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Abstract
In this article, we employ certain properties of the transform CM,m(A) = (MI − A∗)(A −
mI) to obtain new inequalities for the bounded linear operator A on a complex Hilbert
space H. In particular, we obtain new relations among |A|, |A∗|, |RA| and |IA|. Further
numerical radius inequalities that extend some known inequalities will be presented too.
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1. Introduction
While studying inequalities of Kantorovich type, Dragomir [11] defined the transform

CM,m : B(H) → B(H) by
CM,m(A) = (MI − A∗)(A − mI),

where M > m > 0 are predefined real numbers, B(H) is the C∗−algebra of all bounded
linear operators on a complex Hilbert space H, I is the identity operator in B(H) and A∗

is the adjoint of A ∈ B(H).
Basic properties and applications of CM,m were presented in [11]. Later, Niezgoda [24]

used this transform to obtain certain Cassel- type inequalities.
Our primary goal in this work is to use the transform CM,m to obtain new operator

inequalities that involve relations among |A|, |A∗|,RA and IA, where |A| = (A∗A)
1
2 and

RA and IA refer respectively to the real and imaginary parts of the operator A. Then
new forms of numerical radius inequalities are found using this transform.

To this end, we need to remind the reader of some terminologies. Recall that an
operator A ∈ B(H) is said to be positive if 〈Ax, x〉 ≥ 0 for all vectors x ∈ H and we write
A ≥ 0, while it is said to be strictly positive if 〈Ax, x〉 > 0 for all nonzero x ∈ H, and we
write A > 0. The real and imaginary parts of the operator A are defined respectively by
RA = A+A∗

2 and IA = A−A∗

2i . Further, A is said to be accretive (dissipative) if RA ≥ 0
(IA ≥ 0). If RA, IA ≥ 0, then A is said to be accretive-dissipative. Accretive, dissipative,
and accretive-dissipative operators have received considerable attention in the literature
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due to their applicability in operator theory and its inequalities. We refer the reader to
[1–4,13,14,17,21,22,25] as a list of references dealing with such operators.

Our approach here will assume accretivity or dissipativity of the transform CM,m. For
this, we begin by presenting simple properties of this transform for this context.

Proposition 1.1. Let m < M be given real numbers and let CM,m : B(H) → B(H) be
the transform CM,m(A) = (MI − A∗)(A − mI). Then

CM,m (A∗) = C∗
M,m (A) ⇔ A is normal. (1)

CM,m (A) = C∗
M,m (A) ⇔ A is self-adjoint. (2)

CM,m (|A|) is accretive ⇔ mI ≤ |A| ≤ MI. (3)

RCM,m (iA∗) ,RCM,m (A) ≤
(

M − m

2

)2
I. (4)

ICM,m (A) ≥ 0 if and only if IA ≥ 0. (5)

If RCM,m (A) ≥ 0, then RA ≥ 0. (6)
Further,

If CM,m (A) is accretive-dissipative, then A is accretive-dissipative. (7)

Proof. Statement (1) follows, noting that

C∗
M,m (A) − CM,m (A∗) = |A∗|2 − |A|2,

while (2) follows immediately from

CM,m (A) − C∗
M,m (A) = (M − m) (A − A∗) .

The third statement follows from the following fact

(MI − |A|) (|A| − mI) ≥ 0 ⇔ mI ≤ |A| ≤ MI.

It is not hard to check that

RCM,m (A) +
∣∣∣∣A − M + m

2 I

∣∣∣∣2 =
(

M − m

2

)2
I, (1.1)

and

RCM,m (iA∗) +
∣∣∣∣iA∗ − M + m

2 I

∣∣∣∣2 =
(

M − m

2

)2
I,

which together imply (4). On the other hand, direct calculations show that

ICM,m (A) = (M − m) IA

which implies (5), and (6) follows from the definition of CM,m likewise. The last statement
(7) follows from both (5) and (6).

�

Having established these fundamental properties, we proceed to our main results in
the coming sections, where operator inequalities are discussed first, then numerical radius
inequalities are presented.
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2. Operator inequalities
In this section, we present several operator inequalities using properties of the transform

CM,m. In particular, this section will focus on relations among |A|, |A∗|,RA, and IA. We
should remark that, in general, such relations do not exist. However, by imposing an extra
condition on CM,m, we obtain such ties.
We notice the appearance of the constant M+m

2
√

Mm
, which is the ratio between the arithmetic

and geometric means of M and m. This constant is, in fact, the square root of the well-
known Kantorovich constant. In the sequel, m and M are positive numbers.

