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ABSTRACT 

A model with proportional errors in variables arising naturally in 
microeconomics is considered. Unlike the classical additive errors case, 
all OLS parameter estimates exhibit attenuation bias that does not depend 
on the limiting distribution of the data. The distribution of OLS estimators 
is developed. With no intercept, a simple correction of OLS based on 
mean predictions is identified that is consistent and asymptotically 
normal. With an intercept, a readily available additional moment based on 
sample data identifies the parameters. In neither case are additional 
restrictions or use of extra-sample data as instruments required as for 
common errors-in-variables methods. 
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1. INTRODUCTION 

It is well known that errors in variables (EIV) cause bias and inconsistency in regression 
estimates. Special stochastic structures of errors in variables have yielded useful insights 
into bias and inconsistency (e.g., Amemiya, l990; Cragg, 1997; Garber and Klepper, l980; 
Hausman, 2001; Griliches and Ringstad, 1970; Hausman, Newey, Ichimura, and Powell, 
1991; Riersol, 1950, Theil, 1961). However, in the classical EIV model, 

* *,  ,  ( ) 0,t t t t t t ty X X X E         t = 1,…,T, where the regressors in *
tX  are observed 
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only with the errors in Xt, the direction of bias in least squares estimators has generally been 
ambiguous (Nelson,1995) and models are not identified without adding restrictions or 
extra-sample data as instruments. 

This paper considers a special case where the right hand side is contaminated with a single 
measurement error that affects all right hand side terms or all terms except the constant 
term. Because of the examples that arise naturally in microeconomics, we consider 
proportional errors in variables (PEIV) where 

* *,  ,  ( ) 0,  ( ) 1,t t t t t t t ty X X X E E            i.e., where Xt is a vector of at least two 
regressors each affected by the same scalar error, δt, multiplicatively. We suggest that such 
cases are likely common in microeconomic models that impose some form of homotheticity 
or homogeneity. 

To illustrate, modern applied consumer demand theory generally flows via Roy's identity 
from an indirect utility function to consumer demands. The indirect utility function 

( , ) ( / )V p m V p m  where V  is a function of a price vector p divided by scalar income m 
follows from homogeneity (Blundell, 1988). Implied consumer demands are of the form x = 
f(p/m). Thus, errors of measurement in income cause common mutiplicative errors in all 
normalized prices. Because of well-known problems in measuring income, e.g., permanent 
versus transitory income, we suggest that errors in measurement of income are far more 
likely than errors in measurement of prices. 

Similar problems occur in standard microeconomic models of production. A common 
approach in applied studies is to start with the unit cost function or some generalization of it 
under homotheticity (Berndt and Wood, 1975). Cost functions are thus of the form c(p,w) = 
φ(q)h(p) where p now represents a vector of factor prices, q is a scalar output, and c is cost. 
Mismeasurement of output q thus causes common multiplicative errors of measurement in 
all price effects. Since factor demands are the gradient of c with respect to p via Shephard's 
Lemma, factor demands and the substitution effects are thus mismeasured due to the 
common impact of errors in q. Because many forms of production are affected by 
unforeseen circumstances, so that ex post production differs from ex ante planned 
production, we suggest that errors in measurement of the relevant planned output are far 
more likely than errors in measurement of prices. 

Another common approach in applied production studies is the profit function approach in 
which the standard property of linear homogeneity in prices yields ( , ) ( / )w p w p   
where w is a vector of prices for inputs and p is now a scalar price of a single output. 
Mismeasurement of the output price thus causes common multiplicative errors in 
measurement of all normalized input prices. Because input prices are typically well-known 
at the commencement of any time-consuming production process but the resulting output 
price after production cannot always be well anticipated, we suggest that errors of 
measurement in anticipated output prices by using data on later actual output prices are far 
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more likely than for the input prices. In each of these cases, a plausible model involves 
common multiplicative mismeasurement errors among regressors. 

Interestingly, concern over common errors among regressors as a result of deflating all 
variables by a common but erroneous deflator arose relatively early in the errors-in-
variables literature in economics. While these studies are salient to the type of question we 
consider, they generally bear little or no resemblance to modern applied microeconomic 
practice as discussed above. Kuh and Meyer (1955) and Briggs (1962) examined conditions 
under which correlations were biased and non-deflation was therefore preferred to 
deflation. Subsequently, Casson (1973) provided an approach for consistent estimation 
when the dependent variable as well as all the regressors are subject to the same 
proportional measurement error. In his case, multiplying the regression equation by the 
deflator obtains a model with measurement error only in the constant term. However, most 
modern microeconomic models that are popular for empirical purposes represent economic 
behavior where the right hand side structure does not generate deflated dependent variables. 

To make clear the empirical relevance of the specific PEIV structure of the linear model in 
this paper in production and consumption studies, consider the widespread application of 
the following models. 

1.1 Cost Function Estimation 

Homothetic technology, stochastic production, and risk neutrality yields a cost function of 
the form ( ) ( )c q r   where q is planned output and r is an input price vector (Shephard, 
1970). Suppose φ(r) is linear in parameters and observed output q varies about planned 
unobserved output q  stochastically as with unanticipated weather effects on agricultural 
production. If production has constant returns to scale, ( ) ,q q   and φ(r) takes on a 
generalized Leontief form (Diewert, 1971), then the estimated equations are typically the 
conditional input demands (x), 

  1/2 1/2( / ) ( / ) ,i ii ij j i ii ij j ij i j i
x q b b r r b q b q r r

 
        

which yield an ith factor demand the form y = X*β where the jth column of X* has element 
1/2( / ) .j iq r r  If planned output is mismeasured by actual output, e.g., by q where / ,q q   

