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ABSTRACT 

 
We propose a quantification of the p-p plot that assigns equal weight to all distances 

between the respective distributions: the surface between the p-p plot and the diagonal. 

This surface is labeled the Harmonic Weighted Mass (HWM) index. We introduce the 

diagonal-deviation (d-d) plot that allows the index to be computed exactly under all 

circumstances. This two-dimensional d-d plot accommodates a straightforward extension 

to the k-sample HWM index, with k > 2. A Monte Carlo simulation based on an example 

involving long-term sovereign credit ratings illustrates the power of the HWM test. 
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1. INTRODUCTION 

 

To determine whether samples are drawn from the same distribution, Empirical Distribution 

Function (EDF) tests can be used if the underlying population distributions are not known.
1
 

EDF tests quantify in one way or the other percentile-percentile (p-p) plots: the scatter plot of 

percentiles of two distributions for all entries of their joint support.
2
 In this paper we introduce 

a new EDF statistic: the Harmonic Weighted Mass (HWM) index. It corresponds to the 

surface between the (k-dimensional) p-p plot and the diagonal, up to a scaling factor that 

depends on sample sizes. 

 

For two balanced samples without ties the HWM index closely resembles the L1–version of 

the Fisz-Cramér-von Mises statistic (hereafter denoted by L1–FCvM, see Schmidt and Trede, 

1995). The HWM index differs from the L1–FCvM statistic when there are ties in that it is 
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Cramér-von Mises (FCvM) test (see Cramér (1928), Fisz (1960) and von Mises, 1931), the Kuiper (K) test (see 
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2
 The obvious alternative is the scatter plot of order statistics of two distributions, the so-called quantile-quantile 

(q-q) plot. If distributions differ in scale and location only, q-q plots consist of straight lines, which is an 

attractive property when only differences in the shape of the respective distributions are of interest (Wilk and 

Gnanadesikan, 1968). But this is a drawback, of course, if differences in scale and location are to be revealed as 

well (see also Holmgren, 1995). 
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invariant to the position of the tie in the sequence of order statistics. This makes it a more 

robust statistic. 

 

Extending the HWM index to the simultaneous comparison of k > 2 samples requires first the 

introduction of the k-dimensional p-p plot. The diagonal of this plot corresponds to the line 

that cuts all 2-dimensional spaces in equal halves. The k-sample HWM index then 

corresponds to the surface between this ‘diagonal’ and the k-dimensional p-p plot. This 

surface is not uniquely defined however. An obvious norm is to consider for every point the 

shortest distance between the k-dimensional p-p plot and the diagonal. 

 

We derive the expression with which the HWM index can be computed exactly under all 

circumstances. For that we introduce the diagonal-deviation (d-d) plot: the projection of the 

p–p plot onto the diagonal.  

 

Being able to compute the HWM index exactly allows us to simulate its distribution in all 

cases for which it is not known. For two balanced samples without ties, Hinloopen and 

Wagenvoort (2010) derive analytically the distribution of the L1–FCvM statistic. For this 

special case that distribution also applies to the HWM index. Our Monte Carlo experiments 

show that in most cases the effect of ties on the concomitant critical values of the 2-sample 

HWM index is negligible, and that the sample size correction factor deals adequately with 

unbalanced samples. For k > 2 we provide significance tables up to k = 15. 

 

Evidently, none of the existing EDF tests dominates any of the other under all circumstances. 

Strictly speaking therefore, any sample comparison must involve the computation of all tests 

to rule out type-II errors as much as possible. Schmidt and Trede (1995) show that the L1–

version of the FCvM statistic has nearly the same power as the classical L2–version of the 

FCvM statistic when samples are drawn from a set of widely used continuous distributions: 

Pareto, Log-normal, and Singh-Maddala. This result extends to the HWM index since, in 

these cases, ties are absent. 

 

To assess the power of the HWM test, we perform a Monte Carlo simulation based on an 

example involving sovereign credit ratings. It appears that the extended Anderson-Darling 

(AD) test (see Scholz and Stephens, 1987) has more power than the HWM test when one of 

the three main rating distributions (Fitch, Moody’s and Standard & Poor) is replaced by a 

uniform distribution. However, the HWM test can outperform AD if, in addition to the 

distribution homogeneity assumption, also the independency assumption is violated. Indeed, 

the HWM test is expected to have more power than any of the other EDF tests when the p-p 

plot remains ‘close’ to the diagonal over the entire probability space (while samples are drawn 

from different distributions) as it is the only EDF test that assigns equal weight to all distances 

between the respective distributions. It should therefore join the basket of EDF tests, also 

because in these situations a visual inspection of the p-p plot easily leads to incorrect 

conclusions.  

 

2. THE 2-SAMPLE HWM INDEX 

 

Let  be the set of cumulative distribution functions. The p-p plot based on F1 and F2 

belonging to  depicts for every domain value z from the joint support of F1 and F2 the 

percentiles of one distribution relative to the other: 
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This is a plot in the 2-dimensional simplex. An example of a p-p plot for two continuous 

random variables is given in Panel a of Figure 2.1. Clearly p-p plots are mappings from [0, 1] 

onto [0, 1] and depict the correspondence between the two underlying distributions in 

probability space. They are key to the hypothesis underlying EDF tests: H0: F̂1 = F̂2, where F̂ 

is an Empirical Distribution Function. For ease of notation, in the remainder of the paper we 

use Fi, i = 1, …, K to denote an empirical distribution function (rather than a cumulative 

distribution function).  

 
Figure 2.1 Theoretical p-p plot (panel a) and HWM index (panel b). 

Panel a Panel b
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2.1. Definition 

 

Because the p-p plot coincides with the diagonal if, and only if, the two underlying 

distributions are identical, there are various well-known statistics to test H0 that are based on 

the distance between the p-p plot and the diagonal (see Hinloopen and Wagenvoort (2010) for 

an overview). In particular, the L2–version of the FCvM test sums up over all squared 

distances d (see Figure 2.1, Panel a) and, graphically, the Anderson-Darling test augments the 

FCvM-test by weighing every squared distance with the product of the distance between 0 

and the centre of d, and the distance between 1 and the centre of d. We propose the area 

between the diagonal and the p-p plot as the criterion for validating H0 (see Panel b of Figure 

2.1). Because this area reflects the extent to which the probability mass of the two underlying 

distributions is ‘in harmony’, we label it the Harmonic Weighted Mass (HWM) index.  