Theorem 2.1. Let A ∈ B (H).

(i) If CM,m (A) is accretive, then

|A| ≤ M + m

2
√

Mm
RA. (2.1)

(ii) If CM,m (iA∗) is accretive, then

|A∗| ≤ M + m

2
√

Mm
IA.

(iii) If A is invertible and CM,m

(
A−1) is accretive, then

∣∣∣A−1
∣∣∣ ≤ M + m

2
√

Mm
RA−1.

Proof. For the first statement, the assumption implies that RCM,m (A) ≥ 0. This is
equivalent to saying(

MA − MmI − |A|2 + mA∗
)

+
(
MA − MmI − |A|2 + mA∗

)∗

2 ≥ 0.

Namely,

(M + m)RA ≥ MmI + |A|2. (2.2)

Applying the operator arithmetic-geometric mean inequality, we infer that

MmI + |A|2 ≥ 2
√

Mm |A| .

Combining the last two inequalities, we get (2.1).
To prove parts (ii) and (iii), we replace, in part (i), A by iA∗, and A by A−1, respectively.

�

We note that the inequality (2.1) in Theorem 2.1 has been given in [24, Proposition
2.4], using a different method.

Theorem 2.1 entails the following reverse of the triangle inequality.

Theorem 2.2. Let S, T ∈ B (H). If CM,m

([
0 S

T ∗ 0

])
is accretive, then

‖S‖ + ‖T‖ + | ‖S‖ − ‖T‖ | ≤ M + m

2
√

Mm
‖S + T‖ .
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Proof. Let A =
[

0 S
T ∗ 0

]
∈ B(H ⊕ H). If CM,m (A) is accretive, then

‖S + T‖ = ‖A + A∗‖
= 2‖RA‖

≥ 4
√

Mm

M + m
‖A‖ (by (2.1), since ‖A‖ = ‖ |A| ‖)

= 4
√

Mm

M + m

∥∥∥∥[ 0 S
T ∗ 0

]∥∥∥∥
= 4

√
Mm

M + m
max (‖S‖ , ‖T‖) (since ‖X‖ = ‖ |X∗| ‖).

Noting the identity max{a, b} = a+b+|a−b|
2 , the desired inequality follows. �

An upper bound of the difference |A| − RA is given next.

Corollary 2.3. Let A ∈ B (H).
(i) If CM,m (A) is accretive, then

0 ≤ |A| − RA ≤

(√
M −

√
m
)2

M + m
‖A‖ I.

(ii) If CM,m (iA∗) is accretive, then

0 ≤ |A∗| − IA ≤

(√
M −

√
m
)2

M + m
‖A‖ I.

(iii) If A is invertible and CM,m

(
A−1) is accretive, then

0 ≤
∣∣∣A−1

∣∣∣− RA−1 ≤

(√
M −

√
m
)2

M + m

∥∥∥A−1
∥∥∥ I.

Proof. By Theorem 2.1,

|A| − RA ≤
(

1 − 2
√

Mm

M + m

)
|A|

=

(√
M −

√
m
)2

M + m
|A|

≤

(√
M −

√
m
)2

M + m
‖ |A| ‖ I

=

(√
M −

√
m
)2

M + m
‖A‖ I.

This completes the proof of part (i).
The other two parts can be proven similarly. �

In the following theorem, we use the fact that the function f(x) = x2 is an operator
convex function on R. This means that when A and B are self adjoint operators in B(H),
we have ((1−t)A+tB)2 ≤ (1−t)A2 +tB2 for 0 ≤ t ≤ 1. We refer the reader to [5, Chapter
V] for further information on operator convex functions.
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Theorem 2.4. Let A ∈ B (H). If CM,m (A) and CM,m (iA∗) are accretive, then for any
0 ≤ t ≤ 1,

(1 − t) |A∗| + t |A| ≤ M + m

2
√

Mm
((1 − t) IA + tRA) .

Proof. By (i) and (ii) of Theorem 2.1, we have

(1 − t) MmI + (1 − t) |A∗|2 ≤ (1 − t) (M + m) IA

and
tMmI + t|A|2 ≤ t (M + m)RA.