E(δ) = 1, then the PEIV model of this paper applies. The generalized Leontief cost function 
developed by Diewert and it's associated factor demands have been employed extensively 
in homothetic and non-homothetic forms (where the latter commonly adds an additional 
term involving ).q  Homothetic examples are numerous: e.g., Izumida, Urushi, and 
Nakanishi  (1999); Fuss (1977), Pope and Just (1996). 
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1.2 Consumer Demand Estimation 

Any consumer demand x of the form ( / )j jjx b p m   will also have the proportional 
error structure when income m is mismeasured. Some examples include Heien (1977), Burt 
and Brewer (1971), and Song and Hallberg (1982). Equally common in applied demand 
work with incomplete demand systems is to deflate all terms on the right hand side except 
the constant in a partial demand system or a single demand equation, which in typical linear 
form yields * *

0( / ) ( / )j jjx b m P b p P    and is also of the form y = X*β. Thus, all 
terms except the constant are proportionally mismeasured if the deflator P* is measured 
with error, e.g., by P where P = P*/δ, E(δ) = 1. These applications can be expanded to 
include particular forms of utility as in the production example above. For example, 
homotheticity can be expanded to include quasi-homotheticity in which case demands will 
be of the form ( ) ( )x a p b p m   (Gorman 1959; Lewbel, 1987), which is required when 
aggregate demands are rationalized from consumer theory and aggregate income or per-
capita income is used for m. 

These models show that the PEIV model arises naturally in competitive demand, supply, 
and cost function estimation problems when key variables such as output, income, or price 
indexes are measured imperfectly. Thus, theoretically-grounded empirical practice calls for 
consistent estimation of PEIV models. 

Often, these models have a separable form which, when coupled with homogeneity 
conditions, implies that no constant term (other than one affected by the random 
multiplicative factor) should be included in the regression equation. For example, any 
constant term in ( )   should be multiplied by the measurement error in q in case 1 above. 
Yet in empirical work, the PEIV problem is generally ignored. This is particularly 
troublesome in applications where one knows a priori, consistent with expected profit or 
expected utility maximization, that the ex post realization of random output is not 
applicable in the cost function (e.g. in agricultural applications; see Pope and Just 1996). 

The two most distinguishing features of these models as well as the PEIV model of this 
paper are multiplicative errors and commonality of the multiplicative error term among 
regressors. Consideration of multiplicative errors is, of course, not new. Typical empirical 
practice has often been to assume, as a matter of convenience, that errors in variables are 
multiplicative when data are logged, and additive when data are not logged, so that standard 
EIV models as they have been developed in the literature are applicable. We suggest 
alternatively that the choice of linear versus log linear forms is not always a matter of 
convenience for serious empirical work as suggested by the early work on ratio regressors 
cited above. Otherwise, the literature would not continue to use specific forms such as the 
generalized Leontief cost and expenditure functions, or the CES, Generalized McFadden, or 
other specific functional forms to specify estimated demands involving additive functions 
of the levels of variables rather than of their logs. The approach of this paper eliminates the 
arbitrary choice of a logged-data model for the case of proportional errors invariables 
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because essentially the same convenience as ordinary least squares (OLS) is attained for a 
model additive in levels. Moreover, while some alternative specific functional forms use 
logged data, e.g., the Cobb-Douglas form, the approach of this paper is apparently the only 
one that permits consideration of the PEIV problems highlighted above in a modern 
second-order flexible form (forms such as the translog are not linear in logged data and thus 
present other non-standard problems for estimation). 

In this paper, absence of a constant term is considered initially not only because this case 
has theoretical relevance as in case 1 above, but because the model is readily identified 
using standard assumptions and sample moments without extraneous data (an unusual 
result in the EIV literature). The magnitude and direction of the bias of least squares is 
unambiguously obtained. A simple correction to the least squares estimator is derived 
analytically to achieve consistency, and the asymptotic distribution of the corrected least 
squares estimator is obtained. Subsequently, the more general case with a constant is 
considered where an obvious instrument leads to an additional moment condition and 
consistent estimation. In this case, a simple adjustment to the least squares estimator is 
consistent although it cannot be derived in closed form. The estimator can be placed within 
the generalized method of moments (GMM) framework so that the asymptotic properties of 
the estimator are readily determined. A novel aspect of the GMM approach in this paper is 
that, while instruments are typically assumed nonstochastic or orthogonal to disturbances, 
we start with moment conditions using the instruments directly. 

2. INCONSISTENCY OF OLS ESTIMATORS 

Consider a standard linear regression model with no intercept and at least two regressors, 
* ,t t ty X     t = 1,...,T, where regressor data on each observation contain proportional 

errors, * ,t t tX X   where δt is a scalar multiplicative error.  

Assumption A. Suppose (i) standard regression assumptions apply: ( ) 0,tE    
2( ) ,tE      t = 1,...,T, 

. .
* * /

a s

ti tj ijt X X T Q  where Q = {Qij} is positive definite and 

exists, and *
tX  and εt are jointly independent and identically distributed (iid) random draws 

with bounded fourth moments;1 and (ii) additional PEIV assumptions apply: ( ) 1,tE    
2( ) ,tE      t = 1,...,T, and X′X is invertible except on an inconsequential set of measure 

zero where δt is also jointly iid with *
tX  and εt with bounded fourth moments. 

                                                   
1 The iid assumption can be relaxed to require only independence without much difficulty by applying 
Markov's version of the law of large numbers (White, 1984, p. 330). 
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For notational purposes let y = (y₁,...,yT)′ , * * * *
1( ,..., ) { },T tiX X X X     ε = (ε1,…, εT)′, 

1( ,..., ) ,TX X X    and Δ = diag(δ1,…,δT). Then the model *y X     is inconsistently 
estimated by the OLS estimator using data *,X X   

  1 1 * 1ˆ ( ) ( ) ( ) ,X X X y X X X X X X X              (1) 

because 

  
. .

1 * 2 * 1 1( / ) ( / ) / ,
a s

X X T X X T Q         (2) 

  
. .

*/ / 0,
a s

X T X T       (3) 

  
. .