 

The HWM index requires a continuous p-p plot. But for discrete random variables the p-p plot 

is also discrete. The continuous analogue of a discrete p-p plot is obtained by connecting the 

points of the discrete p-p plot through straight lines (see Girling, 2000). Let X1 and X2 be two 

random variables with empirical distribution functions F1(x) and F2(x) respectively. The 

coordinates of the resulting piece-wise linear continuous p-p plot can be defined as: 
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where z∙≡∙{z1,…,zm} are the ordered domain values of the joint support of X1 and X2, with 

0∙≤∙∙≤∙1.  
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The 2-sample HWM index is then defined as: 

Definition 2.1. ),(
~

)(
~

)(
~

),(),( 1122121 xFdxFxFnnSFFHWM 




  

where the sample size correction factor ),( 21 nnS  is taken from Rosenblatt (1952) and Fisz 

(1960). It reads as:  

 1 2
1 2

1 2

( , ) ,
n n

S n n
n n




 (2.2) 

and speeds up convergence of the finite sample distribution towards the limiting distribution. 

It also makes the analytical critical percentile values of the HWM index good approximations 

for unbalanced samples (see Section 2.3).  

 

By virtue of the underlying p-p plot the HWM index is a non-parametric and distribution free 

mapping. It has two further properties (proofs of all properties are in Appendix A, Section 

A.1): 

 

Property 2.P1. (equality):   ).()(:,0),( 2121 zFzFbazFFHWM   

 

Property 2.P2. (order irrelevance): ).,(),( 1221 FFHWMFFHWM   

 

As an illustration consider the water level of the river Meuse as it enters The Netherlands at 

Borgharen Dorp in 1990 and 1993 (see Hinloopen, 1997, Chapter 5). In 1993 the Southern 

part of Holland was plagued by severe floods and it is of interest to know whether the entire 

year 1993 experienced exceptionally high water levels. Table 2.1 contains the maximum 

water levels in millimeters for both 1990 and 1993 recorded on each last day of every month. 

The resulting discrete sample p-p plot, its continuous counterpart, and the concomitant HWM 

index are all depicted in Figure 2.2. 

 
Month 1990 1993 

January 4070 4114 

February 4204 3944 

March 3885 3814 

April 3866 3813 

May 3808 3836 

June 3854 3757 

July 3762 3824 

August 3786 3751 

September 3764 3809 

October 3872 3896 

November 3926 3818 

December 4292 4406 

Table 2.1 Maximum water levels of the river Meuse at Borgharen Dorp, in millimetres, measured on every last 

day of every month. 

Source: Koninklijk Nederlands Meteorologisch Instituut, personal correspondence (see Hinloopen, 1997, 

Chapter 5). 
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Figure 2.2 Discrete p-p plot for water levels of the river Meuse at Borgharen Dorp (The Netherlands), 1990 

versus 1993 (Panel a), the corresponding continuous p-p plot (Panel b), the concomitant HWM index (Panel c), 

and the resulting d-d plot (Panel d). 

 
 

2.2. Computation 

 

Note that the value of the shaded area in Panel c of Figure 2.2, which equals 7/12, is 

straightforward to obtain. For samples with ties this is not necessarily the case. Within-sample 

ties affect the number of coordinates that make up the p-p plot. As such they have no effect on 

the possible slope of the p-p plot. Between-sample ties may induce the p-p plot to have linear 

pieces with any positive slope. This complicates the exact computation of the HWM index. 

For computing the HWM index we introduce the diagonal-deviation plot: the projection of the 

p-p plot onto the diagonal.
3
 This means that each point (F1(z), F2(z)) on the p-p plot is 

projected on the average probability p(z)∙≡∙(F1(z)∙+∙F2(z))/2. Because the length of the 

projection vector equals 2)()()( 21 zFzFzd  , we arrive at the following definition: 

 

Definition 2.2. The diagonal-deviation plot is the projection of the p-p plot onto the diagonal:  

 
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3
 Use of this projection is not necessary for computing the exact value of the 2-sample HWM index but it allows 

for a straightforward extension of the HWM index to the simultaneous comparison of k > 2 samples (see Section 

3). 
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The d-d plot is obtained by first projecting the coordinates of the discrete p-p plot onto the 

diagonal. This gives the coordinates of the d-d plot: D∙≡∙(p(zi), d(zi)), i = 1, 2, ..., m, where 

m∙≤∙n1 + n2, and (p(0), d(0))∙≡  (0,0). Next, linearly interpolate between these coordinates to 

obtain the d-d plot. The value of the HWM index then corresponds to the surface between the 

d-d plot line and the horizontal zero axis multiplied by the projection scaling factor 

PS(2)∙=∙√2̄ (see Panel d in Figure 2.2). 

 

Computation of the HWM index requires the exact location of all intersections of the 

underlying p-p plot with the diagonal. Diagonal cutting points are all points (F1(z), F2(z)) for 

which d(z) = 0. Their location follows from the following lemma (the proof of which is in 

Appendix A, Section 6.2): 

 

Lemma 2.1. When the p-p plot cuts the diagonal between points iz  and 1iz , iz  z, then  
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if at probability hp  we have that )()(
21 ,2,1 inin zFzF   and ),()( 1,21,1 21   inin zFzF  that is, the 

diagonal is “cut from above”.  

 

Obviously, the p-p plot can cut the diagonal at points that are not in D. Let L be the set with 

these diagonal cutting points consisting of l entries and let I∙=∙D∙∙L∙≡∙(p
*
i,∙d

*
i∙), 

i∙=∙1,∙2,∙...,∙m∙+∙l, be ordered on p
*
i. The HWM index can then be calculated exactly under all 

circumstances (the proofs of all propositions are in Appendix A, Section 6.3): 

 

Proposition 2.1. 
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2.3. Hypothesis testing 

 

Being able to compute the value of the HWM index exactly allows for the simulation of 

significance tables under varying circumstances. For a special case however the exact finite 

sample distribution of the HWM index is known. 

 

2.3.1. Finite sample distribution 

 

Consider the set of continuous distribution functions . Observe that . Also, because 

functions belonging to  are strictly increasing on their support, there are no mass points. 

