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Li-Ion Battery Thermal Parameter Identification and Core 

Temperature Estimation 

Highlights 

❖ CFD simulation of the SOC and core temperature of the 18650 cylindrical LMO battery. 

❖ Thermal parameter identification and validation of the two-state thermal battery model using the recursive 

least squares (RLS) method. 

❖ Estimation of the battery core temperature using the Kalman filter (KF) approach. 

Graphical Abstract 

This study provides a comprehensive platform that uses CFD simulation to model and validate the battery thermal 

characteristics for accurately monitoring the battery core temperature using the KF method. 

Figure. Schematic diagram summerising the battery core temperature estimation process 

Aim 

Provide an accurate estimation of the battery core temperature considering the non-uniform temperature distribution. 

Design & Methodology 

Thermal parameter identification of Li-ion battery using recursive least squares algorithm and core temperature 

estimation using Kalman filter method. 

Originality 

Using the COMSOL Software to monitor the unmeasurable quantities of the battery and use the acquired data for 

an accurate representation of the battery's thermal behaviour. 

Findings 

The proposed TSM has an estimation error of 3,8 10-3 K and a 0.037 RMSE for the estimated core temperature at an 

initial condition of 298,15 K under the UDDS drive cycle. 

Conclusion 

As a crucial factor that influences the battery's safety and life cycle, we were able to model its thermal behaviour 

and estimate its core temperature accurately to prevent thermal runaway. 
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 ABSTRACT 

Battery core and surface temperature are crucial for the thermal management and safety usage of Li-ion batteries. They affect the 

cell's physical properties and strongly correlate with some of its key states, such as the battery state of charge (SOC) and state of 

health (SOH). Therefore, an accurate estimate of the battery core and surface temperature will enhance the performance and prolong 

the battery's life. This study proposes an estimation system of the battery core and surface temperature. A simplified pseudo-two-

dimensional model is introduced to capture the battery SOC, core and surface temperature that will be used later in this study to 

model and validate the results' accuracy. Then, a two-state thermal battery model (TSM) is presented and studied. The recursive 

least square (RLS) algorithm is adopted to identify the thermal parameters of the battery. Next, the TSM is validated using 

COMSOL Multiphysics simulation software and the thermal parameters are then fed to the Kalman filter (KF) to estimate the 

battery core temperature. Finally, the accuracy of the battery core temperature estimated results are validated with a root mean 

square error of 0.037K. 

Keywords: Li-ion battery thermal model, core temperature, surface temperature, kalman filter, recursive least squares. 

Li-Ion Pil Termal Parametre Tanımlama ve Çekirdek 

Sıcaklık Tahmini 

ÖZ 

Pil çekirdeği ve yüzey sıcaklığı, Li-ion pillerin termal yönetimi ve güvenli kullanımı için çok önemlidir. Onlar, hücrenin fiziksel 

özelliklerini etkilerler ve pil şarj durumu (SOC) ve sağlık durumu (SOH) gibi bazı temel durumları ile güçlü bir korelasyona 

sahiptirler. Bu nedenle, pil çekirdeğinin ve yüzey sıcaklığının doğru bir tahmini, performansı artıracak ve pilin ömrünü uzatacaktır. 

Bu çalışma, pil çekirdeği ve yüzey sıcaklığı için bir tahmin sistemi önerilmektedir. Pil SOC'sini, çekirdek ve yüzey sıcaklığını 

yakalamak için basitleştirilmiş bir sözde iki boyutlu model tanıtılmış, sonrasında bu çalışmada elde edilen sonuçları doğrulamak 

ve modellemek için kullanılmıştır. Ardından, iki durumlu bir termal pil modeli (TSM) sunulmuş ve incelenmiştir. Pilin termal 

parametrelerini tanımlamak için özyinelemeli en küçük kareler (RLS) algoritması benimsenmiştir. Daha sonra, TSM; COMSOL 

Multiphysics simülasyon yazılımı kullanılarak doğrulanmış ve sonrasında termal parametreler, pil çekirdek sıcaklığını tahmin 

etmek için Kalman filtresine (KF) uygulanmıştır. Sonuç olarak, pil çekirdek sıcaklığı tahmini sonuçlarının doğruluğu 0.037K'lık 

bir ortalama karekök hatasıyla doğrulanmıştır. 