* * */ / .
a s

X X T X X T Q      (4) 

That is, the respective elements of * 2 * / ,X X T  
* / ,X T  and * * /X X T  are 

* * 2 / ,ti tj tt X X T  * / ,ti t tt X T   and * * / ,ti tj tt X X T  which converge almost surely to their 
expectations ωQij, 0, and Qij, respectively, by the Kolmogorov law of large numbers under 
Assumption A. Substituting (2)-(4) into (1) proves: 

Proposition 2.1. Under Assumption A, 
. .ˆ / .

a s
    

Note that ω > 1 must hold for stochastic δt because 2( ) ( ) 1.t tE Var      Thus, from the 
result in Proposition 2.1, proportional errors in variables bias regression coefficients 
proportionally and cause absolute underestimation of every element of β (attenuation bias). 
This result suggests that many elasticities for microeconomic models in the literature may 
be underestimated where the conditions discussed in the introduction apply. 

3. INCONSISTENCY OF ESTIMATED STANDARD ERRORS 

If the bias in estimates, ̂  , are proportional to β, then the possibility exists that tests of 
zero regression coefficients under OLS are appropriate. To examine this issue, consider 
errors in estimating the covariance matrix. Using true but unobservable data, the least 
squares regression estimator is * * * 1 *( ) ,X X X y    which with spherical disturbances has 

covariance matrix * * * 1( )X X     for which 
. .

* 1.
a s

T Q     Assuming for the moment 

that σ is known, if the covariance is estimated using error-laden data by 1( ) ,X X     
then (2) implies 
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. .

1.
a s

T Q



    (5) 

Thus, the covariance matrix is also proportionally underestimated by the same factor that β 
is underestimated. This causes the standard errors of regression coefficients to be 
proportionally underestimated and the asymptotically normal test statistics for zero 
regression coefficients to be overestimated by a factor of ω–1/2. Thus, rejections of 
hypothesis tests of zero coefficients are overly conservative because significance is 
underestimated. 

Next, consider the more realistic case where σ is unknown and estimated by 

  1ˆˆ ˆ ˆˆ / ,  ,  ( ) .T y X My M I X X X X               

 Substituting *y X     and using (2)-(4) obtains 

  
. .

ˆ ( / ) .
a s

Q Q            (6) 

While (5) implies underestimation, the variance of the regression disturbance is 
overestimated by an additive term ( 1) /Q     that increases both in the variance of 
data errors and means of the regression equation. Combining results in (5) and (6) proves: 

Proposition 3.1. Under Assumption A, the covariance matrix estimated in practice when σ 
is unknown, 1ˆ ˆ ( ) ,X X     satisfies 

  
. .

1 1
2
1ˆ .

a s
T Q Q Q

   
 

       (7) 

The first right-hand term tends to underestimation while the second right-hand term tends 
to overestimation. Thus, the covariance matrix estimated in practice has partially offsetting 
asymptotic errors. The errors are exactly offsetting if β′Qβ = σω. The estimated covariance 
matrix strongly converges to a matrix that differs from the true asymptotic covariance 
matrix by a scalar factor (β′Qβ is a scalar). Hence, standard test statistics err asymptotically, 
but by the same scalar factor for each regression coefficient. 

4. ASYMPTOTIC DISTIBUTION OF THE OLS ESTIMATOR 

Having established the almost sure convergence properties of the standard OLS estimator, 
we next examine the asymptotic distribution of the error-laden regression estimator. 
Because ̂  converges strongly to β/ω, we examine the asymptotic distribution of 
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ˆ( / ),T     which yields the covariance of the standard OLS estimator. Using (1) and 
factoring (X′X/T)–1 obtains 

  1ˆ( / ) ( / ) ( / )T X X T V T       (8) 

where 

  * * * * 2 *( / ) ttV X X X X X V              (9) 

and 

  * * * 2 * * * 2 *( / ) [ ( / ) ].t t t t t t t t t t t t t t t tV X X X X X X X                      

Clearly, from the latter expression, E(Vt) = 0, Vt is serially uncorrelated, and 

  2 * *( ) ( )t t t t tE VV y X X       (10) 

where 2 2[( / ) ]t tE      and * .t ty X   Thus, from (9), the central limit theorem implies 

asymptotic normality of /V T  and therefore of ˆ( / ).T     

Proposition 4.1. Under Assumption A, 

   1 1
1 2

ˆ( / ) 0,
d

T N Q Q RQ   
 

 


     
  (11) 

where 

  
. .

2 * * / .
a s

t t tt y X X T R     

Proof:  Under Assumption A, the overall covariance matrix of Vt (considering randomness 
of Xt) is constant implying asymptotic normality of  /V T  by the standard central limit 
theorem (Loéve, l977, p. 286A). Bounded fourth moments and conditions on εt and δt are 
required for existence of the covariance matrix of Vt. Using (10) in absence of serial 
correlation of Vt implies 

  
. .

2 * *( / ) ( / ) ( ) / .
a s

t t t t tt tE VV T VV T y X X T Q R           
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Because /V T  is premultiplied by (X′X/T)–1 in (8), pre- and post-multiplication of this 
equation by Q–1/ω completes the proof. 

 Comparison of the covariance matrices in (7) and (11) suggests great similarity. 
First, the initial term of each is identical, σQ–1/ω. Second, β′Qβ in (7) simply represents an 

asymptotic average of 2
ty  because 

. .
2 / .

a s

tt y T Q   However, Q–1R is another approach 

to averaging 2.ty  That is, * * 1 2 * *( ) t t ttX X y X X   is an average with weights 
* * 1 * *( ) ,t tX X X X   which sum to the identity matrix, 
* * 1 * * * * 1 * *( ) ( ) .t ttX X X X X X X X I       Thus, the tests performed naively using 

standard OLS methods are approximations of valid tests. However, the degree of 
approximation is not clear. 