That is, there are no ties. Indeed, the HWM index coincides with the L1–version of the Fisz-

Cramér-von Mises statistic (Schmidt and Trede, 1995) for distributions belonging to  and 

for two samples of equal size n. We thus introduce: 

 

Assumption 2.A1. ,, 221 FF  
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Assumption 2.A2. .21 nnn   

 

Proposition 2.2. Under A1 – A2, the HWM index coincides with the L1–FCvM statistic:  
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Hinloopen and Wagenvoort (2010) derive the analytical solution for the probability density 

function of the L1–FCvM statistic under H0 and A1 – A2. For these cases, the exact critical 

percentiles of the HWM index are thus known. Indeed, the diagonal entries of Tables B.5 

through B.8 in Appendix B correspond to these percentiles for two balanced samples up to 

n∙=∙20. 

 

High values of the HWM index imply a low probability that the underlying samples are 

drawn from the same distribution. For instance, for the data in Table 2.1 the HWM index 

value is 0.2381, which is substantially smaller than the critical percentiles at common 

significance levels. Although the southern part of The Netherlands was flooded in 1993, 

considering the entire year shows that the monthly maximum water levels of the river Meuse 

at Borgharen Dorp in 1993 were not significantly different from the levels in 1990. 

 

2.3.2. Limiting distribution 

 

For balanced samples without ties Schmid and Trede (1995) note that the limiting distribution 

of the L1–FCvM statistic corresponds to the limiting distribution of the L1–norm of a 

Brownian bridge. Proposition 2.2 implies that the same holds for the HWM index. The 

analytical expression for the L1–norm of a Brownian bridge is derived by Johnson and Killeen 

(1983). They also tabulate the concomitant critical values. It appears that the critical values of 

the HWM index converge rapidly to their limiting values (see Table 1 in Hinloopen and 

Wagenvoort, 2010). Indeed, although for finite samples the critical percentiles of the limiting 

distribution differ from the exact values, this will not lead to differences in the rejection of the 

underlying hypothesis (see Hinloopen and Wagenvoort, 2010). 

 

2.3.3. Ties 

 

Ties can be present in any sample, even for continuous population distributions due to 

rounding. Within-sample ties reduce the number of coordinates that constitute the p-p plot. 

Between-sample ties allow the p-p plot to remain closer to the diagonal. Ties therefore affect 

every EDF that quantifies a p-p plot. One way of dealing with ties is to use a randomized tie-

breaking procedure (Dufour (1995), Dufour and Kiviet, 1998). Let Ui, i∙=∙1,∙...,∙n1∙+∙n2 be a 

random sample of n1∙+∙n2 observations from a uniform continuous distribution. The 

observations Z∙=∙X1∙∙ X2 can then be arranged following the order: 

 ),(),(),( jijijijjii UUandZZorZZUZUZ   (2.3) 

which results in n1∙+∙n2 different order statistics. The test statistic is then computed for these 

n1∙+∙n2 different order statistics rather than the q < n1∙+∙n2  order statistics from the original 

samples. 

 

Alternatively the q order statistics are used and the critical values in Appendix B are applied 

at the possible cost of a small size distortion in the critical area. Indeed, within-sample ties 

possibly increase the value of the HWM index whereas between-sample ties possibly reduce 
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it. To assess the impact of ties on the distribution of the HWM index we have to rely on 

numerical simulations because assumption 2.A1 is violated. 

 

percentile 90 95 97.5 99 

domain         

{0, 1} -0.047 -0.027 -0.018 -0.006 

{0, 1, 2} -0.040 -0.022 -0.014 -0.006 

{0, 1, 2, 3} -0.023 -0.013 -0.007 -0.002 

{0,…, 4} -0.023 -0.012 -0.009 -0.003 

{0,…, 5} -0.018 -0.011 -0.005 -0.003 

{0,…, 6} -0.016 -0.009 -0.002 0.001 

{0,…, 7} -0.012 -0.007 -0.004 -0.002 

{0,…, 8} -0.011 -0.006 -0.003 -0.001 

{0,…, 9} -0.012 -0.007 -0.004 -0.001 

{0,…, 10} -0.008 -0.005 -0.003 -0.002 

{0,…, 11} -0.010 -0.008 -0.004 -0.001 

{0,…, 12} -0.006 -0.004 -0.004 -0.001 

{0,…, 13} -0.004 -0.006 -0.003 -0.002 

{0,…, 14} -0.005 -0.005 -0.003 -0.001 

{0,…, 15} -0.008 -0.006 -0.006 -0.002 

Table 3.2 Size distortions due to ties in balanced samples. 

Notes: All samples consist of 50 entries which are drawn from the integer domains in the first column, where all 

entries have equal probability. The resulting simulated distribution for each row consists of 10,000 independent 

HWM index values.  

 

As the influence of ties on the distribution of the HWM index turns out to be negligible in 

most cases, we report only the simulation results for an extreme situation in that all 

observations constitute a tie. Table 3.2 lists the size distortions of the exact critical percentiles 

derived by Hinloopen and Wagenvoort (2010). This distortion is defined as 

prob[HWM∙>∙cv]∙–∙cp, where cv is the critical value of the HWM index under A1 – A2 and cp 

is the concomitant probability (i.e. 10%, 5%, 2.5% and 1%). Clearly, what matters is the 

number of classes that underlie the sample EDFs. For instance, if there are only 2 classes, 0 

and 1 say, the 90
th

 percentile is 0.400 while without ties it equals 0.500, yielding a size 

distortion of -0.047. But size distortions fall rapidly when the number of classes increases. 

With as little as 7 classes the simulated 90
th

 percentile is already 0.485 and the size distortion 

is one percentage point only. It thus seems that for the HWM index the effect of within-

sample ties and between-sample ties cancel out when the number of classes is sufficiently 

high. Because many applications will involve less than 100% ties (the only other study we 

know of that considers the effect of ties, Scholz and Stephens (1987), reports simulations up 

to situations where 60% of all observations constitute a tie), we conjecture that the critical 

values shown in Appendix B are accurate under most circumstances where assumption 2.A1 

is violated. 

 

Perhaps more importantly, the HWM index is less sensitive to ties than the L1–FCvM statistic. 

