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ABSTRACT 

 
This paper uses information theoretic methods to introduce a new class of probability 

distributions and estimators for competing explanations of the data in the binary choice 

model. No explicit parameterization of the function connecting the data to the Bernoulli 

probabilities is stated in the specification of the statistical model. A large class of 

probability density functions emerges including the conventional logit model. The new 

class of statistical models and estimators requires minimal a priori model structure and 

non-sample information, and provides a range of model and estimator extensions. An 

empirical example is included to reflect the applicability of these methods. 
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1. INTRODUCTION 

 

Much in the theory and practice of econometrics involves subject matter theories and data that 

are partial and incomplete. This is especially true as it relates to discrete choice behavioral-

random utility models where i) the underlying economic theory is based on an abstract 

mathematical structure that identifies axiomatically its impact on behavior, and ii) parametric 

statistical models are often used to obtain solutions to finite discrete pure and noisy non-

parametric ill-posed inverse problems. The non-parametric restriction avoids using 

information that the researcher usually does not possess and the inverse problem results 

because one must use indirect observations to recover the structure connecting the data to the 

unobservable choice probabilities. The problems are ill-posed or under-determined because, 

without assumptions, there are more unknowns than data points and thus there is insufficient 

information to solve the problem uniquely. This results in the common situation where a 

function must be inferred despite insufficient information and only a feasible set of solutions 

is specified. 

 

Pursuing estimation and inference as it relates to discrete choice behavior (DCB), a generation 

of econometricians has, with the aid of assumptions and parametric-model oriented structures, 

used probit or logit cumulative distribution functions (CDFs) to convert the basic ill-posed 
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inverse problem into a well-posed one that can be analyzed via conventional parametric 

statistical methods. While this may have made DCB models amenable to traditional 

estimation and inference procedures, questions arise about the appropriate parametric 

statistical model choice. Recognizing, in a DCB model context, the statistical problems 

associated with using traditional parametric estimation and inference procedures when the 

statistical model is suspect, we focus on information-theoretic methods (Cover and Thomas, 

2006) that acknowledge inherent model and data uncertainty and allow for the possibility of a 

wide class of legitimate CDFs underlying the statistical model of the data sampling process, 

with corresponding estimators for the unknowns of the model. Enlarging the set of legitimate 

CDFs and concomitant estimation and inference rules, for DCB problems, is the topic of this 

paper. 

 

1.1. The Parametric and Semi-Parametric Base 

  

In binary response models, it is assumed that, on trial i=1,2,...,n, one of two alternatives is 

observed to occur for each independent binary random variable Yi, i=1,2,...,n, having its 

respective probability pi, i=1,2,...,n, of success
1
. In empirical applications, the data sampling 

process for the binary random variable 
iY  is often specified as a function of the latent 

variable, *

iY : 

  * *

.i i iY  x    (1.1) 

where  * 0i iY I Y  , i = 1,...,n, are independent Bernoulli random variables, I(A) is an 

indicator function that takes the value “1” when condition  A  is true and takes the value “0” 

otherwise, and 
.ix , i = 1,..., n, are independent outcomes of a  1 k  random vector of 

response variables. Here, and elsewhere, the linear index 
.ix   can be replaced by the more 

general functional notation  .,βim x  if the effect of the response variables on the latent 

variable is thought to be nonlinear. 

 

Given (1.1), the value of 
ip  is  

         *

. . * .1 1i i i i i ip P y P e G G         x x x    (1.2) 

where )(G  is the CDF of the noise term *

i  in latent variable equation (1.1) and )(* G  is the 

complement of this CDF. When the parametric family of probability density functions 

underlying the binary response model is assumed known, the parametric functional form of 

 .iG x β  is also known. Therefore, one can fully define the log-likelihood function and utilize 

the traditional maximum likelihood (ML) approaches of logit or probit as a basis for 

estimation and inference relative to the unknown   and the choice probabilities  .iG x β . If 

the particular choice of the parametric functional form for the distribution is correct, then the 

usual ML properties of consistency, asymptotic normality, and efficiency hold (McFadden, 

1974; McFadden, 1984 and Train, 2003).  