Adding these inequalities, we obtain
MmI + (1 − t) |A∗|2 + t|A|2 ≤ (M + m) ((1 − t) IA + tRA) .

Now, using the operator convexity of the function f (t) = t2 on (0, ∞) and the operator
arithmetic-geometric mean inequality, we get

2
√

Mm ((1 − t) |A∗| + t |A|) ≤ MmI + ((1 − t) |A∗| + t |A|)2

≤ MmI + (1 − t) |A∗|2 + t|A|2.

This completes the proof. �

Squaring operator inequalities are more complex than squaring real inequalities. In
other words, if a, b are positive numbers such that a ≤ b, then a2 ≤ b2. Now, if A ≤
B, where A, B are positive operators, we cannot conclude A2 ≤ B2 since the function
f(x) = x2 is not operator monotone. We refer the reader to [5, Chapter V] to get more
insight about this. The following result shows that the inequalities in Theorem 2.1 can be
squared.

Theorem 2.5. Let A ∈ B (H).
(i) If CM,m (A) is accretive, then

|A|2 ≤
(

M + m

2
√

Mm

)2
(RA)2. (2.3)

(ii) If CM,m (iA∗) is accretive, then

|A∗|2 ≤
(

M + m

2
√

Mm

)2
(IA)2.

(iii) If A is invertible and CM,m

(
A−1) is accretive, then∣∣∣A−1

∣∣∣2 ≤
(

M + m

2
√

Mm

)2(
RA−1

)2
.

Proof. By the inequality (2.2),

|A|2 ≤ (M + m)RA − MmI.

So, to prove the inequality (2.3), it is enough to show that

(M + m)RA − MmI ≤
(

M + m

2
√

Mm

)2
(RA)2,

holds. For m ≤ t ≤ M , define

f (t) =
(

M + m

2
√

Mm

)2
t2 − (M + m) t + Mm.

Then

f ′ (t) = (M + m)2

2Mm
t − (M + m) ,



Operator inequalities via accretive transforms 45

and

f ′′ (t) = (M + m)2

2Mm
> 0.

Namely, f is convex. On the other hand, if we put f ′ (t) = 0, then we get t = 2Mm/(M + m) ,
and f (2Mm/(M + m) ) = 0. So f (t) is positive, i.e.,

(M + m) t − Mm ≤
(

M + m

2
√

Mm

)2
t2.

We get the desired result by applying functional calculus for the positive operator RA.
The other parts can be established similarly, so we omit the details. �

In fact, Theorem 2.1 is a direct consequence of Theorem 2.5, since f (t) = t1/2 is
operator monotone on (0, ∞), [6, Theorem 1.5.9].

Our next target is to investigate commutators of |A| and RA. To this end, the following
lemma will be needed.

Lemma 2.6 ([23, Lemma 2.1]). Let A, B ∈ B (H) be strictly positive operators and let
α > 0. Then

A ≤ αB ⇔
∥∥∥A 1

2 B− 1
2

∥∥∥ ≤
√

α.

Corollary 2.7. Let A ∈ B (H) be such that both RA and IA are invertible.
(i) If CM,m (A) is accretive, then∣∣∣|A| (RA)−1 + (RA)−1 |A|

∣∣∣ ≤ M + m√
Mm

I,

and
|A| (RA)−1 + (RA)−1 |A| ≤ M + m√

Mm
I.

(ii) If CM,m (iA∗) is accretive, then∣∣∣|A∗| (IA)−1 + (IA)−1 |A∗|
∣∣∣ ≤ M + m√

Mm
I,

and
|A∗| (IA)−1 + (IA)−1 |A∗| ≤ M + m√

Mm
I.

Proof. By Lemma 2.6, the inequality (2.3) is equivalent to∥∥∥|A| (RA)−1
∥∥∥ ≤ M + m

2
√

Mm
.

By [19, Lemma 3.5.12], we get[
M+m

2
√

Mm
I |A| (RA)−1

(RA)−1 |A| M+m
2
√

Mm
I

]
≥ 0 and

[
M+m

2
√

Mm
I (RA)−1 |A|

|A| (RA)−1 M+m
2
√

Mm
I

]
≥ 0.

Adding these two operator matrices, we have[
M+m√

Mm
I |A| (RA)−1 + (RA)−1 |A|

(RA)−1 |A| + |A| (RA)−1 M+m√
Mm

I

]
≥ 0.