This is because the HWM index is invariant to the position of a tie whereas the FCvM statistic 

is not. For instance, let X1={1, 2, 3}, and X2= {1.5, 1.5, 4} with respective discrete EDFs F1,3 

and F2,3. If the entries in X2 are rounded upwards, yielding 2X {2, 2, 4} and 
3,2

F , a 
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between-sample tie arises at the second entry of both samples. This gives HWM ),(
3,23,1 FF  = 

0.2041 and 1L FCvM .1361.0),(
3,23,1 FF Alternatively the entries are rounded downwards, 

giving us }4,1,1{2 X  and 3,2F . A between-sample tie now occurs at the first entry of both 

samples. This leaves the HWM index unaffected, HWM ),( 3,23,1 FF  = 0.2041 while it does 

influence the FCvM statistic: 1L FCvM .2722.0),( 3,23,1 FF  That is, the HWM index takes 

the same value, whether the between-sample tie occurs at the first or second entry. The HWM 

index is unaffected because it is based on a continuous p-p plot where mass points are 

removed by spreading probability uniformly between two order statistics. In contrast, the 

FCvM statistic changes value depending on the position of the tie as the FCvM statistic is 

based on the discrete p-p plot. This makes the FCvM statistic a less robust statistic since the 

augmented samples 2X  and 2X  are ‘equally close’ to sample 1X . 

 

2.3.4. Unbalanced samples 

 

To assess the influence of unbalanced samples we again have to revert to numerical 

simulations. Tables B.5 through B.8 in Appendix B (Section 7.1) list the simulated percentiles 

of the HWM index under H0 for all possible unbalanced samples up to n = 20. Clearly, sample 

size correction factor (2) adequately deals with unbalanced samples. For larger samples the 

simulated percentiles suggest a simple rule of thumb: in case of unbalanced samples that are 

not in Appendix B use the analytical value of the HWM index for the largest sample size. 

Even in an extreme case where one sample consists of 3 entries while the other has 20 entries 

this yields a small approximation error. 

 

3. THE K-SAMPLE HWM INDEX 

 
For extending the HWM index to the simultaneous comparison of k > 2 samples we first have 

to introduce the k-sample p-p plot: 

 

Definition 3.3. The k-sample p-p plot depicts for every domain value z from the joint support 

of kFF ,...,1  the percentiles of one distribution relative to the others:  
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Obviously k-sample p-p plots are mappings from [0, 1] to [0, 1]
k-1

. Hypothesis H0 then 

extends to: H
*
0: F1=…=Fk. And the generalized assumptions 2.A1 and 2.A2 respectively read 

as: 

 

Assumption 3.A1
*
.  ,,..., 21 kFF  

 

Assumption 3.A2
*
.  ....1 nnn k   

 

3.1. Definition 

 

The k-dimensional HWM index is defined as the surface between the k-dimensional p-p plot 

and the ‘diagonal’ that cuts all 2-dimensional spaces in equal halves. The coordinates of this 
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diagonal are given by the k-dimensional vector ( )(~ xp ,…, )(~ xp ), where )(~ xp  is the average 

probability at x. For k > 2 this surface is not uniquely defined however. It depends on the 

point of the diagonal on which probabilities are projected. An obvious candidate is to take the 

shortest distance between the p-p plot and the diagonal, which implies that each point of the 

p-p plot is projected on the concomitant average probability.
4
 For characterizing this distance 

we use the Mahalanobis distance: 

 

Definition 3.4.  

 )...,,()(),...,,( 121 kk nnSkPSFFFHWM   ),(~)(~)(
~

1

2
xpdxpxF

k

j j 





  

where )(
~

xF j  is the continuous analogue of the possibly discrete EDF of ,jX )(~ xp  

 

k

j j xF
k 1

)(
~1

 is the average probability at x, where ),...,( 1 knnS  is a multi-sample scaling 

factor, and where PS(k) is a factor that scales the projection. In particular we generalize (2) to: 
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k

j j
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k

n

n
nnS  (3.4) 

 

The projection scaling factor PS(k) maintains the correspondence between the surface below 

the d-d plot and the surface between the k-dimensional p-p plot and the diagonal. It equals the 

length of the diagonal of the k-dimensional p-p plot: 

 .)( kkPS   (3.5) 

 

Note that the 2-sample version of the HWM index in Definition 2.1 corresponds to Definition 

3.4 with k = 2. 

 

The properties of the 2-sample HWM index carry over to the k-sample version: 

 

Property 3.P1
*
 (equality):   ).(...)(:,0)...,,( 11 zFzFbazFFHWM kk   

 

Property 3.P2
*
 (order irrelevance): )),...,,(()...,,( 11 kk FFGHWMFFHWM   where G(∙) is any 

perturbation of the order of its entries. 

 

3.2. Computation 

 

Computing the k-sample HWM index involves again the construction of the underlying d-d 

plot. In case the p-p plot is projected on the average probabilities, the coordinates of the 

corresponding d-d plot for any iz  z, are: 

 



k

j
iji zF

k
zp

1

),(
1

)(  (3.6) 

   ,)()()(
2

1 


k

j iiji zpzFzd  (3.7) 

                                                 
4
 We also considered alternatives, such as the minimum probability. This led to much more variability in the 

HWM index which, we think, makes it less suitable for hypotheses testing. 
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 


k

j jnmmi
1

,,...,,1  and ).0,0())0(),0(( dp  Obviously, Proposition 2.1 applies such that the 

k-sample HWM index can be computed as follows: 

 )...,,()()...,,( 1,1,1 kknkn nnSkPSFFHWM  
   ,},max{2
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 in the notation of Proposition 2.1. 

 

3.3. Hypotheses testing 

 

An exact formulation is not known for the finite sample distribution of any of the existing k-

sample EDF tests with k > 2 (Kiefer, 1959). However, as the HWM index is distribution free 

under assumptions 3.A1
*
 – 3.A2

*
, we can simulate its distribution. The concomitant critical 

percentiles are in Tables B.9 through B.12 in Appendix B for k = 3, ..., 15 for sample sizes up 

to the point of convergence. 

 

4. LONG-TERM SOVEREIGN DEBT CREDIT RATINGS 
 

The performance of the HWM test should be measured against its ability to discriminate 

between samples that are not drawn from the same population distribution. As none of the 

existing EDF tests dominates all other tests under all circumstances, in principle all tests must 

be considered at all times. However, in some cases a particular test is known to have the best 

power. For instance, when samples are drawn from distributions with different tails, the 

Anderson-Darling (AD) test outperforms all alternatives as it puts more weight on 

extremities. The HWM test on the other hand is expected to outperform all other tests when 

the p-p plot remains relatively close to the diagonal because it is the only EDF test that 

assigns equal weight to all distances between the respective distributions.  