Anahtar Kelimeler:  Li-ion pil termal modeli, çekirdek sıcaklığı, yüzey sıcaklığı, kalman filtresi, özyinelemeli en küçük 

kareler    
1. INTRODUCTION 

Nowadays, Lithium-ion batteries (LIBs) have become 

the beating heart of portable electronics and electric 

vehicles (EVs) thanks to their high energy density, 

lightweight and no memory effects. Nevertheless, they 

are susceptible to temperature variations. For optimal 

performance, LIB must operate at a controlled 

temperature between 15 °C – 35 °C [1,2]. Both low and 

high temperatures outside this optimum range will 

promote battery ageing and cause lithium platting and 

thermal runaway. A primary concern of the thermal 

management system is the estimation of the battery 

temperature. Generally, LIBs are packed in series and/or 

parallels to achieve the required capacity and voltage. 

During operation, li-ion cells release heat due to enthalpy 

changes, electrochemical polarization and resistive 

heating [3]. The accumulated heat may lead to local 

overheating and thus local deterioration of the battery 

pack. Li-ion temperature is defined by its core and 

surface temperature. To measure the battery core 

temperature, we can use an embedded thermocouple 

inside the cell. This approach is costly and not practical, 

especially for large battery packs where we need to 

control and capture the core temperature for each cell. 

Therefore, accurate estimation of the battery core and 

surface temperature is crucial for battery management 

systems along with the battery state of charge (SOC), 

state of health (SOH), and other essential states for safe 

and reliable performance.   
*Sorumlu Yazar  (Corresponding Author)  
e-posta :  khadija.saqli@usmba.ac.ma 
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Modelling allows a better understanding of how the 

battery responds to load. The accuracy of the proposed 

model is judged based on how well it performs under 

different thermal conditions and its efficiency. The 

literature presents various battery models with diverse 

ranges of complexity and accuracy and can be grouped 

into two categories: heat generation and heat transfer 

models [4]. The first category (heat generation models) 

takes the cell current as input to describe the battery 

behavior and estimate the total heat generation during 

operation. It usually includes electrochemical battery 

models (EM) and equivalent circuit models (ECM). As 

the name implies, ECM uses electrical components to 

procreate the cell response. It usually includes an open 

circuit voltage to describe the internal battery voltage, a 

series resistance representing the Ohmic drop, and one or 

multiple RC blocks describing the polarization effect 

caused by diffusion, transfer or other effects [5]. Due to 

their simplicity and acceptable accuracy, ECMs are the 

model of choice for model-based estimation methods [6]. 

However, their precision is subject to the identified 

model parameters, temperature ageing and other factors. 

On the other hand, EMs describe the internal microscopic 

quantities that the electric models can't capture, which 

makes them suitable for battery degradation analysis [7]. 

EMs can be grouped into three main categories: pseudo-

two-dimensional (P2D) models, single particle (SP) 

models, and simplified P2D (SP2D) models. Each model 

has its limitation and advantages. The P2D was first 

established by M. Doyle, T. F. Fuller and J. Newman [8]. 

It uses partial differential equations (PDEs) to describe 

the reaction kinetics, migration and diffusion inside the 

Li-ion cell [7]. The PDEs have no analytic solutions. 

Thus, specific discretization methods are used to solve 

them [11]. The full P2D model is complex and requires 

heavy computational power making them unsuitable for 

real-time applications. On the other hand, the SP model 

is a simplified version that assumes each electrode to be 

modelled by a single spherical particle, which reduces the 

PDEs system to less than ten states. This simplification 

reduces the accuracy of the model but speeds up the 

computation. The SP2D battery model is derived from 

the P2D and inherits its accuracy with reduced 

computational burden.  Heat transfer models use the heat 

estimated by the heat generation model to calculate the 

cell core and surface temperature. They can be classified 

into finite element analysis (FEA) [13, 14] and heat 

capacitor-resistor models [12], each with advantages and 

drawbacks. Unlike FEA-based models [13], the heat 

capacitor-resistor models are more straightforward and 

computationally inexpensive. They can be optimized to 

improve the estimation accuracy, making it the choice 

model for several real-world management systems.   