 

                                                 
1
 A scalar random variable is denoted by X or Y. Multivariate random variables (vector or matrix) are denoted 

by a bold capital letter X or Y. A subscripted index on a vector indicates particular row or column elements of 

the vector. For example, Xi denotes the i
th

 row of X, and X.i denotes the j
th

 column. Observed outcomes or fixed 

values are denoted by lower case letters. Exceptions to these conventions include e being an outcome of random 

, and b̂  being an outcome of random ̂  
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In reality, there is most often substantial ambiguity surrounding the “correct” behavioral 

model. Thus uncertainty exists regarding the underlying data sampling process and how best 

to proceed with model specification, estimation, and inference. This has led to the creation of 

semi-parametric methods suggested by Cosslett (1983), Maddala (1983), Ichimura (1993), 

Klein and Spady (1993), and McCullough and Nelder (1995). However, these methods 

usually rely on a restricted set of assumptions and their resultant conditional nature is 

apparent. We assume that the distribution of *

i  is neither based on, nor restricted to, the 

conventional logit and probit parametric family and suggest a range of CDF’s and empirical 

estimators to recover estimates of the choice probabilities and corresponding derivatives with 

respect to the response variables. Sample information is represented in a nonparametric way 

through sample moments. This class of CDFs is based on the minimum power divergence 

(MPD) principle derived from the Cressie-Read family of divergence measures.  

 

1.2. Topical Map 

  

The organization of the paper is as follows: in Section 2, a nonparametric representation of 

the binary response model is formulated in terms of conditional moments. Section 3 defines a 

wide class of CDFs is defined whose members i) are consistent with a nonparametric 

specification of the binary response model, ii) satisfy moment conditions involving the 

response variables and binary outcomes, and iii) are minimally power divergent from 

reference distributions for the Bernoulli probabilities. In Section 4, the class of MPD CDFs is 

used in an application of the Minimum Power Divergence Principle to define a new class of 

estimators for the unknown Bernoulli probabilities and their derivatives with respect to the 

response variables, and asymptotic sampling properties of the estimators are noted. An 

illustrative numerical example of the application of the methodology is presented in section 5. 

Finally, in section 6 implications of the formulations are discussed, and a number of possible 

estimator variants and extensions are noted for future research.  

 

2. MODEL OF BINARY RESPONSE  

  

We seek the class of CDFs that is congruent with basic and generally applicable conditions 

relating to the binary response model. These conditions include i) a generally applicable 

nonparametric statistical model specification of the Bernoulli outcomes reflecting signal and 

noise components, ii) a simple orthogonality condition between response variables and the 

noise component, and iii) minimum divergence between members of the CDF class and any 

possible reference distribution for the Bernoulli probabilities underlying the binary response 

model. The resultant class of CDFs contains a flexible collection of CDFs that subsumes the 

logistic distribution as a special case, and the overall approach provides an alternative 

statistical rationale for the specification of a logit model of binary response. 

 

2.1. Nonparametric Representation of Binary Responses and Conditional Moments 

  

Seeking to minimize the invocation of model specification information that the researcher 

usually does not possess, we begin by assuming that the vector of Bernoulli random variables, 

Y, adheres to the very general statistical model 

   Y p  , where  E  0  and  
n

i=1
0,1 p  (2.3) 

 

The specification in (2.3) implies only that the expectation of Y is some mean vector of 

Bernoulli probabilities p , and that outcomes of Y can be decomposed into their means and 
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noise terms. The noise term outcomes each have dichotomous support, taking the value 
ip  

with probability  1 ip  and 1 ip with probability
ip . If Y is a vector of binary random 

variables, the specification in (2.3) is in fact always true. 

 

Next, thinking in the context of an economic model such as the random utility model, it is 

assumed that the Bernoulli probabilities in (2.3) depend on the values of response variables Z 

through some general conditional expectation relationship that is given by 

         , ,...,    1 1 2 2 n nE Y | Z = p Z p Z p Z p Z , with the conditional orthogonality 

condition    |E     Z Y p Z Z 0  therefore implied. An application of the double 

expectation theorem yields the unconditional orthogonality result 

    E     Z Y p Z 0 . (2.4) 

 

We emphasize that both the conditional and unconditional moment relationships are true 

subject only to the very general requirement that the Bernoulli probabilities have some 

functional regression relationship with the response variables in Z, expressed via a 

conditional expectation relationship  E Y | Z . In fact, there is essentially no risk of model 

misspecification at this point given that some regression relationship exists between Y and Z.  