 

Rating agency Fitch Moody’s S&P 

Credit ratings    

AAA, AA+ 25 23 23 

AA, AA- 6 13 13 

A+, A 11 9 8 

A-, BBB+ 5 10 8 

BBB, BBB- 26 16 21 

BB+, BB 10 13 13 

BB-, B 9 13 11 

B-, CCC+ 6 4 4 

CCC, CCC- 1 0 0 

CC+, CC 0 1 1 

 Value test statistic 

HWM 0.163 

-1.690 AD  

Number of observations 80321  nnn  

Table 4.3 Share (in %) of countries ordered according to their long-term sovereign debt credit ratings, 

September 7, 2011. 

Notes: The upper 90
th

 critical percentile is 0.701 and 1.309 for HWM and AD respectively. 

 

As an illustration consider the long-term sovereign debt credit ratings of the main rating 

agencies Fitch, Moody’s, and Standard & Poor’s (S&P). On 7 Sept. 2011, in total 80 countries 

were rated by each agency (IMF, 2011). Out of 22 possible ratings, each of the 20 ratings 



Hinloopen, Wagenvoort and Marrewijk- A k-sample homogeneity test:…  

28 

 

from AAA to CC was given to at least one country. Table 4.3 contains the rating distributions, 

where each ‘bin’ consists of two ratings. For example, Fitch rated 25% of the 80 countries 

AAA or AA+. Obviously, there are many within and between sample ties across the rating 

distributions. Both the HWM and the Anderson-Darling test do not reject the null-hypothesis 

that the ratings are drawn from the same underlying distribution at the 10 percent or higher 

confidence level; there are no differences in outcome of the rating methodologies across the 

three rating agencies. 

 

In order to compare the power of HWM and AD, we first use the rating distributions as the 

basis for a Monte Carlo simulation. For that we randomly draw sub-samples of 10 or 50 

observations from the Moody’s and S&P rating data. A third sub-sample is drawn from the 

uniform distribution with integer domain [1, 2, …, 20] rather than from the Fitch rating 

distribution. Next we compute both HWM and AD and determine the fraction of rejections in 

10,000 trials. The results are in Table 4.4. 

 
Number of  

observations   

Test 

 

321 nnn   HWM AD 

 Share of rejections at the 10% confidence level 

10 28 39 

50 83 95 

 Share of rejections at the 5% confidence level 

10 17 28 

50 76 92 

 Share of rejections at the 2.5% confidence level 

10 11 19 

50 66 87 

 Share of rejections at the 1% confidence level 

10 5 11 

50 54 78 

Table 4.4 Power assessment in a Monte Carlo experiment. 

Notes: Observations are randomly drawn from the Moody’s and S&P rating distributions. A third sub- sample is 

drawn from the uniform distribution on the integer domain [1, 2,…,20]. Results are based on 10,000 trials. 

 

AD has more power than HWM to discriminate between the three sub-samples. In small 

samples of 10 observations, AD rejects H0 in nearly twice as many cases as HWM. 

Differences in power are smaller for larger samples. For example, at the 10% confidence level 

HWM rejects H0 in 83% of the cases with sub-samples of 50 observations compared to a 

rejection rate of 95% for AD.  

 

For the simulation underlying Table 4.4, observations are drawn independently from each 

distribution. However, if observations are not drawn independently, HWM can have more 

power than AD. For instance, if we fix the relative frequencies of the 10 bins in Table 4.3 

such that distributions differ significantly, but relatively little at the extremities, examples can 

be found where HWM outperforms AD. Figure 4.3 depicts such a situation. It depicts 

fictitious rating distributions for three fictitious rating agencies.
5
 If these distributions are used 

when drawing samples of 100 observations, a different picture arises: at the 5% confidence 

level, HWM rejects H0 in 42.9% of all cases, whereas AD rejects H0 in 38.6% only. 

                                                 
5
 In particular, the probabilities over the respective 10 bins for the three fictitious rating agencies are (in 

percentages): {5, 10, 10, 10, 15, 15, 10, 10, 10, 5}, {5, 10, 10, 18, 18, 11, 12, 6, 5, 5} and {5, 5, 6, 12, 11, 18, 18, 

10, 10, 5}. 
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Figure 4.3 Fictitious probabilities with which samples are drawn from the 10 rating bins for three fictitious 

rating agencies, yielding HMW to have higher power than AD at the 5% confidence level. 

0%
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20%

AAA, AA+ AA, AA- A+, A A-, BBB+ BBB,

BBB-
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CC+, CC

Agency A Agency B Agency C

 
 

5. Discussion and conclusions 

 
The quantification of the p-p plot we propose assigns equal weight to all distances between 

the respective distributions. For two balanced samples without ties it is shown that the HWM 

index coincides with the L1–FCvM statistic (see Schmidt and Trede (1995); see also 

Hinloopen and Wagenvoort, 2010). The HWM index differs from the L1–FCvM statistic when 

there are ties in that it is invariant to the position of the tie in the sequence of order statistics. 

This makes it a more robust statistic. 

 

We further show how the HWM index can be extended to a homogeneity test involving k > 2 

samples. For that we have introduced the k-sample pp-plot. We also show how the k-sample 

HWM index can be computed exactly under all circumstances. In so doing we have 

introduced the d-d plot: the projection of the p-p plot onto the diagonal. 

 

Both ties and unbalanced samples appear to affect the distribution of the 2-sample HWM 

index only mildly. However, ties can have a non-negligible effect on the distribution of the k-

sample HWM index for k > 2, even if the underlying population distributions consist of many 

classes. This is because the probability of a between-sample tie increases with k relative to the 

probability of a within-sample tie, and different ties have an opposite effect on the value of 

the HWM index.  

 

In sum, as none of the existing EDF tests, including the HWM test, outperforms all other tests 

under all circumstances, they should all be considered simultaneously so as to avoid type-II 

errors as much as possible. 

 



Hinloopen, Wagenvoort and Marrewijk- A k-sample homogeneity test:…  

30 

 

APPENDIX 

 

Appendix A Proofs 
 

A.1. Proofs of properties 

 

Proof of Property P1
*
. Let [a,b] be the common support of ),(

~
zF j  j = 1, …, k. 