Heat capacitor-resistor models apply the analogy 

between thermal and electrical phenomena to describe 

the thermal behaviour of the battery when a load is 

applied. Researchers have introduced different heat 

capacitor-resistor models with various accuracy and 

complexity levels. These models can be broadly 

classified into two main categories: first-order and 

second-order based thermal models [12-14]. Compared 

to second-order models that require extensive 

experiments and the profound knowledge of domain 

experts, first-order models are more straightforward and 

reasonably accurate. Thus, determined efforts were 

employed to overcome these shortcomings [13].  

Different approaches were used to estimate the core 

temperature of LIBs. The most common method is the 

electrochemical-impedance-spectroscopy (EIS) based 

method. Robert R. et al. [15] used the EIS measurements 

combined with the surface temperature measurements to 

estimate the battery's internal temperature. Despite its 

accuracy, finding the appropriate frequency of the EIS is 

complex and can be acquired through tedious preliminary 

tests.   

Data-driven models are widely used to forecast battery 

performance based on a dataset. In [16], Kleiner et al. 

proposed a unique NARX network for a 25 Ah hexagonal 

cell to predict the battery's thermal behaviour. The model 

uses real-life datasets to make predictions of internal 

temperature. However, the focus is on thermal causes 

over the battery lifespan, as opposed to more complex 

real-world situations that may have different 

consequences. To include the interdependency between 

the battery's electrical and thermal behaviour, Konglei et 

al. [17] proposed an enhanced EIS-based core 

temperature estimation approach. The model 

quantitatively selects the SoC-insensitive EIS features to 

be used by the support vector regression (SVR) to 

improve the temperature prediction. However, the data-

driven artificial neural network methods have been 

mainly employed to estimate the battery SOC [18-20] 

and SOH [21-23] and are less adapted for temperature-

states estimation. An adaptive observer is applied in [24, 

25] to assess the internal temperature of the LIB in a 

battery pack. The estimation errors are fed back to adopt 

the prediction. This approach is used in various studies to 

estimate the battery cell's core temperature by measuring 

the cell's surface temperature. The main drawback of this 

estimation category is that it requires several temperature 

sensors to improve observability, especially for large-

scale battery packs. In [26], Jiang Yu Hen et al. used two 

types of neural networks: long short-term memory-RNN 

(LSTM-RNN) and gated recurrent unit-RNN(GRU-

RNN) to estimate the battery surface temperature. 

However, the performance of neural network-based 

methods is greatly affected by the training iteration and 

overfitting, making the estimation more challenging.      

Estimating the battery core temperature is essential for 

thermal management and assessing temperature 

distribution. A sure and effective estimation algorithm of 

the battery core temperature will improve the battery 

performance. In recent studies [27, 28], Kalman filter 

(KF) has been widely used to predict the battery core 

temperature and the battery states. The algorithm is 

known for its robustness and was proven its ability to 

provide accurate estimation, even under noisy operating 

conditions. Therefore, KF was chosen for this study to 
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estimate the battery's internal temperature based on the 

two-state thermal model.    

The main goal of this study is to provide a platform that 

can monitor the battery temperature during operation and 

guarantee its safety. The proposed model considers the 

non-uniform temperature distribution inside the battery 

to achieve a real-time estimation of the battery core 

temperature.  The battery cell is first simulated in 

COMSOL Multiphysics to extract the necessary data 

needed to develop the thermal battery model and validate 

its accuracy. The simulated model captures the battery 

core and surface temperature, the generated heat, the 

coolant air temperature and the lithium concentration in 

the electrode to measure the SOC variation under the 

load.    