 

We note that under the general regression specification    E Y | Z = p Z , it also follows that 

    E    
  
g Z Y p Z 0,  for any function  g Z  for which the expectation exists. This is a 

natural reflection of the fact that the residuals of a general nonparametric regression 

relationship are orthogonal in expectation to any measurable function of the regressors. We 

note later that an important implication of this fact is that the functional form of the index 

used in the CDF that underlies the Bernoulli probabilities of the binary response model is 

determined by the choice of g(Z). Also, while the regression relationship 

     E Y | g Z = p g Z  implies      E    
  
g Z Y p g Z 0 , the moment condition 

   E    
 
Ζ Y p g Z 0,  does not necessarily follow because of the conditioning on the 

more restricted space of Z-outcomes. The regression relationship presumes specific additional 

knowledge relating to functional form. For now, we proceed under the assumption of the 

more general nonparametric regression assumption, and the moment condition (2.4). This will 

eventually lead us to the ubiquitous linear index model within the binary choice framework. 

 

The preceding model assumptions represent a very basic level of information for estimating 

the unknown Bernoulli probabilities that is no more stringent than a fully nonparametric 

regression representation of binary response. Adding functional and/or statistical 

characteristics to the model specification would require additional sample and/or non-sample 

information. This type of information is substantially more uncertain and, when used, is most 

often simply assumed rather than truly known. 

 

Given (2.4), and the assumption that the latent variable representation of the Bernoulli 

outcomes in (1.1) applies, a natural candidate for the elements of the Z matrix is the  n k  

matrix X associated with (1.1). We proceed by letting X denote response variables that affect 
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the values of the binary response probabilities, but it is not necessary that the genesis of the X 

variables be based on the latent variable representation (1.1).  

 

If the probabilities p could be given an explicit parametric functional form, say as  p G x  

with )(G  being some cumulative distribution function, then the moment equations can be 

specified as    E   X Y G X 0 . Empirical representations of these moments, as 

   1n   x y G x 0 , could form the basis for a nonlinear generalized method of moments 

(GMM) approach to estimating the unknown parameter vector and Bernoulli probabilities. 

However, in the context of (2.4), )(G  is neither assumed known nor explicitly specified so 

that a GMM approach to estimating the binary response model using moments of the type 

(2.4) is not possible. Moreover, it is clear that the empirical moments  

     1n  x y -p x 0  (2.5) 

cannot possibly be used in isolation to identify the Bernoulli probabilities since, regardless of 

their number,   p x y  always solves the set of moment constraints. In addition, there are 

more unknowns than estimating equations since all that has been assumed to this point is that 

 p x  is an unknown nonparametric vector function varying over a function space, and thus 

currently consists of n fully unknown values. Consequently, the system of equations (2.5) is 

substantially underdetermined and will not provide a unique interior solution for the 

probability vector p. We seek an extremum basis for choosing among the infinite number of 

solutions for p.  

 

3. MINIMUM POWER DIVERGENCE CDFS FOR THE BINARY RESPONSE 

MODEL 
  

Given the sample binary outcome representation (2.3) and the representation of sample 

information in the form of empirical moments (2.5), we consider a criterion for determining a 

class of CDFs that is both consistent with these representations and minimally divergent from 

any reference distributions for the Bernoulli probabilities underlying the binary outcomes. In 

this context, consider the determination of Bernoulli probabilities by minimizing some 

member of the family of generalized Cressie-Read (CR) power divergence measures, (Cressie 

and Read, 1984; Read and Cressie, 1988; Mittelhammer et al., 2000) 

  
 

2

1 1
'

1
min 1

1

n
ij

ij

i j ij
ijp s

p
p

q



  

                  

 
 (3.6) 

subject to: 
2

ij ij

j 1

p 1, p 0, i, j


    (3.7) 

  
2

ij ij

j 1

q 1, q 0, i, j


    (3.8) 

    1n   x y p 0  (3.9) 

 

The Bernoulli process underlying the binary outcomes for each observation is characterized 

by the probabilities i1 i2p ,p , where  . 1| ,i i iE y p i x , and, in general,  |E Y x p . The 
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parenthetical component 
 

2

1

1
1

1

ij

ij

j ij

p
p

q



  

   
          

  in the estimation objective function 

refers to the CR power divergence of the Bernoulli probability distribution  i1 i2p ,p  from 

any respective reference Bernoulli distributions  i1 i2q ,q . Regarding interpretation of the CR 

divergence measure, this parenthetical component is proportional to the weighted average 

deviation of 
p

q



 
 
 

 from 1, with the Bernoulli probabilities i1 i2p ,p being the weights. The 

corresponding probability ratios being averaged are 1

1

i

i

p

q



 
 
 

and 2

2

i

i

p

q



 
 
 

. The CR divergence 

measure is strictly convex in the 'ijp s , and assumes an unconstrained unique global 

minimum when , andij ijp q i j  . 