5. A CONSISTENT ESTIMATOR BASED ON OLS 

Examination of the above results suggests a simple approach for asymptotic correction of 
the standard regression estimator. A consistent estimator of ω facilitates the needed 
correction. To obtain a consistent estimator of ω, note by the Kolmogorov law of large 
numbers that the asymptotic mean of the dependent variable satisfies 

  
. .

*/ / /
a s

t t tt t ty y T X T T q           (12) 

where 
. .

* */ .
a s

tt X T X q    On the other hand, by Proposition 2.1, 

  
. .ˆ / .

a s
X q      (13) 

where 
. .

/
a s

ttX X T q    by the Kolmogorov law of large numbers. If 0,q   then 
comparing (12) and (13) reveals that 

  
. .ˆ/( ) .

a s
y X      (14) 

We regard 0q   as a relatively harmless assumption because 0y   is plausible, for 
example,  

in each of the motivating examples of the introduction and would seem to be so for any 
similar case that motivates proportional errors. Then from Proposition 2.1, 
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. .

*ˆ ˆ ,
a s

       

and from (6), 

  
. .ˆ ˆˆ ( / ) ( 1) .

a s
X X T            (15)  

because from (2) and Proposition 2.1, 
. .ˆ ˆ( / ) / .

a s
X X T Q        This proves: 

Proposition 5.1. Under Assumption A, a proportional correction of the least squares 
regression estimator based on the ratio of the sample mean of the dependent variable to the 
sample mean of regression predictions obtains a consistent estimator of the regression 
parameters. 

6. ASYMPTOTIC INFERENCE 

The correction to the least squares estimator can also be obtained as a method-of-moments 
estimator. Let mi and mii be the ith direct and cross sample moments, respectively, about the 
origin and let μi be the ith direct population moment about the origin. The method-of-
moments estimator is found by setting the sample moments equal to their asymptotic limits, 
the population moments, and solving the corresponding set of equations. These equations 
are 

  * * *
1 1 1 1 2 2( ) ( ) 0;  ( ) ( ) 0;  ( ) ( ) 0.m X X m y X m X X            (16) 

  * *
2 2 11 2( ) ( ) 0;  ( , ) ( ) 0.m y X m X y X            (17) 

where, as above, *
1( )X q    and *

2( ) .X Q   If β has dimension K, these equations 
contain K, 1, K², 1, and K restrictions, respectively, in the K + 1 + 1 + K + K² ≡ L 
parameters in ( , , , , ( ) ) .q vec Q        This system is just identified and its solution can be 
shown to agree with (14)-(15). Because the system is just identified, the weighting matrix 
in a GMM approach is irrelevant so (14)-(15) is the method-of-moments special case of 
GMM estimation. The asymptotic covariance matrix of sample moments is estimated by 

(1/ ) ( )( ),jt j it itW T g g g g   i,j = 1,…,L, where gjt (e.g., 2 )ty  is an element of the sum in 
the jth sample moment and jg  is the jth sample moment, e.g., 2

2( ) (1/ ) .ttm y T y   Letting 

̂  represent a matrix with jth row /jg    evaluated at ˆ,   an estimate of the asymptotic 
covariance of this method-of-moments estimator is 

  1 1
ˆ

ˆ ˆˆ .W


      (18)  
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From standard method-of-moments results, which can be applied here due to our assumed 
regularity conditions (Newey and McFadden, 1994), asymptotic normality follows. Using 
(16)-(18) thus provides the means of inference. For example, this distribution theory 
facilitates a test of the hypothesis ω = 1, which if rejected implies existence of significant 
proportional errors in the regressor variables in support of the PEIV model. 

7. ADDING AN INTERCEPT 

Now, suppose the model is * ,t t ty X      t = 1,...,T, and continue with Assumption A. 

For expositional purposes, it is sufficient to identify and estimate the model assuming *
tX  is 

a 1 × 2 row vector with, 

  * *
1 1 2 2 ,  1,..., .t t t ty X X t T          (19) 

Cases with many variables measured without error and many other variables affected by the 
same proportional error follow in a straight forward manner as discussed below. We first 
suggest the estimator with an instrumental-variable-like approach as earlier and then 
formalize it in a  

GMM framework to draw on familiar asymptotic results. 

Assumption B. Where 1 2/ ,t t tz X X  z = (z1,…,zT)′, l is a vector of ones, and *( , , ),W l z X  

assume E(Wtδt) = E(Wtεt) = 0, t = 1,…,T, and 
. .

(1 / )
a s

t ttT WW Q    where Q  is positive 

definite with lower right partition Q. Let all other assumptions on *, , ,t t tX X   and δt follow 
Assumption A.  

Applying instruments (l,X)′ to (19) obtains for this just-identified system 

  
*

*

/
/ (1/ )(1/ )

l y T X
X y T X T XT X X

 
 

       
               

 

where bars denote averages. These yield the familiar moment equations  
*

1 1( ) ( ) 0m y m X     

and 2 1 2( , ) ( ) ( , ) 0.m X y m X m X X     Because, 
. .

*
1 1( ) ( ) 0,

a s
m X m X   

. .

2( , ) ,
a s

m X X Q  
. .

*
2( , ) ,

a s
m X X Q  and 

. .
* *

2( , )
a s

m X X Q  as noted earlier, the equivalent 
moment conditions in terms of observable variables are 

  1 1( ) ( ) 0,m y m X      (20) 
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  2 1 2( , ) ( ) [ ( , )/ ] 0.m X y m X m X X       (21) 

Solving (20) for α and substituting into (21) yields 

  1 1
ˆˆ ( ) ( ) ,m y m X     (22) 

   
1

2
1 1 2 1 1

( , )ˆ ( ) ( ) ( , ) ( ) ( ) .m X X m X m X m X y m X m y



      

  (23) 

where, by Assumption A and Proposition 33 of Dhrymes (1978), the inverse in (23) exists. 
If ω is known, then (23) is a consistent estimator for β that requires a proportional 
adjustment of part of the least squares data matrix. The estimator of α in (22) is identical to 
the usual least squares estimator once β is estimated appropriately. 