The paper is organized as follows: Section 2 introduces 

the methods used in this study to model the thermal 

characteristics of the battery and track the lithium 

concentration evolution during operation to estimate its 

SOC. Section 3 presents the data acquired from the CFD 

simulation, the estimated thermal parameters of the LMO 

battery using this data and the core temperature 

estimation results under the CC test using the KF 

approach. Finally, we conclude our work in section 4. 

   

2. METHODS 

Generally, Li-ion batteries are available in three major 

form factors: cylindrical cells, pouch cells and prismatic 

cells. Each geometry is better suited to different use 

cases. Cylindrical cells have proven to be most adaptable 

for high-power applications thanks to their high specific 

energy and good mechanical stability. However, the 

jellyroll shape of the battery causes a significant 

temperature difference between the core and the surface. 

Thus, it’s essential to provide a thermal model of the 

battery to predict its core temperature for effective 

thermal management. 

2.1.  Electrochemical Model 

The electrochemical battery model is set up using the 

physics interface "Lithium-Ion Battery" in COMSOL 

Multiphysics. The model is developed and validated 

based on the work of Newman, Fuller and Doyle [8-10]. 

It uses well-proven electrochemical and thermodynamic 

concepts to describe the inner behaviour of the battery 

during operation. The high performance and accuracy of 

the model pushed its use as a reference for validation by 

the Li-ion battery modelling community [29]. Therefore, 

it was chosen to parametrise and validate the thermal 

model of the 18650 cylindrical graphite/LMO Li-ion cell 

(Figure 1) to accurately estimate the core temperature 

while considering the noise and the inner electrical 

resistance of the battery.  

 

Figure 1. The LMO 18650 battery geometry 

As shown in Figure 1, the cylindrical cell is built by 

alternating the positive electrode, the separator and the 

negative electrode. The current collector at the positive 

and negative end of the battery accumulates the generated 

current.  The governing PDEs are thoroughly presented 

in our previous work [30] and won't be represented here 

for simplicity. We upgraded the earlier model of [30] to 

capture the battery core and surface temperature, the 

temperature of the air flowing inside the compartment, 

the battery SOC and the generated heat. The properties of 

the battery are listed in Table 1.   

Table 1 Battery properties 

Battery properties   Value 

Diameter (mm) 18 

Height(mm) 56  

Chemistry Li-ion manganese oxide 

(LMO) 

Heat capacity (J/(Kg.K)) 1399.1 

Radial thermal 

conductivity (W/(m.K)) 

0.89724 

 

2.1.1.  SOC and Lithium Concentration 

Battery SOC is a crucial measurement that affects the 

energy management control strategy and performance 

[31]. It describes the amount of charge left relative to its 

initial capacity under a current load. An accurate 

estimation of this state helps prevent overcharging and 

over-discharging the battery cell for safe and prolonged 

life usage. For electrochemical battery models, the 

battery SOC can be defined as in [29] 

 SOC

=  
Ωn   cs,surf,cyclFεsdΩ

Ωn   cs,surf,cyclFεsdΩ + Ωp   cs,surf,cyclFεsdΩ
 

(1

) 

 

Where the spatial domain Ω  ℝ𝑁  , F is Faraday’s 

constant, 𝜀𝑠 is the electrode volume fraction and 

𝑐𝑠,𝑠𝑢𝑟𝑓,𝑐𝑦𝑐𝑙  is the cyclable lithium concentration at the 

surface of the electrode particles defined as 
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 cs,surf,cycl = cs,surf − socmincs,max 
(2) 

Where 𝑐𝑠,𝑠𝑢𝑟𝑓 represents the lithium concentration at the 

surface of the electrode particles and 𝑠𝑜𝑐𝑚𝑖𝑛 𝑎𝑛𝑑 𝑐𝑠,𝑚𝑎𝑥   

represent respectively the electrode minimum state of 

charge and the maximum solid phase concentration. 