 0),...,,( 21 kFFFHWM because of the continuity of both )(
~

zF j  and 

:)(~ zp    bazzpzF
k

j j ,0)(~)(
~

1

2
 

 ,~)(
~

...,,~)(
~
1 pzFpzF k   baz ,  

 .,),(...)(1 bazzFzF k   

QED 

 

Proof of Property P2
*
.  )...,,()(),...,,( 121 kk nnSkPSFFFHWM  
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
   

)),...,,(( 1 kFFGHWM where )(G  is any perturbation of the order of its entries. 

QED 

 

A.2. Proofs of Lemma 2.1 

 

A p-p plot that cuts the diagonal from below at probability hp  between observations iz  and 

1iz  (i.e. )()(
21 ,2,1 inin zFzF   and ))()( 1,21,1 21   inin zFzF  is illustrated in Figure A.4. The 

diagonal runs from ))(),((
11 ,1,1 inin zFzF  to ),(( 1,1 1 in zF  ))( 1,1 1 in zF while the p-p plot connects 

))(),((
11 ,2,1 inin zFzF  with (),((

21 ,21,1 nin FzF  )).1iz  Let ),(
1,1 inh zFpa   

),()(
21 ,2,1 inin zFzFb   ),()(

11 ,11,1 inin zFzFc    and d  = ).()(
22 ,21,2 inin zFzF   From TAN(t) 

= cd /  = (a + b)/a we obtain that a = bc/(d − c). Hence, hp  follows. A similar argument 

applies in case the diagonal is cut from above. 

QED 

A.3. Proofs of propositions 

 

Proof of Proposition 2.1. The surface between the p-p plot and the diagonal equals the 

surface below the d-d plot multiplied by .k  The surface below the d-d plot between 

),( *

1

*

1  ii dp  and ),( **

ii dp  equals 2/))(()( *

1

**

1

**

1

*

1

*

  iiiiiii ddppdpp  if ,*

1
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 ii dd  and 

2/))(()( **

1

*

1
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1

*

iiiiiii ddppdpp    if .*

1

*

 ii dd  The proposition then follows. 

QED 

 

Proof of Proposition 2.2. Under A1 – A2, the contribution of any two points iz  and 1iz  to 

the 1L FCvM statistic equals  

.
22

)()()()( 111212

n

zFzFzFzF iiii  
 

The surface between the diagonal and the p-p plot from point iz  to 1iz  multiplied by the 

scaling factor nnnnS 2),( 21   equals  
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when )()( 12 ii zFzF   and ),()( 1112   ii zFzF i.e. the p-p plot is above the diagonal, and 
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when )()( 12 ii zFzF   and ),()( 1112   ii zFzF  i.e. the p-p plot is below the diagonal. The 

contribution of any two points iz  and 1iz  to the value of the HWM index is thus identical to 

their contribution to the value of the 1L FCvM statistic. 

QED 

 

Figure A.4 A p-p plot cutting the diagonal “from below” at point ).,( hh pp  
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Appendix B Critical percentiles 
 

B.1. k = 2, unbalanced samples, no ties 

 

n 3 4 5 6 7 8 9 10 11 

3 0.612         

4 0.546 0.530        

5 0.502 0.522 0.538       

6 0.511 0.516 0.495 0.529      

7 0.518 0.513 0.512 0.514 0.515     

8 0.492 0.510 0.510 0.501 0.518 0.500    

9 0.528 0.508 0.498 0.498 0.501 0.505 0.511   

10 0.516 0.507 0.511 0.506 0.505 0.502 0.508 0.514  

11 0.501 0.506 0.504 0.508 0.512 0.509 0.506 0.502 0.494 

12 0.516 0.505 0.501 0.500 0.508 0.506 0.504 0.506 0.502 

13 0.503 0.505 0.512 0.498 0.504 0.502 0.503 0.512 0.504 

14 0.495 0.504 0.498 0.505 0.496 0.504 0.508 0.513 0.504 

15 0.509 0.503 0.512 0.506 0.502 0.505 0.502 0.504 0.498 

16 0.497 0.503 0.508 0.500 0.504 0.505 0.500 0.500 0.505 

17 0.507 0.501 0.501 0.510 0.508 0.508 0.508 0.502 0.512 

18 0.510 0.503 0.506 0.511 0.506 0.498 0.507 0.507 0.505 

19 0.499 0.503 0.508 0.506 0.500 0.502 0.499 0.499 0.506 

20 0.501 0.502 0.505 0.507 0.510 0.509 0.501 0.503 0.513 

n 12 13 14 15 16 17 18 19 20 

12 0.510         

13 0.500 0.505        

14 0.508 0.509 0.499       

15 0.502 0.508 0.510 0.505      

16 0.506 0.506 0.501 0.500 0.508     

17 0.502 0.502 0.501 0.504 0.507 0.499    

18 0.505 0.498 0.501 0.508 0.495 0.502 0.500   

19 0.499 0.506 0.506 0.503 0.506 0.504 0.502 0.499  

20 0.505 0.502 0.502 0.505 0.511 0.500 0.495 0.509 0.506 

Table B.5 Simulated critical values at percentile 90 for unbalanced samples without ties.  

Notes: The underlying distribution consists of 10,000 independent HWM index values that are computed for 

samples that are drawn from a standard normal distribution. The joint number of sample entries must be at least 

6 for percentile 90 to be defined properly. 
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n 3 4 5 6 7 8 9 10 11 

