 = 0.4, the shape of the solutions do not change.  

  

Figure 1: One solitary wave motion for the value k = 0.2   
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Figure 2: One solitary wave motion for the value k = 0.4 

As it is seen in Figure 1, the graphs of the numerical solutions obtained at different times 𝑡 

are close to each other for the amplitude value of 𝑘 = 0.2. In Figure 2, the graphs of the numerical 

solutions obtained for a larger amplitude value 𝑘 = 0.4, shift significantly at different 𝑡 times. 

Both of the figures are drawn at final times 𝑡 = 2, 4, 6, 8	and 10. Also it is clearly seen that in the 

figures, solitary waves spread of the defination interval according to chosen amplitude. 

The exact solutions and numerical solutions are depicted together in Figure 3 for the values 

Δ𝑡 = 0.01, Δ𝑥 = 0.1, 𝑡 = 10 and different values of 𝑘 = 0.2 and 𝑘 = 0.4. In the figures, it can 

be verified how the approximate solutions are accurate. 

Figure 3: The numerical and exact solutions for k = 0.2 and k = 0.4, respectively 

5. Conclusion 

In this paper, we have considered the numerical solution of the Sawada-Kotera problem 

classified with the fifth order KdV equations. The finite element is combined scheme with the 

collocation finite element method based on the trigonometric quintic B-spline basis is formed and 
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analysed. The detailed analysis of the proposed method is given with the tables and graphs. It is 

found that the application of the collocation finite element method has high accuracy values for 

the larger element numbers. Concerning the spatial discretization use of the present method leads 

to quick convergences in the space. Also given as the graphs and simulations, the numerical 

solutions are in agreement with the exact ones. In that case, the present method is a useful 

numerical method for obtaining the numerical solutions to a wide range of non-linear problems 

in the theory of solitary waves. 

Acknowledgment: The authors express their deep gratitude to editor-in-chief, his staff and 

anonymous referees for their invaluable contributions to a better content and reading of the 

manuscript. 
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