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ABSTRACT 

 
Ng and Perron (2001) designed a unit root test, which incorporates the properties of DF-

GLS and Phillips Perron test. Ng and Perron claim that the test performs exceptionally 

well especially in the presence of a negative moving average. However, the performance 

of the test depends heavily on the choice of the spectral density estimators used in the 

construction of the test. Various estimators for spectral density exist in the literature; each 

have a crucial impact on the output of test, however there is no clarity on which of these 

estimators gives the optimal size and power properties. This study aims to evaluate the 

performance of the Ng-Perron for different choices of spectral density estimators in the 

presence of a negative and positive moving average using Monte Carlo simulations. The 

results for large samples show that: (a) in the presence of a positive moving average, 

testing with the kernel based estimator gives good effective power and no size distortion, 

and (b) in the presence of a negative moving average, the autoregressive estimator gives 

better effective power, however, huge size distortion is observed in several specifications 

of the data-generating process. 
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1. INTRODUCTION 

  

Unit root testing is a well-known and one of most debated issues in econometrics. There are 

lots of economic and econometric implications of the existence of a unit root in time series 

data, including the incidence of spurious regression (Atiq-ur-Rehman, 2011; Libanio, 2005). 

Due to its importance, many tests and testing procedures were developed for testing for a unit 

root. However, the size and power properties of unit root tests have always been subject to 

debate. 

 

In many economic time series models, errors may have heterogeneity and temporal 

dependence of unknown forms. This is the main source of size and power distortion of unit 

root tests. In order to draw more accurate inferences from estimates of parameters, 

constructing unit root tests based on long run variance (LRV) estimates has become 

important. LRV estimates take serial correlation and heterogeneity into account. The key to 

constructing an LRV is to estimate the spectral density (SD hereafter) at zero frequency. 

There are two main types of SD estimators: (1) autoregressive estimator of spectral density, 

(2) kernel based estimator of spectral density. However, literature does not provide any 

information about the relative performance of these estimators of spectral density. Many of 

existing tests for unit root, including the Ng-Perron test, use an estimator of spectral density at 
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zero frequency.  Ng and Perron (2001) have developed a new suit of tests, which according to 

them outperforms the other tests, especially in case of a negative moving average process. 

The output of the test is also affected critically by the choice of spectral density estimator, and 

the literature does not provide any guide in this regard. Ng and Perron (2001) do not discuss 

the effect of the choice of spectral density estimator and thus leave practitioners without 

guidance regarding the choice of an estimator of spectral density. 

 

This study aims to investigate the properties of Ng-Perron test for different choices of SD 

estimators using Monte Carlo simulations. We examine the size distortion and effective 

power of the test, with both autoregressive (AR) estimator and kernel based (KB) estimators 

of spectral density, in the presence of a negative and positive moving average. The remainder 

of the paper is organized as follows: In Section 2 we discuss the Ng-Perron test and various 

estimators of spectral density. Section 3 consists of our Monte Carlo design. Section 4 

explains the results. Section 5 provides details of detecting the sign of a moving average. 

Section 6 presents some concluding remarks. 

 

2. EFFECT OF SPECTRAL DENSITY ESTIMATOR ON OUTPUT OF NG-PERRON 

TEST:  A REAL DATA ILLUSTRATION 

 

Like other tests, the output of Ng-Perron test depends crucially on the choice of the spectral 

density estimator, and the final decision may be quite contradictory for two different choices 

of the density. This fact is illustrated below with the help of a real data example. 

 

We apply the Ng-Perron test on log GDP of UK from 1951-2007. Table 2.1 provides the 

outputs of Ng-Perron test with both estimators of spectral density estimators.  

 

Spectral Density Estimator 
Ng-Perron tests 

With Drift With Drift and Trend 

AR Estimator -8.25* -25.25* 

KB estimator (Parzen Kernel) 1.54* -3.81* 

Critical Value 

5% Critical Value  -8.1 -17.3 

Table 2.1 Output of Ng-Perron test with AR and KB estimator for log UK GDP data 

Notes: * 5% level of significance 

 

According to the results in Table 2.1, the Ng-Perron test statistics is below the critical value 

for the autoregressive estimator of spectral density; hence, the unit root hypothesis should be 

considered rejected. On the other hand, for Kernel based estimator of spectral density, the Ng-

Perron test statistics is far above the critical value; thus, the null of unit root could not be 

rejected even at a loose significance level. Therefore, the person applying the unit root test 

may be confused in the choice of result. In response to this ambiguity, we designed our study 

to compare the size and power properties of Ng-Perron test so that a practitioner may get 

some guidance on the selection of an optimal spectral density estimator.  