4 0.655 0.619        

5 0.593 0.596 0.601       

6 0.550 0.581 0.606 0.577      

7 0.587 0.570 0.581 0.599 0.592     

8 0.577 0.587 0.596 0.582 0.587 0.594    

9 0.583 0.601 0.578 0.586 0.583 0.575 0.589   

10 0.608 0.592 0.584 0.581 0.583 0.580 0.595 0.581  

11 0.582 0.584 0.590 0.584 0.593 0.587 0.578 0.583 0.591 

12 0.570 0.577 0.595 0.583 0.584 0.593 0.588 0.585 0.590 

13 0.580 0.582 0.599 0.572 0.578 0.578 0.581 0.588 0.586 

14 0.569 0.576 0.576 0.580 0.584 0.584 0.594 0.587 0.596 

15 0.580 0.565 0.590 0.587 0.582 0.590 0.589 0.588 0.578 

16 0.569 0.587 0.586 0.588 0.591 0.586 0.583 0.587 0.580 

17 0.579 0.582 0.573 0.585 0.589 0.593 0.587 0.587 0.592 

18 0.584 0.578 0.593 0.589 0.588 0.583 0.590 0.585 0.587 

19 0.583 0.579 0.577 0.581 0.576 0.590 0.579 0.579 0.582 

20 0.569 0.589 0.585 0.579 0.591 0.589 0.584 0.587 0.593 

n 12 13 14 15 16 17 18 19 20 

12 0.578         

13 0.591 0.581        

14 0.590 0.586 0.594       

15 0.591 0.594 0.589 0.590      

16 0.586 0.592 0.586 0.591 0.586     

17 0.585 0.575 0.582 0.592 0.585 0.580    

18 0.584 0.577 0.581 0.583 0.576 0.580 0.593   

19 0.583 0.587 0.587 0.585 0.591 0.584 0.580 0.585  

20 0.586 0.583 0.583 0.586 0.589 0.583 0.581 0.598 0.585 

Table B.6 Simulated critical values at percentile 95 for unbalanced samples without ties. 

Notes: The underlying distribution consists of 10,000 independent HWM index values that are computed for 

samples that are drawn from a standard normal distribution. The joint number of sample entries must be at least 

7 for percentile 95 to be defined properly. 
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n 3 4 5 6 7 8 9 10 11 

5 0.685 0.671 0.664       

6 0.629 0.645 0.661 0.674      

7 0.656 0.627 0.659 0.642 0.668     

8 0.615 0.663 0.658 0.656 0.656 0.656    

9 0.639 0.647 0.657 0.650 0.646 0.657 0.642   

10 0.658 0.651 0.657 0.645 0.667 0.659 0.653 0.648  

11 0.641 0.662 0.657 0.657 0.673 0.660 0.663 0.645 0.649 

12 0.645 0.650 0.658 0.653 0.651 0.662 0.658 0.662 0.655 

13 0.661 0.673 0.658 0.635 0.648 0.655 0.660 0.660 0.655 

14 0.636 0.661 0.658 0.645 0.661 0.665 0.662 0.670 0.662 

15 0.650 0.630 0.658 0.646 0.655 0.662 0.659 0.653 0.660 

16 0.635 0.643 0.647 0.653 0.650 0.659 0.659 0.660 0.640 

17 0.642 0.635 0.643 0.661 0.646 0.656 0.660 0.655 0.670 

18 0.653 0.653 0.659 0.648 0.659 0.654 0.650 0.662 0.673 

19 0.635 0.646 0.644 0.643 0.655 0.664 0.658 0.649 0.651 

20 0.646 0.662 0.660 0.657 0.667 0.663 0.651 0.658 0.666 

n 12 13 14 15 16 17 18 19 20 

12 0.646         

13 0.657 0.671        

14 0.664 0.656 0.675       

15 0.666 0.670 0.663 0.663      

16 0.668 0.662 0.659 0.661 0.663     

17 0.658 0.654 0.654 0.661 0.664 0.661    

18 0.671 0.657 0.657 0.657 0.647 0.655 0.667   

19 0.662 0.669 0.651 0.655 0.666 0.654 0.658 0.662  

20 0.658 0.659 0.656 0.664 0.662 0.651 0.658 0.672 0.656 

Table B.7 Simulated critical values at percentile 97.5 for unbalanced samples without ties. 

Notes: The underlying distribution consists of 10,000 independent HWM index values that are computed for 

samples that are drawn from a standard normal distribution. The joint number of sample entries must be at least 

8 for percentile 97.5 to be defined properly. 
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n 3 4 5 6 7 8 9 10 11 

5  0.745 0.727       

6 0.707 0.71 0.716 0.722      

7 0.725 0.684 0.708 0.728 0.745     

8 0.739 0.714 0.702 0.733 0.729 0.719    

9 0.694 0.74 0.737 0.738 0.74 0.743 0.746   

10 0.709 0.718 0.73 0.742 0.745 0.738 0.747 0.76  

11 0.675 0.74 0.725 0.746 0.766 0.734 0.73 0.728 0.727 

12 0.689 0.722 0.72 0.722 0.726 0.73 0.756 0.743 0.744 

13 0.701 0.74 0.745 0.727 0.738 0.749 0.753 0.75 0.743 

14 0.711 0.724 0.74 0.732 0.727 0.745 0.755 0.759 0.754 

15 0.692 0.711 0.736 0.736 0.739 0.742 0.747 0.746 0.74 

16 0.702 0.727 0.715 0.718 0.749 0.74 0.717 0.744 0.74 

17 0.705 0.714 0.728 0.743 0.72 0.737 0.737 0.738 0.767 

18 0.713 0.729 0.725 0.727 0.737 0.735 0.726 0.758 0.76 

19 0.696 0.718 0.723 0.731 0.746 0.749 0.73 0.727 0.739 

20 0.7 0.73 0.74 0.734 0.755 0.747 0.734 0.762 0.751 

n 12 13 14 15 16 17 18 19 20 

12 0.731         

13 0.737 0.762        

14 0.741 0.743 0.756       

15 0.757 0.773 0.743 0.736      

16 0.75 0.753 0.734 0.753 0.74     

17 0.741 0.743 0.736 0.747 0.76 0.741    

18 0.758 0.751 0.746 0.75 0.738 0.744 0.75   

19 0.737 0.759 0.736 0.747 0.756 0.747 0.747 0.764  

20 0.745 0.734 0.748 0.742 0.743 0.739 0.737 0.756 0.743 

Table B.8 Simulated critical values at percentile 99 for unbalanced samples without ties. 