 

The constraints (3.7) and (3.8) are necessary conditions required for the pij’s and qij’s to be 

interpreted as probabilities, and for the collection of these probabilities to represent proper 

probability distributions. The constraint (3.9) is the empirical implementation of the moment 

condition   E  X Y -p 0 . There may be additional sample and/or nonsample information 

about the data sampling processes that is known and, if so, this type of constraint can be 

imposed in the constraint set. However, as argued above, the constraints in the estimation 

problem defined above represent a minimalist set of data and model specification information 

to impose on the behavior of dichotomous outcomes under the assumption that the Bernoulli 

probabilities underlying the problem are functionally related to some set of response 

variables, X.  

 

Regarding the genesis of the reference probabilities, they could originate from a number of 

sources. For one, they could be specified a priori if prior information were available on the 

values of the Bernoulli probabilities, and in the case of pure ignorance, one could specify 

these prior probabilities as the discrete uniform distribution
1 2 .5,i ip p i   . Another source 

could be a simple sample mean estimate of P(y=1) which would represent a sample-based 

estimate of the Bernoulli probabilities under ignorance of the effect of regressor conditioning 

(i.e., an unconditional estimate of the Bernoulli probabilities). Alternatively, the reference 

probabilities could originate from an application of an alternative data-based method of 

estimating the conditional probabilities, such as Maximum Likelihood (e.g., logit, probit), a 

linear probability model, or a nonparametric Kernel-density approach. In any case, the 

reference probabilities would then be viewed as a base set of probability estimates, and the 

MPD estimates would be the values of the probabilities that are least divergent from the base 

probabilities while satisfying the data constraints, those being (2.5) in the current discussion. 

 

3.1. Identifying the Class of CDFs Underlying p  

 

Henceforth defining 
1i ip p  and 

1i iq q , the divergence minimization problem in (3.6)-(3.9) 

can be characterized in Lagrange form as  
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 
 

   
1

11
, 1 1 (3.5)

1 1

n
i i

i i

i i i

p p
L p p

q q

 

 

     
            
        

p x y p 

 

(3.10) 

subject to: 0 , 1,i ip q i   . (3.11) 

 

The premultiplier 1n  on the moment constraints is suppressed because of its superfluity to 

the optimal solution. The representations of the 'ip s  as functions of the response variables 

and Lagrange multipliers can be defined by solving first order conditions with respect to p, 

appropriately adjusted by the complementary slackness conditions of Kuhn-Tucker theory in 

the event that inequality constraints are binding. The first-order conditions with respect to the 

ip  values in the problem imply  

  

i

i

1

1 0
0 for

0
1

ln ln
1

i i

i i

i
i i

i i

p p

q qL

p
p p

q q

     
      
                

       
             

x

0

x





 



   (3.12) 

where 
ix  is used to denote the i

th
 row of the matrix x.  

 

When 0  , the solutions are strictly interior to the inequality constraints and the inequality 

constraints are nonbinding. Accounting for the inequality constraints in (3.10) when 0  , 

the first-order condition in (3.12) and complementary slackness allows 
ip  to be expressed as 

the following function of 
ix  : 

  (3.13) 

 
A unique solution for  iip x   necessarily exists by the strict monotonicity (and 

unboundedness if 0  ) of either 

 
1

1

i i
i

i i

p p
p

q q

 


    
     
     

 or  
1

ln ln
1

i i
i

i i

p p
p

q q


   
    

   
 

in  0,1ip  , for 0   or 0  , respectively. The solution is implicit and does not exist in 

closed form except on a measure zero set for  , but because of the strict monotonicity of 

 ip  in 
ip , the solution is straightforward to find via numerical methods. The strictly 

increasing nature of  iip x   in the argument 
ix   for  0,1ip   allows  iip x  to be 

 

 i i i

i i

i

1
arg for 0

1

1
arg ln ln for 0 (3.8)

1

1

1
arg

1

i

i

i

i i
i

i i

i i

i i

i i

i i

p

p

p

p p
p and

q q

p p
and

q q

p p

q q

 

 

 





     
         
       

    
        

    

              
         

x x x R

x x R

x

  

 

   
 

1

1 1

i

1

for 0 and 1 ,

1
0

i

i i

i

q

q q

q



 





  



 

  



 
  
     

      
   
        

x 

 

 i i i

i i

i

1
arg for 0

1

1
arg ln ln for 0 (3.8)

1

1

1
arg

1

i

i

i

i i
i

i i

i i

i i

i i

i i

p

p

p

p p
p and

q q

p p
and

q q

p p

q q

 

 

 




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interpreted as a CDF on the appropriate support for 
ix  . We also underscore for later use that 

the inverse CDFs clearly do exist in closed form, as is immediately obvious from the 

expressions in (3.13).  