2.1.2.  Temperature and Heat Generation 

Since the 18650 cylindrical cells are usually used in 

large-scale high-power applications, they are subject to 

temperature rise due to the generated heat in the primary 

reaction and unwanted side reactions. Heat can originate 

from resistive dissipation, the entropy of the cell reaction, 

the heat of mixing, and side reactions [32]. 

The heat and temperature equation applied to the cell is 

given as 

 
𝜌𝐶𝑝  

𝑑𝑇(𝑥, 𝑡)

𝑑𝑡
=  𝜆𝑖

𝑑𝑇(𝑥, 𝑡)

𝑑𝑥2
+ 𝑄𝑜ℎ𝑚(𝑥, 𝑡)

+ 𝑄𝑟𝑒𝑣(𝑥, 𝑡) + 𝑄𝑟𝑥𝑛(𝑥, 𝑡) 

(3) 

 

The total irreversible ohmic heat generation rate 

 𝑄𝑜ℎ𝑚(𝑥, 𝑡)

=  𝜎𝑒𝑓𝑓 (
𝜕Φs(𝑥, 𝑡)

𝜕𝑥
)

2

+ 𝜅𝑒𝑓𝑓 (
𝜕Φe(𝑥, 𝑡)

𝜕𝑥
)

2

+
2𝑅𝑇(𝑥, 𝑡)

𝐹
 𝜅𝑒𝑓𝑓(1

− 𝑡+)
𝜕ln (𝑐𝑒(𝑥, 𝑡))

𝜕𝑥

𝜕Φe(𝑥, 𝑡)

𝜕𝑥
 

(4) 

The total reversible heat generation rate 

 𝐐𝐫𝐞𝐯(𝐱, 𝐭) = 𝐚𝐢𝐅 𝐉(𝐱, 𝐭)𝐓(𝐱, 𝐭)
𝛛𝐔(𝐱, 𝐭)

𝛛𝐓
 

(5) 

The total irreversible heat generation rate 

 𝐐𝐫𝐱𝐧(𝐱, 𝐭) = 𝐚𝐢𝐅 𝐉(𝐱, 𝐭)𝛈𝐢(𝐱, 𝐭) (6) 

where 𝜌, 𝐶𝑝, 𝜆, 𝜎𝑒𝑓𝑓 ,  𝜅𝑒𝑓𝑓  define respectively the 

density, the heat capacity, the conduction coefficient, the 

effective conductivity and the specific conductivity of the 

electrolyte. 𝑡+ is the transference number of lithium ions, 

𝑎𝑖 is the electrode surface area per volume unit of the 

electrode, 𝐽 is the flux of lithium ions flowing out of the 

surface of the spherical particles and 𝜂𝑖 is the resulting 

overpotential. 

The boundary conditions are defined as 

 

{
 

 [−λi
∂T(x, t)

∂x
]|
0
= h(Tref −  T(x, t)),

[−λi
∂T(x, t)

∂x
]|
L
= h(Tref −  T(x, t))

 

(7) 

where ℎ is the convection coefficient, 𝑇𝑟𝑒𝑓  is the ambient 

temperature.  

Finally, we can define the thermal dependence open 

circuit voltage (OCV) using Taylor’s first order 

expansion around a reference temperature as  

 
Up = Up,ref + (T(x, t) − Tref)

∂Up

∂T
|
Tref

 

Un = Un,ref + (T(x, t) −  Tref)
∂Un
∂T

|
Tref

 

(8) 

where 𝑈𝑝,𝑟𝑒𝑓  𝑎𝑛𝑑 𝑈𝑛,𝑟𝑒𝑓 represent respectively the OCV 

at the positive and negative electrode under reference 

temperature 𝑇𝑟𝑒𝑓  and 
𝜕𝑈𝑝

𝜕𝑇
|
𝑇𝑟𝑒𝑓

,
𝜕𝑈𝑛

𝜕𝑇
|
𝑇𝑟𝑒𝑓

  is the entropy 

change of the positive and negative electrode 

respectively. 