This completes the proof. �

Remark 2.8. To show how Corollary 2.7 improves Theorem 2.5, we recall the following
inequality [8, (1.9)], for A, B ≥ 0:

||AB|| ≤ 1
4‖(A + B)‖2. (2.4)
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Now, we notice that

4 |A| (RA)−2 |A| ≤ 4
∥∥∥|A| (RA)−2 |A|

∥∥∥ I

≤
∥∥∥|A| (RA)−1 + (RA)−1 |A|

∥∥∥2
I (by (2.4))

≤
(

M + m√
Mm

)2
I,

which is equivalent to saying that

(RA)−2 ≤
∥∥∥|A| (RA)−2 |A|

∥∥∥ |A|−2

≤
∥∥∥∥∥ |A| (RA)−1 + (RA)−1 |A|

2

∥∥∥∥∥
2

|A|−2

≤
(

M + m

2
√

Mm

)2
|A|−2.

Now, by taking the inverse, we get

(RA)2 ≥
∥∥∥|A| (RA)−2 |A|

∥∥∥−1
|A|2

≥
∥∥∥∥∥ |A| (RA)−1 + (RA)−1 |A|

2

∥∥∥∥∥
−2

|A|2

≥
(

2
√

Mm

M + m

)2

|A|2.

For an arbitrary A ∈ B(H), the inequality

Φ
1
2 (|A|2) ≥ Φ(|A|) (2.5)

is well known for the unital positive linear map Φ : B(H) → B(H), [9,10]. In this context,
recall that such a map is a map that satisfies Φ(A) ≥ 0 whenever A ≥ 0 and Φ(I) = I. In
what follows, a reversed version is presented via the transform CM,m.

Lemma 2.9. Let A ∈ B (H) and let Φ be a unital positive linear map on B (H). If
CM,m (|A|) is accretive, then

Φ
1
2
(
|A|2

)
≤ M + m

2
√

Mm
Φ (|A|) .

Proof. Since CM,m (|A|) is accretive, we have by [16, Theorem 1.32 (iii)],

Φ
(
|A|2

)
≤ (M + m)2

4Mm
Φ2 (|A|) .

The result follows by taking into account that the function f (t) = t
1
2 is operator monotone

on (0, ∞). �

In the next theorem, reverses of the inequalities of Theorem 2.1 are presented.

Theorem 2.10. Let A ∈ B (H).
(i) If CM,m (|A|) is accretive, then

RA ≤ M + m

2
√

Mm
|A| .

(ii) If CM,m (|iA∗|) is accretive, then

IA ≤ M + m

2
√

Mm
|A∗| .
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(iii) If A is invertible and CM,m

(∣∣A−1∣∣) is accretive, then

RA−1 ≤ M + m

2
√

Mm

∣∣∣A−1
∣∣∣ .

Proof. We prove part (i) since the other parts are easy to prove. By the inequality (2.5),
we have for any unit vector x ∈ H,

|〈Ax, x〉| ≤
〈
|A|2x, x

〉 1
2 .

Applying Lemma 2.9 for Φ (T ) = 〈Tx, x〉 I (x ∈ H, ‖x‖ = 1), implies〈
|A|2x, x

〉 1
2 ≤ M + m

2
√

Mm
〈|A| x, x〉 .

Hence,

|〈Ax, x〉| ≤ M + m

2
√

Mm
〈|A| x, x〉 .

Now, by combining this inequality with the fact that 〈RAx, x〉 ≤ |〈Ax, x〉|, we reach the
desired result. �

Corollary 2.11. Let A ∈ B (H).
(i) If CM,m (|A|) is accretive, then

RA − |A| ≤ (M − m)2

2
√

Mm
‖A‖ I.

(ii) If CM,m (|iA∗|) is accretive, then

IA − |A∗| ≤ (M − m)2

2
√

Mm
‖A‖ I.

3. Numerical radius inequalities
This section uses the properties of the transform CM,m and its consequences to obtain

some new numerical radius inequalities. In this context, we recall that the numerical range
of A ∈ B(H) is defined as

W (A) = {〈Ax, x〉 : x ∈ H, ‖x‖ = 1}.

Then, we define the numerical radius of A as

ω(A) = sup{|z| : z ∈ W (A)}.