 

3. COMPUTATION OF NG-PERRON TEST 

 

In this section we discuss the Ng-Perron unit root test and different estimators of spectral 

density at zero frequency. 
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3.1. Test Statistics 

 

Dufour and King (1991) and Elliott et al. (1996) found that local GLS detrending of the data 

yields significant power gains. Phillips and Perron (1987) found that use of SD could improve 

the performance of the test. Ng and Perron (2001) combine GLS detrending with SD to design 

a new test. The proposed test consists of a suite of four tests, namely MZa, MZt, MSB, and 

MPT. The four test statistics proposed by Ng-Perron are:      
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   . The symbol 

       indicates the estimate of spectral density at frequency zero.  

 

3.2. Spectral Density at Frequency zero 

 

The spectral density at frequency zero represent the heteroskedasticity and autocorrelated 

corrected (HAC) standard error. There are many ways to estimate the spectral density, which 

can be divided into two types: (a) autoregressive spectral density, and (b) kernel based 

spectral density, which can be further subdivided into four types. This hierarchy is 

summarized in the following Figure 3.1: 
 

Figure 3.1 Summary of Spectral Density Hierarchy   

 

 
 

The computational details of these estimators are as under:  
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3.2.1. Autoregressive (AR) Estimator of Spectral Density 

 

Autoregressive estimator of spectral density was proposed by Stock (1990; see also Stock, 

1994; Perron and Ng, 1998). This estimator, based on the estimation of parametric model, is 

identical to the equation of the ADF test equation. 

 

After having GLS detrending series estimate the regression equation given below: 

 
tl

T

l

lttt yyy   



ˆ~~~

1

1
  (3.1) 

 

Autoregressive estimator of spectral density is: 
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of residuals (   ) from the equation (3.3). 

 

3.2.2. Kernel Based (KB) Estimator of Spectral Density 

 

Non parametric kernel based estimator of spectral density was proposed by Phillips (1987) 

and then restructured by Phillips and Perron (1988). Kernel based estimator of spectral 

density is the weighted sum of auto covariance, in which weights are decided by the kernel 

and bandwidth parameter. 

 

Estimating the equation using GLS detrended series, 
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where l is bandwidth parameter, which act as a truncation lag in the covariance weighting, and 

K is the kernel function, which can be estimated in multiple ways listed below.   (j) is j
th

 order 

auto covariance of residual from equation (3.2). 

 

For the estimation of the kernel estimator of spectral density we consider the following 

kernels: 

1. Bartlett Kernel  

        
              
          

  

2. Parzen Kernel 
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3. Quadratic Spectral Kernel 
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4. Tukey-Hanning Kernel 

        
         

 
         

          

  

where x =     for all kernels. Asymptotically, all of these kernels are equivalent (Andrews, 

1991).  

 

The computational details are given below. Ng and Perron point out that these four tests are 

equivalent in terms of size and power. Throughout our discussion, MZa is taken as 

representative of these four.  

 

4. MONTE CARLO EXPERIMENT 

 

In order to compare the performance of Ng-Perron test with AR and KB estimator of spectral 

density, we perform extensive Monte Carlo experiments, which is given in Figure 4.2 below. 

 
Figure 4.2 Flow Chart of Monte Carlo Experiment  
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Every step of the above mentioned Monte Carlo experiment is summarized as under: 

 

4.1. Data Generating Process 

 

The following forms of the data generating process were used to conduct the Monte Carlo 

experiment: 

DGP-I yt = α + ut ut = ρut–1 + δe t–1 + et,  

DGP-II yt = α +    + ut ut = ρut–1 + δe t–1 + et, 

DGP-I resembles an ARMA process with an intercept but no trend, whereas DGP-II 

resembles ARMA with drift and trend, where t =  ,  ,…,T.  