2.2.  Thermal Model 

The accuracy of the thermal estimator depends mainly on 

the selected thermal battery model. Thus, a two-state 

thermal battery model (TSM) was selected in this study 

to describe the battery inner and outer thermal behavior. 

As shown in Figure 2, the model includes the heat 

generated by the battery core during operation 𝑄ℎ, the 

heat capacity of the core 𝐶𝑐𝑜𝑟𝑒, the battery core heat 

transfer resistance 𝑅𝑐𝑜𝑟𝑒, the thermal capacitance of the 

battery canister 𝐶𝑠𝑢𝑟𝑓 and the thermal heat resistance of 

the battery surface 𝑅𝑠𝑢𝑟𝑓.     

 

Figure 2. Two-state thermal battery model 

The model equations are defined according to the law of 

conversation of energy as 

 
Ccore 

dTcore
dt

= Qh + 
Tsurf − Tcore

Rcore
 

(9) 

 

 Csurf 
dTsurf
dt

=
Tair − Tsurf
Rsurf

− 
Tsurf − Tcore

Rcore
 

(10) 

Where 𝐓𝐜𝐨𝐫𝐞, 𝐓𝐬𝐮𝐫𝐟 represent respectively the battery core 

temperature and surface temperature. 

 The heat generation rate 𝑸𝒉 adopts the Bernardi heat 

generation model [33] and can be acquired as follow 
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 Qh = (OCV − Vt)Iapp −  IT
dUocv
dT

 
(11) 

Where 𝑶𝑪𝑽 is the battery open circuit voltage, 𝑽𝒕 defines 

the battery terminal voltage, 𝑰𝒂𝒑𝒑 is the input current 
𝒅𝑼𝒐𝒄𝒗

𝒅𝑻
 represent the entropy heat coefficient. 

2.2.1.  Parameter Identification 

By combining the temperature dependent second order 

equivalent circuit model that we developed in a previous 

work [30] with this TSM battery model we can calculate 

the battery heat generation using equation 11. The 

entropy heat coefficient was ignored since the 

temperature impact on the OCV change is minor. Thus, 

only the irreversible heat is considered. 

 z(k) =  θT∅(k) (12) 

Where 𝑧(𝑘) = 𝑇𝑠𝑢𝑟𝑓(𝑘) is the model input, ∅(𝑘) =

[𝑇𝑠𝑢𝑟𝑓(𝑘), 𝑇𝑎𝑖𝑟(𝑘 − 1), 𝑇𝑎𝑖𝑟(𝑘), 𝑄ℎ]
𝑇
is the identified 

related parameters and 𝜃 is the model output.  

equations 9 and 10 are discretized as 

 

 Tsurf(k)

=  
Rsurf

Rsurf + Rcore
Tcore(k)

+ 
Rcore

Rsurf + Rcore
Tair(k) 

(13) 

 

 Tcore(k − 1) =  
Rsurf + Rcore

Rsurf
Tsurf(k

− 1) − 
Rcore
Rsurf

Tair(k

− 1)  

(14) 

By sorting out equation 13 and 14 we get 

 𝐓𝐬𝐮𝐫𝐟(𝐤)

=  
𝐑𝐜𝐨𝐫𝐞𝐂𝐜𝐨𝐫𝐞 + 𝐑𝐬𝐮𝐫𝐟𝐂𝐜𝐨𝐫𝐞 − ∆𝐭

𝐂𝐜𝐨𝐫𝐞(𝐑𝐜𝐨𝐫𝐞 + 𝐑𝐬𝐮𝐫𝐟)
𝐓𝐬𝐮𝐫𝐟(𝐤

− 𝟏) − 
∆𝐭 − 𝐑𝐜𝐨𝐫𝐞𝐂𝐜𝐨𝐫𝐞

𝐂𝐜𝐨𝐫𝐞(𝐑𝐜𝐨𝐫𝐞 + 𝐑𝐬𝐮𝐫𝐟)
𝐓𝐚𝐢𝐫(𝐤 − 𝟏)