The numerical radius has a notable recognition in the literature due to its impact on
understanding the geometry of the numerical range of the operator. Among the most
basic inequalities of the numerical radius, we have

1
2‖A‖ ≤ ω(A) ≤ ‖A‖ (3.1)

and
‖RA‖ ≤ ω(A) and ‖IA‖ ≤ ω(A). (3.2)

We refer the reader to [7, 17, 26] for further information on the numerical radius, its
properties, and recent advances in its inequalities.

We begin with the following observation.
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Remark 3.1. From Theorem 2.1, we have

‖A‖ ≤
∥∥∥∥M + m

2
√

Mm
RA

∥∥∥∥ = M + m

2
√

Mm
‖RA‖ .

That is

‖A‖ ≤ M + m

2
√

Mm
‖RA‖ and ‖A‖ − ‖RA‖ ≤

(√
M −

√
m
)2

M + m
‖A‖ .

Noting that for any operator A ∈ B(H), ω(A) ≤ ‖A‖ and ω(A) ≥ ‖RA‖, we deduce that
when CM,m(A) is accretive, one has

ω (A) ≤ M + m

2
√

Mm
‖RA‖ and ω (A) − ‖RA‖ ≤

(√
M −

√
m
)2

M + m
ω (A) , (3.3)

and

‖A‖ ≤ M + m

2
√

Mm
ω (A) and ‖A‖ − ω (A) ≤

(√
M −

√
m
)2

M + m
‖A‖ . (3.4)

The last two inequalities in (3.4) have been proved in [12, Remark 35]. Before pro-
ceeding, it is worth mentioning the importance of the above inequalities. We know that
for any A ∈ B(H), ‖RA‖ ≤ ω(A). Thus, the first inequality in (3.3) provides a reversed
version of this known inequality. Of course, this is valid when CM,m is accretive. Further,
under this condition, the first inequality in (3.4) provides a refinement of the well-known
inequality ‖A‖ ≤ 2ω(A) in case we have M+m

2
√

Mm
< 2. Notice that this latter ratio is always

not less than one. Here we give a numerical example to show that for the given matrix,
the lower bound 2

√
Mm

M+m ‖A‖ is larger than ‖A‖
2 ; as lower bounds of ω(A). For this, let

A =
[

5 − 4i 2i
1 + i 6

]
, m = 4, M = 50.

Then it can be easily seen that

CM,m(A) =
[
27 − 184i 6 + 92i
52 + 46i 84

]
and RCM,m(A) =

[
54 54 + 46i

58 − 46i 168

]
.

Since RCM,m(A) > 0, it follows that CM,m(A) is accretive. Now direct calculations show
that

2
√

Mm

M + m
‖A‖ = 3.56083 and

‖A‖
2 = 3.3991.

Thus, in this example, we have

ω(A) ≥ 2
√

Mm

M + m
‖A‖ >

‖A‖
2 ,

explaining the significance of the first inequality in (3.4).

In the following, we present an inequality that relates the numerical radius of A with
the norms of its real and imaginary parts as a reversed type of (3.2).

Theorem 3.2. Let A ∈ B (H). If CM,m (A) and CM,m (iA∗) are accretive, then

ω (A) ≤ M + m

2
√

Mm

√
‖RA‖ ‖IA‖.



Operator inequalities via accretive transforms 49

Proof. Let x ∈ H be a unit vector. Then by the mixed Schwarz inequality [18, pp. 75-76],
and Theorem 2.1, we have

|〈Ax, x〉| ≤
√

〈|A| x, x〉 〈|A∗| x, x〉

≤ M + m

2
√

Mm

√
〈RAx, x〉 〈IAx, x〉

≤ M + m

2
√

Mm

√
‖RAx‖ ‖IAx‖

≤ M + m

2
√

Mm

√
‖RA‖ ‖IA‖.

Now, we get the desired result by taking supremum over all unit vectors x ∈ H. �

In the following, we present a lower bound of the numerical radius in terms of ‖ |A|2 +
|A∗|2‖. The significance of this result is explained in Remark 3.4 below.

Theorem 3.3. Let A ∈ B (H). If CM,m (A) is accretive, then
2Mm

(M + m)2

∥∥∥|A|2 + |A∗|2
∥∥∥ ≤ ω2 (A) .