 

4.1.1. Autoregressive Coefficient 

 

Setting the autoregressive coefficient ρ = 1 will generate a unit series, which could be used to 

compute the power of Ng-Perron test, whereas setting Rho < 1 generates stationary series, 

which can be used to compute the power of the test. The following values of Rho were used 

for the Monte Carlo experiment: 0.99, 0.98, 0.95, 0.90, 0.85, 0.80, and 0.70. 

 

4.1.2. Moving Average Coefficient 

 

The aim of this study was to evaluate the performance of the Ng-Perron test both for positive 

and negative moving average processes. The following values were used in the experiment:   

-0.80, -0.60, -0.40, -0.20, 0, 0.2, 0.4, 0.6, and 0.8 

 

4.1.3. Calculating Size and Size Distortion  

 

Ng and Perron provide a set of asymptotic critical values for their test. The test statistics 

calculated on the series generated under the null were compared with these critical values in 

order to calculate the actual size of the test. The size distortion is the difference between the 

actual size and nominal level of significance.  

 

4.1.4. Calculating Power and Effective Power  

 

The power of the test was computed by applying unit root tests to series generated with a 

stationary root. The probability of rejection of the null is the power of the test.  

 

However, for several data generating processes, heavy size distortion was observed. Since it is 

not reasonable to compare the power of two tests with different sizes, we have used the 

effective power of the tests for comparison. The effective power was calculated as follows: 

Effective Power for a DGP = Actual Power at Rho < 1 – Actual Size for Rho = 1.  

 

5. MONTE CARLO RESULTS 

 

This section illustrates the equivalence of KB estimators. There are four choices of kernels in 

this study whose computational details are given in Section 3. The figures below summarize 

the size and power of Ng-Perron test for different choice of kernels. The figures show that the 

power curves remains same of various choices of kernels. The experiment was repeated for a 

var   y    DGP’  a d   m  a     u          b a   d. A a y            a            k       

does not significantly affect the size and power of test, therefore there is no need of 
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summarizing the simulations for all four kernels. Only one of these kernels will be sufficient 

to observe the behavior of the remaining ones.    

 
Figure 5.3 The Size and Power of MZa when Sample Size is 150 and δ = 0.4 with DGP-I  

   

 

 
Figure 5.4 The Size and Power of MZa when Sample Size is 80, δ = -0.4 with DGP-I 

   

 

For the comparison of size and power of the test with AR estimator and KB estimator, we use 

the Parzen kernel as a representative for these four kernels. 

 

5.2. Effective Power versus Power  

 

Our results indicate that the size of the test is not stable, rendering comparison of the power 

meaningless. For a more meaningful comparison, we compare the distortion in size and the 

effective power of the test. Size distortion is the difference between the observed size and 

theoretical size (here 5%) of the test; effective power is defined as the difference between the 

empirical power and empirical size of the test. 

 

5.3. Performance of Test with DGP-I 

 

Both KB and AR estimators of spectral density are equivalent mathematically at zero lag 

length/ lag truncation for any data generating process. We discuss the performance of the test 
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with KB and AR estimators of spectral density at nonzero lag length/ lag truncation. Our 

result shows that the test has very low effective power in a small sample size with both 

estimators. Figures 3 and 4 depict the size distortion and the effective power of the test with a 

positive value of moving average coefficient.  

 
Figure 5.5 The Size Distortion and Effective Power Ng-Perron Test with AR and KB Estimator when MA = 0.2 

for DGP-I 

   

 

Figure 5.6 The Size Distortion and Effective Power Ng-Perron Test with AR and KB Estimator when MA = 0.6 

for DGP-I 

   

 

According to the figures above, the distortion in size and effective power of the test increases 

with lag length when we use an AR estimator of spectral density; on the other hand, when 

using a KB estimator, the effective power of the test improves with large lag truncation 

without any distortion in the size of the test. Therefore it could be deducted that in the case of 

a positive moving average, the KB estimator outperforms the AR estimator. The behavior of 

the effective power and distortion remains similar, for experiments with different values of 

MA and autoregressive parameters.  

 

A different picture emerges when we have a negative moving average in the data generating 

process. Lag length selection has significant consequences on the performance of the test with 

an AR estimator. As evident in Figures 5 and 6, we observed that for a weaker negative 
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moving average structure, the performance of the test was similar for both estimators of SD in 

large samples. As the negative moving average structure becomes stronger, distortion is high 

when using the effective power, demonstrating non-monotonic behavior and a decreasing KB 

estimator, regardless of the choice of the truncation lag and sample size. On the other hand, 

the size distortion with an AR estimator is smaller and reduces to zero when lag length is 5. 