For the case where ω is unknown, the necessary additional moment equation is available 
using z.  That is, applying instruments (l,z,X)′ to (19), instead of (l,X)′ as above, obtains an 
additional equation, */ (1/ ) (1/ ) ,z y T z T z X T z        which yields the moment equation, 

  *
2 1 2

ˆˆ( , ) ( ) ( , ) .m z y m z m z X     (24) 

Replacing X* by X, noting that 
. .

*
2 2( , ) ( , ) 0,

a s
m z X m z X   and using (22) yields 

     2 1 1 2 1 1
ˆ( , ) ( ) ( ) ( , ) ( ) ( ) 0,m z y m z m y m z X m z m X      

which, upon substituting (23), obtains 

  
1

2
2 2 1 1 2

( , )( , ) ( , ) ( ) ( ) ( , ) 0m X Xm z y m z X m X m X m X y



     

    (25) 

where m  represents centered moments. Although (25) does not have a closed form solution 
for ω, it facilitates easy numerical solution and, once solved, the unconditional estimators 
of β and σ can be found from (22) and (23). 

To represent this approach in a common GMM setting, let2 

                                                   
2 For the two-regressor case we abuse slightly the GMM terminology, which is generally reserved for the case 
with over-identifying restrictions.  As noted in the conclusions for the more general case, however, such over-
identifying restrictions will generally be present. 
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  ( , ) ( / ) ,
t t

t t t t t t

t t t t t

y X
g z X y X X X

z y z z X

 
   

 

  
    

   

  (26) 

which yields E[g(zt,θ)] = 0, t = 1,...,T. The method of moments estimator, ˆ,  solves 

  ˆ(1/ ) ( , ) 0.ttT g z     (27) 

With two regressors, four moment equations are obtained in the four unknowns, α, β1, β2, 
and ω. To attain almost sure convergence, consistency, and asymptotic normality, we 
assume standard regularity conditions (see, e.g. Hansen, 1982 ). 

Assumption C. Let θ0 be the true parameter value in the interior of a compact parameter 
space, Θ. Assume g is (i) continuous and measureable for all zt, (ii) g is first moment 
continuous for all ,   (iii) E[g(zt,θ)] exists and is finite for all ,   and (iv) 
E[g(zt,θ0)] = 0  uniquely at θ = θ0.  Further, assume the gradient of g denoted by /g    
satisfies properties (i)-(iii) and is full rank for all .   

Proposition 7.1. Under Assumptions B and C and the definition in (26), the method of 

moments estimator, ˆ,  that solves (27) satisfies 1ˆ( ) (0, )
d

T N G G      where 
( / )G E g     and [ ( , ) ( , ) ].t tE g z g z        

Proof: Conveniently, the estimator defined by (27) is just identified. Thus, given 
conventional regularity conditions satisfied by Assumptions B and C (e.g., Hansen, 1982), 
the method of moments estimator is consistent and asymptotically normal (see also Newey 
and McFadden, 1994).3 

Although G is easy to compute analytically and thus estimate, this is not so for Ω because it 
involves higher moments. Alternatively, standard numerical GMM methods allow 
inference using ˆˆ (1/ ) / ( , )ttG T g z     and ˆ ˆˆ (1/ ) [ / ( , )][ / ( , )] .t ttT g z g z           
However, these results do not facilitate an analytical comparison of OLS and GMM 
standard errors. 

 

                                                   
3 While we calculate standard errors in this paper with a robust approach similar to White (1984). The 
covariance matrix in Proposition 7.1 can also be developed based on the specific structure of the problem. 
While this alternative approach may be more accurate in some settings, we opt for a more robust approach 
here. 
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8. A MONTE CARLO COMPARISON 

Comparing OLS and GMM estimators, one would expect measurement errors in addition to 
typical sampling errors to create additional instability of parameter estimates. Although 
OLS estimates are inconsistent, it does not follow for small samples that OLS is dominated 
by a (consistent) GMM estimator. In order to shed light on these issues, we examine the 
simple linear model in (19) numerically. 

While we have examined a number of parametric variations with similar results, we report 
here only a typical set of cases with parameters α = 1, β1 = 2, and β2 = 5. True regressors are 
randomly generated from uniform distributions with respective means of 8 and 10 and 
ranges of 0 to 16 and 0 to 20, and are fixed throughout all replications. Regressors with 
proportional errors in variables are randomly generated in each iteration where the 
proportional error is normally distributed with a unit mean. The standard deviation of the 
proportional error is parametrically varied among values 0.05, 0.15, and 0.30, which 
corresponds, respectively, to ω = 1.0025, 1.0225, and 1.0900. The dependent variable is 
generated using the true regressor data, the parameters, and a random normal regression 
error. For all reported results, normal regression errors were generated with mean zero and 
standard deviation 10.  The resulting mean for the dependent variable is approximately 70. 
The number of replications is 1,000 throughout. 

Table 1 compares the OLS estimator with the GMM estimator defined by (22)-(24) or (25). 
All reported biases and mean squared errors are measured as proportions of the true 
parameters. Consider first the case with ω = 1.09, which represents large but not unrealistic 
proportional measurement error.4 Examining the bias column for OLS estimates, the biases 
are negative for all slope parameters (attenuation bias) as expected, implying with the 
chosen parameterization that the intercept bias is positive. All biases are large, but the 
intercept bias is particularly so because it depends on the attenuation results for the slope 
parameters and the mismeasured means of the data. Note following (22), however, that the 
bias of the intercept is essentially determined by the bias of the slope coefficients and that 
this bias becomes arbitrarily large as means of the nonconstant regressors are chosen 
arbitrarily far from zero. At a sample size of 40, the smallest bias is 29.4 percent.5 With a 
doubling of sample size to 80, OLS biases do not change materially. This is true even for 
the largest reported sample size of 1,000.6 Mean squared errors (MSE) for OLS follow 
much the same pattern. They diminish but not substantially with increasing sample size. 