Proof. We know that

‖A‖2 = ‖ |A| ‖2 =
∥∥∥|A|2

∥∥∥ = ‖ |A∗| ‖2 =
∥∥∥|A∗|2

∥∥∥ .

This, together with Theorem 2.1, implies that∥∥∥|A|2 + |A∗|2
∥∥∥ ≤ (M + m)2

2Mm
ω2 (A) ,

as desired. �

Remark 3.4. If
Mm ≥ 1

4(M − m)2,

then, Theorem 3.3 improves (see [20, Theorem 1])
1
4

∥∥∥|A|2 + |A∗|2
∥∥∥ ≤ ω2 (A) .

If we let f(x) = x− (x−1)2
4 , x ≥ 1, we can see that f is increasing on [1, 3] and is decreasing

afterwards. Calculating, we find that f(x) = 0 when x = 3 + 2
√

2, and that f ≥ 0 on
[1, 3 + 2

√
2], while it is negative on [3 + 2

√
2, ∞). Letting x = M

m , this means that the
condition Mm ≥ 1

4(M − m)2 holds when 1 < M
m ≤ 3 + 2

√
2.

On the other hand, a submultiplicative inequality for the numerical radius may be
shown as follows.

Corollary 3.5. Let A, B ∈ B (H). If CM,m (A) and CN,n (B) are accretive, then

ω (AB) ≤ (M + m) (N + n)
4
√

MNmn
ω (A) ω (B) .

Proof. We have
ω (AB) ≤ ‖AB‖

≤ ‖A‖ ‖B‖

≤ (M + m) (N + n)
4
√

MNmn
ω (A) ω (B) ,

where we have used (3.4) to obtain the last inequality. This completes the proof. �
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Remark 3.6. If (√
MN −

√
mn

)2
+
(√

Mn −
√

Nm
)2

≤ 12
√

MNmn,

then, Corollary 3.5 refines (see [17, Theorem 2.5-2])

ω (AB) ≤ 4ω (A) ω (B) .

It is well known that when A, B ∈ B(H) then ω(AB − BA∗) ≤ 2‖A‖ω(B), [15]. In the
following, we present a refinement of this inequality when CM,m is accretive.

Theorem 3.7. Let A, B ∈ B (H).
(i) If CM,m (A) is accretive, then

ω (AB − BA∗) ≤ (M − m) ω (B) .

(ii) If CM,m (iA) is accretive, then

ω (AB + B∗A) ≤ (M − m) ω (B) .

Proof. By the inequality (see [15])

ω (AB − BA∗) ≤ 2 ‖A‖ ω (B) ,

and the relation (1.1), we can write

ω (AB − BA∗) = ω

((
A − M + m

2 I

)
B − B

(
A∗ − M + m

2 I

))
≤ 2

∥∥∥∥A∗ − M + m

2 I

∥∥∥∥ω (B)

= 2
∥∥∥∥A − M + m

2 I

∥∥∥∥ω (B)

≤ (M − m) ω (B) ,

as desired.
The inequality in part (ii) can be shown similarly, so we omit the details. �

In the following, we give an example to show how Theorem 3.7 improves the inequality
ω(AB − BA∗) ≤ 2‖A‖ω(B).

Example 3.8. Let A =
[

2 0
−1 4

]
, M = 8, and m = 0.01. A simple calculation shows that

RCM,m (A) =
[

551
50 −1601

200
−1601

200
399
25

]
> 0.

In this case
2 ‖A‖ ≈ 8.31

while
M − m = 7.99.

These values imply that Theorem 3.7 improves the inequality

ω (AB − BA∗) ≤ 2 ‖A‖ ω (B) .

We conclude with the following result.

Corollary 3.9. Let A, B ∈ B (H). If CM,m (A) and CM,m (iA) are accretive, then

ω (AB) + 1
2 |ω (AB + B∗A) − ω (AB − B∗A)| ≤ (M − m) ω (B) .
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Proof. If we replace A by iA, in Theorem 3.7, we get

ω (AB ± B∗A) ≤ (M − m) ω (B) .

This implies,

ω (AB) + 1
2 |ω (AB + B∗A) − ω (AB − B∗A)|

≤ 1
2 (ω (AB + B∗A) + ω (AB − B∗A) + |ω (AB + B∗A) − ω (AB − B∗A)|)

= max {ω (AB + B∗A) , ω (AB − B∗A)}
≤ (M − m) ω (B) ,

as desired. �

Acknowledgment. The authors would like to thank the anonymous reviewers for useful
comments.