 

Explicit closed form solutions for the CDFs exist for all integer-valued   , such as 

   

    
.5

2

i i

i ii

4 2 1 1
.5

if2

.5

i

i

q

p

                  
   

 
 

x x

x xx

 


    
 

  (3.14) 
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q q


 

x
x

x


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
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

 



  (3.16) 

 

The integer values -1, 0, and 1 correspond, respectively, to the so-called Empirical 

Likelihood, Exponential Empirical Likelihood, and Log Euclidean Likelihood choices for 

measuring divergence via the Cressie-Read statistic. The functional form for 
ip  in (3.15) 

coincides with the usual standard logistic binary choice model if the reference distribution is 

such that .5iq  . The CDF in (3.16) subsumes the linear probability model.  

 

Figure 3.1 PDFs for q = .5, = -3, -1.5, -1, -.5, 0, .5, 1, 1.5, and 3 
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As an illustration of the myriad of distributional characteristics contained within the MPD-

Class of probability distributions, Figures 3.1 and 3.2 contain plots of the PDFs associated 

with selected values of 
iq  and  . 

 

Figure 3.2 PDFs for q = .75,   = -3, -1.5, -1, -.5, 0, .5, 1, 1.5, and 3 

 
 

4. MINIMUM POWER DIVERGENCE PRINCIPLE FOR ESTIMATION AND 

INFERENCE  

 

The expansive and flexible set of probability distributions in the MPD-Class provides a 

corresponding basis for applying the Minimum Power Divergence Principle (MPDP) to 

estimation and inference relative to the unknown binary response probabilities. In addition, 

the MPDP framework provides a basis for estimating the marginal effects of changes in the 

response variables and pursuing inference relating to hypotheses about the binary response 

process. 

 

4.1. MPDP Estimation 
 

In the context of the model of binary response outlined in Section 2, consider the minimum 

power divergence problem depicted by the Lagrange multiplier characterization in (3.10)-

(3.11). A solution results in an estimator for the binary probabilities that, given the sample 

moment constraints, is minimally divergent from the reference distribution specified. This 

solution can, as delineated in the discussion relating to (3.12)-(3.13), be characterized in terms 

of functions of the Lagrange multipliers via solutions of first-order conditions. 

 

It is possible to generate MPD-estimates of the Lagrange multipliers and then, in turn, 

produce MPD-estimates of the Bernoulli probabilities that are purely a function of the sample 

data. The divergence-minimizing estimate of   is determined by substituting the functional 

representation of  iip x  into the first order conditions with respect to  , and then solving 

the equations: 
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     MPD
  = arg x y p x 0   (4.17) 

for the value of  . The estimated value of p follows directly by substitution, as 

 MPD MPDp = p x . 

 

As in all Lagrange-form optimization problems,   reflects the marginal change in the 

objective function with respect to a marginal change in the constraint equations. In the current 

context, the 1k  vector   can be thought of as representing the “relative contribution” of 

each of the k data constraints to the minimized divergence value. The polar case 0i   

indicates that the i
th

 data constraint is non-binding and redundant and adds no informational 

value to that already contained in the reference distribution for those probabilities. It is not 

apparent from general Lagrange multiplier theory that   can actually be interpreted as an 

estimate of the parameter vector   underlying the linear index representation of the Bernoulli 

probabilities depicted in (1.1)-(1.2). We motivate this interpretation next. 

 

4.2 Interpreting   as an Estimator of   

  

Suppose one could actually utilize the true conditional population moments in the MPD 

estimation problem as        1 1n n    E x y p x F x p = 0 , where  F x  is the 

actual CDF defining the Bernoulli probabilities. The Lagrange form of the problem would 

then be 

 (4.18) 

 

The first-order conditions with respect to p would be precisely as indicated in (3.12), leading 

to the same representations of the optimal p expressed in terms of  , i.e., the same  p x  

vector of probabilities represented by (3.13).  

 

Now suppose further that the probability model is specified correctly in the sense that the 

MPD-distribution matches the functional form of the true underlying probability distribution

 F x . The first order conditions with respect to   imply that  

        1, n   H x F x F x 0     (4.19) 

in which case it is apparent that one solution for  is given directly by    . That this is the 

unique solution to the problem follows from the Implicit Function Theorem, which can be 

used to demonstrate that (4.19) determines  as a function of   in the neighborhood of  . 