                                                   
4 See Pope and Just (1996) for a case with very large measurement errors due to the econometrician 
incorrectly assuming that agricultural output is known ex ante in cost function estimation. 
5 The percent biases for the three parameters follow the same qualitative order as for OLS on the true data. 
These are: α = 0.243, β1 = –0.687, β2 = –0.002. That is, sampling error yields the largest bias for the intercept 
followed by the first and then the second slope parameters. 
6 In fact, the bias for α is slightly higher for 1000 observations than for 80. In the PEIV model, increasing 
sample size does not diminish measurement error. Thus, biases do not approach zero in sample size. We 
suggest that this is a plausible outcome for most problems in economics. 
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Turning to the GMM results in Table 1, bias and MSE fall dramatically with increasing 
sample size as expected. For example, a doubling of the sample size from 40 to 80 reduces 
bias for α from 1444.4 percent to –60.1 percent. The change in the bias of slope coefficients 
is similarly impressive, declining from 13-41 percent to around 1 percent. Interestingly, 
however, even when the sample size is quite large (1,000), the bias of slope coefficients can 
still be about half of one percent and the resulting constant term bias can be much larger. 
As for OLS, the MSE is much larger for the intercept than the slope parameters owing to 
the magnitude of mean regressor data. However, for GMM, the MSE falls dramatically as 
sample size is increased and becomes negligible at 1,000 observations with the exception of 
the intercept. Note that using z as an instrument permits estimation of ω with little bias 
based on as few as 40 observations. 

Comparing estimators for the case where measurement error is lower reveals a somewhat 
different comparison. When measurement error is small with ω = 1.0025, OLS dominates 
GMM with respect to both bias and MSE with 40 observations. When the sample size 
doubles to 80, bias is lower but MSE is larger with GMM. For large samples, bias is much 
lower for GMM than OLS but MSE is still larger. In both cases, bias and MSE tends to fall 
substantially as sample size is increased. 

When measurement error has an intermediate magnitude with ω = 1.0225, OLS has a much 
larger bias than GMM throughout the reported sample range. The bias falls dramatically 
with sample size for the GMM estimator but only slightly for OLS. However, MSE is far 
higher for GMM with 40 observations. As sample size doubles to 80, MSE for GMM is 
approximately 3 times larger than for OLS. For large samples, GMM dominates with 
respect to both bias and MSE. 

In summary, this Monte Carlo experiment suggests the following qualitative conclusions 
(which are also consistent with unreported results): 

1. For small measurement error and small sample sizes, OLS dominates with respect 
to both bias and MSE. 

2. For intermediate levels of measurement error and intermediate sample sizes, GMM 
tends to yield less bias but larger MSE. 

3. For large measurement error and large sample sizes, GMM tends to have both less 
bias and lower MSE. 

4. Bias falls dramatically with sample size for GMM but does not decline appreciably 
with sample size for OLS. 

5. In relative terms, MSE falls much faster with sample size for GMM than for OLS 
but is much higher for small samples than OLS. 

These results suggest that PEIV estimation methods are useful for some problems in 
smaller sample sizes and for most problems in large samples. For example, estimation of 
cost functions for the case of stochastic production may typically be a case of large 
measurement error if unanticipated weather causes substantial production variation as in 
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agriculture. On the other hand, demand estimation with errors in price indexes may 
typically have smaller relative measurement error and thus suggest use of PEIV estimation 
methods only with large samples. 

9. AN EMPIRICAL ILLUSTRATION 

In this section we apply the PEIV model to a typical problem of agricultural factor demand 
and technical change estimation (Binswanger 1974, Antle 1984) with the widely used 
aggregate agricultural data created by Ball et al. (1997). The data are annual from 1948-
1994 and consist of aggregate agricultural output, q, input prices, ri, and input quantities, xi, 
for capital (i = 1), chemicals (i = 2), fuel (i = 3), feeds (i = 4), labor (i = 5), and other 
purchased inputs (i = 6). In addition, exogenous technical change is introduced by including 
the year and year squared as regressors. The equations for input demands are assumed to 
follow from the generalized Leontief cost function for as discussed in the introduction aside 
from a quadratic technical change relationship, bii + cit + dit², substituted for each bii: 

  1/2 2( / ) ,  1,...,6;  48,...,94.it ii t ij t jt it i t i t itj ix b q b q r r c q t d q t i t


        

As earlier, this regression can be stated in standard linear form, * ,y X     E(ε) = 0, 
where the first six columns of X* have typical element 1/2{ ( / ) }t jt itq r r  with associated 
parameter bij and the last two columns have the year and year squared with respective 
coefficients ci and di. We assume that actual output qt rather than expected output tq  is used 
in least squares regressions where ,t t tq q   E(δt) = 1, t = 1,…,T, E(δδ′) = ωITI, E(δε′) = 0. 

To verify that necessary assumptions are plausible for this application, consider the stylized 
case of crop production where farmers make input decisions such as seed and fertilizer use, 
land preparation methods, and intensity of land use at the time of crop planting. Then 
weather conditions are realized during the growing season, which affect eventual actual 
production. Observed ex post production thus varies stochastically from unobserved 
planned ex ante production because input decisions are made at the time of production 
planning before ensuing weather is known. While exceptions to this timing can be 
identified, they are typically believed to be minor by comparison so that this conceptual 
framework represents the bulk of agricultural production. 