Statements and declarations
Conflict of Interests. The authors declare that they have no competing interests.

Data availability. No data sets are associated with this work.

References
[1] Y. Bedrani, F. Kittaneh and M. Sababheh, From positive to accretive matrices, Pos-

itivity 25, 1601–1629, 2021.
[2] Y. Bedrani, F. Kittaneh and M. Sababheh, Numerical radii of accretive matrices,

Linear Multilinear Algebra 69, 957–970, 2021.
[3] Y. Bedrani, F. Kittaneh and M. Sababheh, On the weighted geometric mean of ac-

cretive matrices, Ann. Funct. Anal. 12 (1), 2, 2021.
[4] Y. Bedrani, F. Kittaneh and M. Sababheh, Accretive matrices and matrix convex

functions, Results Math. 77, 52, 2022.
[5] R. Bhatia, Matrix analysis, Springer-Verlag, New York, 1997.
[6] R. Bhatia, Positive definite matrices, Princeton Univ. Press, Princeton, 2007.
[7] P. Bhunia, S.S. Dragomir, M.S. Moslehian and K. Paul, Lectures on numerical radius

inequalities, Infosys Science Foundation Series in Mathematical Sciences, Springer
Cham, 2022.

[8] R. Bhatia and F. Kittaneh, Notes on matrix arithmetic-geometric mean inequalities,
Linear Algebra Appl. 308, 203–211, 2000.

[9] M.D. Choi, A Schwarz inequality for positive linear maps on C∗−algebras, Illinois J.
Math. 18, 565–574, 1974.

[10] C. Davis, A Schwartz inequality for convex operator functions, Proc. Amer. Math.
Soc. 8, 42–44, 1957.

[11] S.S. Dragomir, New inequalities of the Kantorovich type for bounded linear operators
in Hilbert spaces, Linear Algebra Appl. 428, 2750–2760, 2008.

[12] S.S. Dragomir, Inequalities for the numerical radius of linear operators in Hilbert
spaces, Springer Briefs in Mathematics, Springer Cham, 2013.

[13] S. Drury, Principal powers of matrices with positive definite real part, Linear Multi-
linear Algebra 63, 296–301, 2015.

[14] S. Drury and M. Lin, Singular value inequalities for matrices with numerical ranges
in a sector, Oper. Matrices 8, 1143–1148, 2014.

[15] C.-K. Fong and J.A.R. Holbrook, Unitarily invariant operator norms, Can. J. Math.
35, 274–299, 1983.



52 I.H. Gümüş, H.R. Moradi, M. Sababheh

[16] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić method in operator
inequalities, Monographs in Inequalities 1, Element, Zagreb, 2005.

[17] K.E. Gustafson and D.K.M. Rao, Numerical range, Springer, New York, 1997.
[18] P.R. Halmos, A Hilbert space problem book, 2nd ed., Springer, New York, 1982.
[19] R.A. Horn and C.R. Johnson, Topics in matrix analysis, Cambridge University Press,

1991.
[20] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math.

168, 73–80, 2005.
[21] M. Lin, Some inequalities for sector matrices. Oper. Matrices 10, 915–921, 2016.
[22] H.R. Moradi, S. Furuichi and M. Sababheh, Some operator inequalities

via convexity, Linear Multilinear Algebra 70 (22), 7740–7752, 2022. Doi:
10.1080/03081087.2021.2006592.

[23] H.R. Moradi, M.E. Omidvar, I.H. Gümüş and R. Naseri, A note on some inequalities
for positive linear maps, Linear Multilinear Algebra 66 (7), 1449–1460, 2018.

[24] M. Niezgoda, Accretive operators and Cassels inequality, Linear Algebra Appl. 433,
136–142, 2010.

[25] M. Raïssouli, M.S. Moslehian and S. Furuichi, Relative entropy and Tsallis entropy
of two accretive operators, C. R. Acad. Sci. Paris Ser. I 355, 687–693, 2017.

[26] P.Y. Wu and H.-L. Gau, Numerical ranges of Hilbert space operators, Encyclopedia
of Mathematics and its Applications, 179, Cambridge University Press, Cambridge,
2021.