Notes: The underlying distribution consists of 10,000 independent HWM index values that are computed for 

samples that are drawn from a standard normal distribution. The joint number of sample entries must be at least 

9 for percentile 99 to be defined properly. 
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B.2. k = 3, ..., 15, balanced samples, no ties 

 

n 3 4 5 6 7 8 9 10 50 100 

K           

3 0.720 0.706 0.706 0.704 0.710 0.696 0.703 0.705 0.692 0.701 

4 0.841 0.840 0.843 0.843 0.840 0.841 0.838 0.837 0.839 0.841 

5 0.948 0.951 0.951 0.949 0.953 0.952 0.950 0.953 0.950 0.956 

6 1.040 1.045 1.049 1.049 1.048 1.045 1.047 1.052 1.045 1.048 

7 1.127 1.133 1.133 1.138 1.135 1.131 1.134 1.138 1.136 1.141 

8 1.202 1.214 1.214 1.213 1.215 1.208 1.211 1.217 1.212 1.220 

9 1.276 1.286 1.289 1.285 1.288 1.285 1.282 1.288 1.287 1.292 

10 1.343 1.354 1.357 1.351 1.355 1.352 1.353 1.357 1.357 1.363 

11 1.406 1.418 1.421 1.416 1.422 1.418 1.420 1.421 1.428 1.423 

12 1.469 1.478 1.483 1.479 1.482 1.481 1.483 1.484 1.491 1.485 

13 1.528 1.538 1.539 1.538 1.540 1.540 1.544 1.545 1.549 1.541 

14 1.583 1.592 1.595 1.594 1.596 1.598 1.598 1.598 1.604 1.601 

15 1.635 1.643 1.648 1.650 1.648 1.650 1.652 1.653 1.660 1.656 

Table B.9 Simulated values of the HWM index at percentile 90 under A1* – A2*. 

Notes: The underlying distribution consists of 10,000 independent HWM index values that are computed for 

samples that are drawn from a standard normal distribution. 

 

n 3 4 5 6 7 8 9 10 50 100 

K           

3 0.753 0.762 0.779 0.773 0.778 0.770 0.774 0.780 0.776 0.773 

4 0.886 0.900 0.904 0.909 0.906 0.906 0.904 0.911 0.910 0.915 

5 0.993 1.004 1.012 1.016 1.011 1.015 1.013 1.020 1.025 1.020 

6 1.087 1.102 1.109 1.109 1.111 1.111 1.109 1.117 1.121 1.122 

7 1.177 1.189 1.191 1.198 1.198 1.197 1.199 1.202 1.204 1.211 

8 1.254 1.267 1.273 1.273 1.276 1.280 1.278 1.276 1.283 1.294 

9 1.327 1.341 1.346 1.346 1.350 1.347 1.350 1.352 1.361 1.365 

10 1.395 1.406 1.411 1.414 1.422 1.419 1.417 1.425 1.431 1.430 

11 1.454 1.474 1.477 1.480 1.485 1.484 1.484 1.489 1.497 1.494 

12 1.518 1.535 1.536 1.539 1.542 1.545 1.545 1.548 1.559 1.551 

13 1.576 1.590 1.597 1.598 1.601 1.603 1.603 1.609 1.618 1.611 

14 1.631 1.644 1.654 1.655 1.655 1.661 1.660 1.665 1.671 1.667 

15 1.684 1.699 1.706 1.712 1.709 1.713 1.713 1.719 1.726 1.720 

Table B.10 Simulated values of the HWM index at percentile 95 under A1*– A2*.  

Notes: The underlying distribution consists of 10,000 independent HWM index values that are computed for 

samples that are drawn from a standard normal distribution. 
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n 3 4 5 6 7 8 9 10 50 100 

K           

3 0.805 0.820 0.834 0.831 0.841 0.832 0.831 0.840 0.848 0.844 

4 0.926 0.947 0.961 0.964 0.965 0.957 0.961 0.967 0.978 0.978 

5 1.035 1.052 1.066 1.074 1.068 1.072 1.072 1.083 1.093 1.087 

6 1.127 1.149 1.159 1.168 1.166 1.172 1.170 1.175 1.184 1.189 

7 1.214 1.236 1.241 1.252 1.260 1.254 1.255 1.257 1.269 1.274 

8 1.294 1.311 1.328 1.327 1.330 1.338 1.334 1.336 1.346 1.356 

9 1.366 1.385 1.392 1.398 1.405 1.405 1.408 1.410 1.419 1.425 

10 1.434 1.455 1.457 1.473 1.476 1.472 1.473 1.480 1.489 1.487 

11 1.500 1.521 1.526 1.533 1.540 1.543 1.534 1.544 1.561 1.549 

12 1.557 1.580 1.586 1.594 1.603 1.605 1.597 1.604 1.621 1.609 

13 1.617 1.637 1.647 1.651 1.658 1.665 1.658 1.663 1.681 1.670 

14 1.671 1.692 1.706 1.707 1.707 1.718 1.715 1.716 1.740 1.730 

15 1.727 1.747 1.755 1.764 1.761 1.772 1.771 1.773 1.790 1.785 

Table B.11 Simulated values of the HWM index at percentile 97.5 under A1*–A2*. 

Notes: The underlying distribution consists of 10,000 independent HWM index values that are computed for 

samples that are drawn from a standard normal distribution. 

 

n 3 4 5 6 7 8 9 10 50 100 

K           

3 0.839 0.874 0.888 0.896 0.909 0.900 0.906 0.917 0.919 0.930 

4 0.968 1.008 1.013 1.024 1.033 1.027 1.037 1.042 1.057 1.055 

5 1.082 1.111 1.125 1.135 1.142 1.144 1.138 1.150 1.172 1.169 

6 1.174 1.208 1.212 1.225 1.233 1.247 1.244 1.246 1.256 1.254 

7 1.259 1.287 1.301 1.310 1.318 1.327 1.329 1.327 1.341 1.341 

8 1.333 1.371 1.382 1.394 1.392 1.393 1.406 1.394 1.416 1.422 

9 1.412 1.434 1.454 1.464 1.470 1.479 1.470 1.472 1.494 1.490 

10 1.477 1.505 1.522 1.532 1.534 1.543 1.532 1.551 1.557 1.547 

11 1.545 1.574 1.585 1.600 1.599 1.603 1.600 1.612 1.636 1.623 

12 1.609 1.628 1.645 1.658 1.660 1.664 1.667 1.670 1.700 1.686 

13 1.665 1.685 1.704 1.714 1.719 1.724 1.728 1.727 1.757 1.740 

14 1.721 1.748 1.758 1.771 1.767 1.784 1.784 1.782 1.805 1.805 

15 1.783 1.801 1.814 1.821 1.822 1.836 1.836 1.833 1.859 1.860 

Table B.12 Simulated values of the HWM index at percentile 99 under A1* – A2*.  

Notes: The underlying distribution consists of 10,000 independent HWM index values that are computed for 

samples that are drawn from a standard normal distribution. 
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