By this theorem, if the Jacobian of the k constraints in (4.19) with respect to the 1k  vector  

is nonsingular when evaluated at   , then such a functional relationship exists. The 

Jacobian is given by  

    (4.20) 

where  f xβ  is the vector of true underlying probability density function values. The 

Jacobian is negative definite and thus nonsingular under the mild assumption that there are k  

or more rows of x that are not linearly independent and for which   0.if x   It follows that 
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  equals   in the solution to (4.19). Using observable sample moments in place of 

unobservable population moments, as        1 1n n      x Y F x x F x F x 0    , the 

solution for  is then interpretable as a random variable estimating  which, for example, is 

consistent under familiar regularity conditions that include 1
p

n  x 0 .  

 

It can be shown under general regularity conditions
2
 that the estimator of ̂  is asymptotically 

normally distributed. The limiting distribution of the estimator is defined by  

   1/ 2 -1 -1ˆ 0,A A
d

n N V  , 

where 
 

  1. 1. 1.E f


 


G
A X X X





 and      1. 1. 1. 1.1E F F  V X X X X  . This result 

enables all of the usual hypothesis testing methodology that is reliant an asymptotic normal 

distribution theory. 

 

4.3. Estimating the Marginal Probability Effects of Changes in Response Variables 

 

In empirical work, the effect that changes in response variables have on the probabilities of 

the discrete choices being realized is often a focal point of analysis. Estimates of these 

marginal probability effects, represented by 
i ijp x   for the j

th
 response variable and the i

th
 

binary response probability, are straightforwardly defined in the case of the fully parametric 

logit and probit models as 

  Logit: 
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 (4.21) 

  Probit:  .

ˆ ˆ ˆi
i j

ij

p

x
 





x   (4.22) 

where () is the standard normal probability density function. 

  

In the case of the MPD-Class of estimators, marginal probability effects, derived by 

differentiating the appropriate definition of  ip x  with respect to the response variables 

used in defining the linear index, yield the following:  
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 (4.25) 

                                                 
2
 Theorems and proofs of these results can obtained from the authors upon request. 



Mittelhammer and Judge-A Mini. Power Divergence Cl. of CDFs and Est. for the Binary Choice Mod. 

44 

 

 

The derivative in (4.24) is recognized as being identical in functional form to the logit 

derivative defined in (4.21) when .5iq  . Moreover, the solution for 
MPD  and the logit 

estimate of b̂  are in fact identical when .5iq   since the first-order conditions to both 

estimation problems coincide. 

 

5. AN ILLUSTRATIVE NUMERICAL EXAMPLE 

  

With an eye toward applicability, in this section we present a numerical illustration of the 

application of the MPD estimation approach. The example relates to a binary choice problem 

in which the dependent variable can be thought of as a binary variable (y=1) or (y=0) for a 

particular alternative (e.g., a commodity, service, candidate, policy initiative, or a payoff in an 

ultimatum game) is chosen. For this illustration, it is assumed that there is one principal 

explanatory factor, x, that affects the propensity for choosing the alternative. The outcome of 

the binary choice is then represented in the form  Y P x   , where    1|P x P y x  . 

The sample size is n = 100, and the actual data used in this example is presented in the 

Appendix. Note that the sample of data was generated from a sampling process that drew a 

random sample of 100 outcomes of  1|P y x  from a Beta(a,b) process, where a=6 and b=3. 

This resulted in a mean probability value of 2/3. Based on an  1, .5MPD q     

distribution and a linear index of the form 1 x  , the probability outcomes were rationalized 

in terms of the calculated x-values, and probabilities generated from an  1, .5MPD q     

evaluated at the argument value 1 x  . 

 

Figure 5.3 Probability Predictions from Binary Response Model Estimators 

  
 

The MPD estimation problem (3.10)-(3.11) was solved for 1,0,1   , and for .5q  . The 

ubiquitous probit estimator was also estimated for comparison purposes. Note in the current 
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context, the MPD estimator with 1   is fully consistent with the true data sampling 

process, and the probit estimator is a quasi-maximum likelihood estimator in this application. 

The solution to the Lagrangian optimization problem resulted in predictions of  1|P y x  

that are displayed in Figure 5.3, and were calculated based on either the standard normal 

distribution for the probit estimator, or using (3.14)-(3.16) in the case of the MPD estimators. 