Under expected profit maximization, standard dual cost theory applies to the optimization 
problem at the time of production planning, so input quantities depend on ex ante rather 
than ex post actual output. Thus, in terms of the notation of the model, x represents the 
quantity of input demanded, X represents functions of input prices times actual ex post 
output, and X* represents functions of input prices times ex ante output. Because ex ante 
output and the associated input decisions are made before weather is realized, they are 
unlikely to depend on weather conditions that are not yet known, i.e., X is likely 
independent of δ. The errors in the input demands, on the other hand, represent errors in 
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optimization for individual inputs. Because these decisions are made before weather is 
realized, they are also unlikely to depend on weather, i.e., ε is likely independent of δ. 
Finally, dependence of weather on farmer's earlier input decisions is implausible, i.e., δ is 
likely independent of X*. For these reasons, the independence of Assumption A is highly 
plausible. (While we have not argued the independence of ε and X here, this is the standard 
assumption that has been used in conventional estimation problems of this type, and is 
discussed at length elsewhere.) 

Table 2 presents system estimates of the model where the standard symmetry conditions (bij 
= bji   i,j) are imposed consistent with a common underlying generalized Leontief cost 
function. Because all input demand equations are affected by the same proportional errors 
in actual ex post output as a measurement of ex ante output, a common underlying 
generalized Leontief cost function also implies a common ω parameter across equations. 
Thus, only one estimate of the ω parameter appears in Table 2. Nevertheless, as a test of the 
applicable theoretical model of PEIV, we tested whether the same ω parameter applies to 
all equations. By estimating the model allowing distinct  parameters in each equation, the 
estimates of the remaining parameters were almost identical (differed by no more than 
about 1 or 2 in the second significant digit) and the estimated  parameters were almost the 
same, ranging from 1.00032 to 1.00092 with standard errors ranging from 0.00022 to 
0.00038.7 The chi-square statistic for testing whether all  parameters are identical was 
0.00000022 with 5 degrees of freedom, which overwhelmingly favors the conclusion that 
the same PEIV problem affects all 6 input demand equations. 

As for the estimates in Table 2, a respectable 20 of 34 coefficient estimates are significant 
at the 5 percent level and 14 of 34 are significant at the 1 percent level. The R2 statistics are 
generally high, particularly for chemicals and labor. Technical change is labor saving and 
capital, chemical, and other input using, which are highly plausible for U.S. agriculture 
over the 1948-1994 period. With the quadratic form in time, technical change switches 
from fuel and feed using to fuel and feed saving in the latter part of the estimation period, 
which also seems quite plausible. Estimated demand elasticities are appropriately negative 

                                                   
7 In GMM or instrumental variables (IV) estimation, where Z is a T × K matrix of non-random instruments, 
the standard model has covariance Z′ΩZ associated with Z′ε = Z′(y – X*β) where Ω = E(ε ε′) = σ2IT under 
homoskedasticity. With PEIV, however, the corresponding covariance in terms of observables follows from 
Z′(y – Xβ) ≡ Z′[(X* – X)β + ε], which also has mean zero but generates the heteroskedastic covariance matrix 
Z′[σ2IT + (ω – 1)D]Z where D is a diagonal T × T matrix with typical element * 2( ) .tX   For the case of 
random instruments such as appear in X, the same principle applies but yields a more complicated error term. 
Because the predicted dependent variables in this application vary relatively little compared to their 
magnitude, and the estimated ω is much closer to 1 than the estimated σ2 is close to zero, the errors in this 
application were very close to homoskedastic. For this estimation problem we have not employed the well-
known heteroskedastic-autocorrelation correction (HAC) method of Newey and West (1987), which yields 
consistent standard errors in any case, because data are not sufficient. As the number of orthogonality 
conditions grows relative to sample size and number of parameters, finite sample identification may be aided 
but the ability to compute HAC standard errors may diminish. Due to the large number of inputs (and hence, 
orthogonality conditions) which exceeds the number of observations in our application, we report nonlinear 
three-stage least squares standard errors in Table 2. 
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at sample means for all inputs and at every observation for all inputs other than capital 
where one observation generated a very small positive elasticity of 5 × 10–5. Estimated 
elasticities range over time from –0.41 to –0.94 for chemicals, –0.06 to –0.14 for fuels, –
0.14 to –0.42 for feed, –0.10 to 0.48 for labor, –0.01 to –0.10 for other inputs, and range 
from near zero to –0.03 for capital. The vast majority of these estimates are plausible both 
in sign and magnitude. While other diagnostic statistics could be presented and discussed, 
we forego these here because, apart from considering PEIV, this is a common application 
with agricultural data and similar investigations have been reported elsewhere. 

Turning to the parameter of central importance for this paper, the estimated common 
parameter ω is significantly greater than 1.0 at the 1 percent level. Thus, the results imply 
that PEIV is statistically significant in this application. Therefore, the results support the 
assertion that actual output has statistically significant errors as a representation of planned 
output that affect all cross price terms in generalized Leontief cost function estimation for 
agriculture. 

10. CONCLUDING DISCUSSION 

This paper explores estimation of the PEIV model where the proportional error in variables 
is identical across regressors other than the constant term. Such models arise naturally in 
many microeconomic applications. Application of least squares to such models causes 
attenuation bias for slope coefficients whether or not an intercept is present. Results show 
that standard hypothesis tests may be approximate but no simple criteria are available to 
determine accuracy. Alternatively, an asymptotic correction is identified as a minor 
modification of OLS obtaining strong consistency. The estimator converges in distribution 
to a multivariate normal making inference relatively convenient. While typical historical 
practice has been to use logged data when errors are multiplicative as a matter of 
convenience, many microeconomic models that generate internally consistent behavior do 
not admit such convenience. Further, we suggest that the methodology of this paper, 
particularly for cases that do not generate a constant term as in the empirical application 
presented here, is particularly convenient and allows intellectual honesty in the application 
of such structural models. 