The effective power shows non-monotonic behavior and starts decreasing after reaching its 

maximum value. Effect power is maximized when the lag length/ lag truncation is 2 and starts 

decreasing at a higher lag.  

 
Figure 5.7 The Size Distortion and Effective Power Ng-Perron Test with AR and KB Estimator when MA =  0.20 

for DGP-I 

  
 

 

 
Figure 5.8 The Size Distortion and Effective Power Ng-Perron Test with AR and KB Estimator when MA =  0.60 

for DGP-I 
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5.4. Performance of Test with DGP-II 

 

In this part of the discussion we study the effective power and size distortion when the data 

generating process consists of a drift as well as a time trend. Figures 5.9 and 5.10, given 

below, depict the performance of the test when we have a positive moving average structure 

in DGP. Like the results for DGP-I, we observed that the KB estimator is a better choice for 

the Ng-Perron test when there is a positive moving average in DGP with nonzero lag 

truncations. The size distortion of the test is very small with the KB estimator even in small 

samples. On the other hand, the AR estimator gives huge size distortion for the small sample 

sizes, which could be as high as 60% in some cases. The effective power of the two 

estimators as shown in the right panel of Figure 5.9 is same for the smaller as well as for the 

larger sample size. Therefore, the estimator with a smaller size distortion should be preferred. 

Thus the KB estimator is preferred if there is a positive moving average. This conclusion 

matches with what we conclude for DGP-I in size is high with AR estimator with 

deterministic part consists both drift and time trend at the same time. 

 
Figure 5.9 The Size Distortion and Effective Power Ng-Perron Test with AR and KB Estimator when MA = 0.20 

for DGP-II 

   

 

Figures 5.9 and 5.10 show the distortion in size and effective power of test for the AR and KB 

estimators at different lag length/ lag truncations. The Monte Carle experiment results are 

similar to DGP-1 for a negative moving average. In the large sample with a strong negative 

moving average structure size distortion is very high with both estimators at zero lag length/ 

lag truncation. There is a sharp decrease in the size distortion, approaching zero at lag 5 for 

the AR estimator with effective power at nearly 77%. On the other hand, the test with the KB 

estimator has a very low effective power i.e. maximum 35% power, and distortion in size is 

well above 40% for any sample size in the presence of a strong negative moving average. 

 

Figures 5.11 and 5.12 shows that Monte Carlo the results obtained for the negative moving 

average also support our previous finding that the AR estimator is a better option in the 

presence of a negative moving average. 
 

Based on our Monte Carlo results for the Ng-Perron test, we come to the conclusion that the 

nature of a moving average is important for the selection of an estimator for spectral density. 

Poor selection of an estimator may lead to incorrect inferences about the existence of a unit 

root.   
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Figure 5.10 The Size Distortion and Effective Power Ng-Perron Test with AR and KB Estimator when 

MA = 0.60 for DGP-II 

  
Figure 5.11 The Size Distortion and Effective Power Ng-Perron Test with AR and KB Estimator when 

MA =   .20 for DGP-II 

   

 

Figure 5.12 The Size Distortion and Effective Power Ng-Perron Test with AR and KB Estimator when 

MA =   .60 for DGP-II 
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6. SUMMARY AND CONCLUSION 

 

In this research we have evaluated the performance of the Ng-Perron test for the following 

choices of spectral density estimators: 

1. Autoregressive estimator 

2. Kernel based estimator with 

a. Bartlett Kernel  

b. Parzen Kernel  

c. Quadratic Spectral Kernel 

d. Tukey-Hanning Kernel 

 

T     mu a      xp   m     a  d       a va    y    DGP’  a d     a   d   a g     pa am     

values. The simulation results reveal that the kernel based estimator with different kernels 

result in similar sizes and powers even in small samples. Hence we conclude that the choice 

of the kernel does not make any difference. 

 

Further analysis reveals that if a data generating process contains a positive moving average, 

the kernel based estimator performs better, and for negative moving average, an 

au    g     v      ma    p     m  b     . I      p       d DPG’          au    g     v  

    ma   ,  ug    z  d             u  ,      a         p       d  a g     DGP’          KB 

estimator no size distortion was observed.  
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