 

The binary response model estimators all produce estimates of the  1|P y x ’s that are in a 

reasonable neighborhood of their true values, but in the large majority of cases, the MPD 

estimator based on the distribution  1, .5MPD q    , which is consistent with the data 

sampling process, produced the higher quality probability predictions. This observation is 

borne out numerically in Table 5.1, which presents root mean square error (RMSE) statistics 

for the predictions of the y outcomes and the probabilities, and also presents the % of correct 

predictions of the y outcomes. It is apparent, especially from the RMSE of ˆ 'p s and the 

percentage of correct predictions of y outcomes, that the MPD estimator based on 

 1, .5MPD q     was the superior estimator in this empirical application. 

 

Y-hat (RMSE) P-hat (RMSE) Correct Y Prediction % 

0.460667524 0.055663499 88% 

0.458269651 0.02880366 94% 

0.45984704 0.047025515 90% 

0.461830529 0.061114776 86% 

Table 5.1 Goodness of Fit Statistics 

  

Regarding the estimates of the linear index coefficients, both the estimated coefficients and 

the true coefficients underlying the data sampling process are displayed in Table 5.2. These 

estimates were derived by either applying the maximum likelihood principle in the case of the 

probit, or else are the values of the Lagrange multipliers in the solution to (3.10)-(3.11). It is 

again apparent in this application that the MPD estimator based on  1, .5MPD q     

produced estimates of the coefficients that were closer to their true values.  

 

PROBIT MPD(-1) MPD(0) MPD(1) True B 

-0.144530056 -0.64960787 -0.330920414 -0.1761258 -1 

0.536319369 1.463482151 0.98324884 0.76295307 2 

Table 5.2 Estimated and True Coefficients of the Linear Index 

 

The mean value of the marginal effects of a change in x on the values of  1|P y x , 

calculated based on (4.21)-(4.25), are equal to .1898, .2503, .2105 and .1850 for the probit, 

and the three MPD estimators 1,0,1for     respectively. The true mean value of these 

marginal effects is given by .3110. Again the MPD estimator with 1    is superior in this 

example. 

 

6. IMPLICATIONS, PROBLEMS, AND EXTENSIONS 

 

In this paper, we represent sample information underlying binary choice outcomes through 

general moment conditions,  E     Z Y p  . We then use the Cressie-Read (CR) family of 

divergence measures, CR() for (-,), to identify a class of CDFs and to solve for the 

unknown Bernoulli probabilities, p. As a result, a large MPD class of corresponding 
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estimators of the unknown choice probabilities emerges. The solved values of the 

probabilities are functions of the sample data through data-determined Lagrange Multipliers 

and are thus not represented in terms of a fixed set of parameters. Estimation implications of 

this formulation are presented. 

  

A number of important issues relating to the MPD approach in the discrete choice model 

context remain, and point to a number of problems and extensions of the MPD estimator that 

can and should be explored in future work. The problems and extensions fall into three 

general categories, and include: i) the specification of measurable functions of Z used to 

define the moment condition     E    
  
g Z Y p Z 0,  ii) the choice of the value of the 

power parameter   in the definition of the Cressie-Read power divergence statistic, and iii) 

the choice of the reference distribution, q, for the Bernoulli choice probabilities.  

  

Regarding problem i), alternative moments of the form     E    
  
g Z Y p Z 0  can be 

considered, lead to empirical moment constraints of the form     -1n   g Z Y p Z 0 . The 

MPD CDFs that arise when such moments are used is precisely of the form (3.13) with the 

linear index z  replaced by the generalized linear index  g Z  . This allows for substantial 

generality in the index specification associated with the CDF representing the Bernoulli 

probabilities and essentially leads to a generalized linear model form. An issue here is how to 

choose the precise functional form of the premultiplier  g Z . One general possibility would 

be to specify a flexible functional form, such as a polynomial in the Z variables. By 

Weirstrasse’s theorem, any continuous index function of Z can be represented arbitrarily 

closely by a polynomial of sufficient degree. For example a quadratic approximation could be 

specified as  ,  g Z; Η Ζ+ΖΗZ  , and then the parameter vector   and symmetric 

parameter matrix H could be estimated along with the other unknowns in the model 

specification. The generalized index function, together with the large class of MPD 

distributions, would make for a very general set of model specifications for the binary 

response probabilities. 