For cases with a constant term that is not subject to error, estimation can be accomplished 
using the ratios of observed variables subject to proportional error as instruments. Although 
the approach is developed here only for the case with an intercept and two mismeasured 
regressors, the approach can be easily expanded to the case with multiple regressors 
measured without error (which are treated like l above) and two or more regressors have a 
common proportional error. In both cases, moment equations must be specified such that 
the orthogonality conditions hold and identification is possible. With more than two 
mismeasured regressors, however, more ratios of mismeasured variables are available as 
instruments than necessary, which leads to overidentification. Where k variables are 
mismeasured, k(k – 1) possible ratios like z are available. For efficiency, consideration must 
then be given to optimal weighting matrices and instruments (Hansen, 1982). 
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As a final comment, equation (25) is nonlinear in ω and the mismeasured variables. We 
have not examined the creation of optimal moments (or instruments). Improvements are 
likely possible by choosing instruments based on the predicted gradient of the moment 
equations (see Donald and Newey 2001). This may involve polynomials in the instrument 
z. In this case, efficiency would dictate a true GMM use of an appropriate weighting matrix 
based on the covariance matrix of the moment equations. We leave these possibilities to a 
future paper. 
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Table 1. Comparisons of Ordinary Least Squares and Method of Moments Estimators 
 Magnitude of Errors Ordinary Least Squares Generalized Method of Moments 
 Sample Parameter Biasa Mean-Squared Bias Mean-Squared 
 Size Estimator  Error  Error 
    - - - - - - - - - - - - - Magnitude of error, ω = 1.0900 - - - - - - - - - - - - - 
 T = 40 α 28.800 868.904 14.444 4327.61 
   β1 –0.696 0.549 –0.410 3.781 
   β 2 –0.294 0.095 –0.131 0.336 
   ω – – 0.007 0.019 
   
 T = 80 α 24.402 612.703 –0.601 1306.840 
   β 1 –0.672 0.481 0.011 1.466 
   β 2 –0.273 0.079 0.010 0.120 
   ω – – 0.002 0.005 
   
 T = 1,000 α 25.097 631.164 –0.047 9.055 
   β 1 –0.688 0.476 0.005 0.015 
   β 2 –0.283 0.080 <–0.001 <0.001 
   ω – – <0.001 <0.001 
    - - - - - - - - - - - - - Magnitude of error, ω = 1.0225 - - - - - - - - - - - - - 
 T = 40 α 10.340 133.558 –2.908 3192.322 
   β 1 –0.254 0.112 0.095 2.614 
   β 2 –0.103 0.017 0.023 0.260 
   ω – – –0.001 0.007 
   
 T = 80 α 8.423 83.657 –1.312 249.078 
   β 1 –0.243 0.082 0.040 0.248 
   β 2 –0.091 0.011 0.013 0.027 
   ω – – –0.004 0.001 
   
 T = 1,000 α 8.772 77.890 0.017 4.969 
   β 1 –0.247 0.063 0.001 0.007 
   β 2 –0.097 0.010 <–0.001 <0.001 
   ω – – <–0.001 <0.001 
     - - - - - - - - - - - - - Magnitude of error, ω = 1.0025 - - - - - - - - - - - - - 
 T = 40 α 1.529 22.011 –2.072 708.953 
   β 1 –0.037 0.032 0.070 0.488 
   β 2 –0.015 0.004 0.015 0.069 
   ω – – –0.010 0.003 
   
 T = 80 α  1.006 10.639 –0.435 145.934 
   β 1 –0.033 0.016 0.011 0.124 
   β 2 –0.010 0.002 0.004 0.018 
   ω – – –0.003 <0.001 
   
 T = 1,000 α 1.099 1.931 0.029 3.784 
   β 1 –0.031 0.002 <–0.001 0.004 
   β 2 –0.012 <0.001 <0.001 <0.001 
   ω – – <0.001 <0.001 
a Note that bias and mean squared error are measured as proportions of true parameters where α = 1, β 1 = 2, and β 2 
= 5. 
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Table 2. Estimates of Conditional Input Demands with PEIV for U.S. Agriculture, 1948-1994.a 
    Demand Equation    
Coefficient Capital Chemicals Fuels Feed Labor Other Inputs 
Capital Price 0.4684 b     
  (.4556) 
      
Chemical Price –0.0339 –3.7107*     
  (0.0377) (0.6144)     
 
Fuel Price –0.0134 0.3551* 0.6726    
  (0.0408) (0.1213) (0.6434)    
 
Feed Price –0.0845+ 0.3981* –0.0173 0.2645   
  (0.0385) (0.0854) (0.0709) (0.3730)   
 
Labor Price –0.0311 0.3671* 0.0135 0.3235* 22.1407*  
  (0.0700) (0.1006) (0.0951) (0.0914) (0.7689)  
 
Other Price –0.0284 –0.3589* –0.1138 0.0313 0.3921+ 0.5467 
  (0.0679) (0.1296) (0.1326) (0.1047) (0.1846) (0.7053) 
 
Year 0.0441* 0.0947* 0.0265 0.0246+ –0.4895* 0.0333 
  (.0110) (0.0130) (0.0173) (0.0102) (0.0176) (0.0211) 
 
Year Squared –0.00043* –0.00060* –0.00029+ –0.00027* 0.00272* –0.00033+ 
  (0.00007) (0.00008) (0.00011) (0.00007) (0.00011) (0.00014) 
 
ω  1.00046*      
  (00013) 
      
R2  0.75 0.96 0.69 0.88 0.99 0.67 
 
Elasticities –0.009 –0.57 –0.10 –0.25 –0.26 –0.04 
(at means) 
a  Standard errors appear in parentheses. Significance at the 5% level is indicated by '+' and at the 1% level by '*'. 
In the case of ω, significance corresponds to a one-sided test of H0: ω = 1 versus H1: ω > 1 while all other 
significance levels correspond to two-sided tests of zero coefficients. 
b Note that blanks for estimated coefficients in the table correspond to coefficients constrained to be the same as 
other coefficients in the table (either by symmetry or the commonality of ω across all equations). 
 