  

Regarding problem ii), the use of probability distributions in the MPD-Class can form a basis 

for an application of the Maximum Likelihood principle, when estimating binary response 

probabilities and marginal effects of changes in the response variables on those probabilities, 

for example, consider representing the Bernoulli probabilities by the MPD-Class of 

distributions and characterizing the observed binary outcomes with the linear index 

representation 

            
n

i i i i

i 1

, , | , y ln 1 F ; , 1 y ln F ; ,


        β q y x x q x q   (6.26) 

 

Maximum likelihood estimation of the unknowns in the specification of the Bernoulli 

probabilities can proceed by maximizing (6.26). This formulation allows the vast array of 

CDFs in the MPD-Class to represent the Bernoulli probabilities underlying the discrete choice 

process via selection of the q  and  values. Given the substantial flexibility exhibited by the 

family of MPD distributions, it is expected that the maximum likelihood estimator of the 

Bernoulli probabilities would be robust relative to the true underlying Bernoulli choice 

probability distribution.  



International Econometric Review (IER) 

47 

 

Regarding problem iii), one can envision the use of the reference distribution, q, to take into 

account known or estimable characteristics of the Bernoulli probabilities in any particular 

applied problem. Illustrations of the distributional shape and scale impacts of different q 

reference distribution choices are given in Section 3. The use of E(Y), estimated by the 

sample mean of Y outcomes, could represent a situation where one was allowing for the fact 

that there may be no regression relationship between the Z and Y values, and thus the 

estimator was shrinking the probability estimates to the unconditional mean of Y. One could 

use the agnostic values .5,iq i   to denote the proposition that the dichotomous outcomes of 

Y were equally likely a priori. Or an alternative estimate  ˆ 1|i i iq P y  z , perhaps in the 

form of a kernel density estimate, could be used as the reference distribution in the MPD 

estimator specification. In all of these variants, it would be expected that the closer the qi’s  

were to the true conditional Bernoulli probabilities, the better the MPD estimates of the 

Bernoulli probabilities would be. 

 

There are other issues that represent extensions of the MPD estimation procedure to other 

estimation considerations, such as the potential endogeneity of some of the elements in Z by 

considering moment conditions that involve instruments, W, of the form 

  E 0    W Y p Z , where W is not necessarily a function of Z (Judge et al., 2006). 

Another consideration is the extension of the univariate distribution formulations of this paper 

to multivariate distributions. One such extension, which yields the multivariate logistic 

distribution as a special case, begins with a multinomial specification of the minimum power 

divergence estimation problem in Lagrange form as 

  
 

 
1 1 1 1 1 1

1
, 1 1

1     

     
                     

    j j j
p x y p 

n n m m n m
ij

ij i ij

i i j j i jij

p
L p p

q




 

. 

 

The estimation and inference potential of this type of formulation needs to be investigated. 

  

These and other problems and extensions of the MPD approach to estimation of the binary 

response model are the focus of our ongoing research and we hope the research of others.  
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DATA APPENDIX 

 
X Y X Y

2.085469 1 0.456264 1

3.775275 1 0.765417 1

0.920827 1 1.273079 0

0.351319 1 0.664946 1

1.739147 1 0.958574 1

1.249493 1 1.818404 1

0.998814 1 1.029649 1

0.655567 0 0.495795 0

0.784314 1 0.997569 0

0.313537 0 1.173193 1

1.234565 1 0.552919 1

2.152973 1 3.396665 1

2.275978 1 0.24603 0

1.233602 1 0.761646 1

0.893696 1 0.449999 0

0.556043 0 1.045188 1

0.91715 0 1.256925 1

0.050008 1 0.849541 0

1.352036 0 0.697049 1

0.542048 1 1.107927 0

0.69321 0 1.051658 1

1.493306 0 1.247389 0

0.775927 1 0.469169 1

1.525616 0 1.483798 0

0.862811 0 2.294302 1

0.437359 0 0.959389 1

1.402679 1 0.900694 0

1.600352 1 0.481789 1

1.627889 1 0.236919 0

0.877827 0 -0.68752 0

0.802608 0 0.559879 1

0.760061 0 1.023944 0

0.810798 1 0.61171 1

0.825372 1 0.53154 0

1.104247 1 0.724173 1

1.70496 1 1.349192 1

0.819931 1 0.810259 1

1.469409 1 0.426032 1

1.157592 1 0.753728 0

0.939004 1 0.899412 1

0.544254 1 1.193455 1

1.569075 1 1.562179 1

0.775076 1 2.472882 1

0.616227 1 1.399881 1

0.453326 0 0.76208 1

1.299014 1 0.830212 0

0.81028 1 0.843309 0

0.405274 0 0.64993 0

0.937509 1 0.311159 0

1.009584 1 3.202306 0  