+ 
𝐑𝐜𝐨𝐫𝐞

𝐑𝐬𝐮𝐫𝐟 + 𝐑𝐜𝐨𝐫𝐞
 𝐓𝐚𝐢𝐫(𝐤)

+ 
𝐑𝐬𝐮𝐫𝐟∆𝐭

𝐂𝐜𝐨𝐫𝐞(𝐑𝐜𝐨𝐫𝐞 + 𝐑𝐬𝐮𝐫𝐟)
𝐐𝐡(𝐤 − 𝟏) 

(15) 

We set 

 

{
 
 
 
 

 
 
 
 𝛂𝟏 = 

𝐑𝐜𝐨𝐫𝐞𝐂𝐜𝐨𝐫𝐞 + 𝐑𝐬𝐮𝐫𝐟𝐂𝐜𝐨𝐫𝐞 − ∆𝐭

𝐂𝐜𝐨𝐫𝐞(𝐑𝐜𝐨𝐫𝐞 + 𝐑𝐬𝐮𝐫𝐟)

𝛂𝟐 = 
∆𝐭 − 𝐑𝐜𝐨𝐫𝐞𝐂𝐜𝐨𝐫𝐞

𝐂𝐜𝐨𝐫𝐞(𝐑𝐜𝐨𝐫𝐞 + 𝐑𝐬𝐮𝐫𝐟)

𝛂𝟑 = 
𝐑𝐜𝐨𝐫𝐞

𝐑𝐬𝐮𝐫𝐟 + 𝐑𝐜𝐨𝐫𝐞
 

𝛂𝟒=  
𝐑𝐬𝐮𝐫𝐟∆𝐭

𝐂𝐜𝐨𝐫𝐞(𝐑𝐜𝐨𝐫𝐞 + 𝐑𝐬𝐮𝐫𝐟)

 

 

Where ∆𝑡 is the sampling time and was set to 1s and 𝜃 =
[𝛼1, 𝛼2, 𝛼3, 𝛼4] represent the model parameters to be 

identified. 

2.2.2.  Core Temperature Estimation using KF 

The main focus of this section is to use the identified 

thermal parameters of the 18650 LMO LIB to estimate 

its core temperature using Kalman filter (KF).  

KF algorithm is an effective and well-known algorithm 

widely used to estimate the states of a linear dynamic 

system. Due to its high accuracy and good performance 

even with noisy measurements, KF is chosen in this study 

to evaluate the battery core and surface temperature. 

A schematic diagram of the battery core and surface 

estimation is illustrated in Figure 3. The diagram inputs 

are the inlet air temperature 𝑇𝑎𝑖𝑟  used to dissipate the 

generated heat during operation, and the applied current 

𝐼. The RLS algorithm uses the model inputs and the 

surface temperature obtained from the CFD simulation to 

identify the thermal parameters of the TSM including 

𝐶𝑐𝑜𝑟𝑒, 𝑅𝑐𝑜𝑟𝑒, 𝐶𝑠𝑢𝑟𝑓 and 𝑅𝑠𝑢𝑟𝑓  needed for the KF 

algorithm to estimate the battery core and surface 

temperature. The surface temperature estimated by the 

KF is compared to that of the CFD simulation and the 

generated estimation error is then used to calibrate the 

KF. 

Herein we define the state space vector as 𝒙 =
[𝑻𝒄𝒐𝒓𝒆, 𝑻𝒔𝒖𝒓𝒇], the system output as 𝒚 = 𝑻𝒔𝒖𝒓𝒇  and the  

𝒖 = [𝑰, 𝑻𝒂𝒊𝒓]. 

 
{
𝐱(𝐤 + 𝟏) = 𝐀𝐱(𝐤) + 𝐁𝐮(𝐤) +  𝛚

𝐲(𝐤) = 𝐂𝐱(𝐤) +  𝛖
 

(16) 

𝜔 𝑎𝑛𝑑 𝜐 are the uncorrelated Gaussian variable. The 

matrix coefficients A and B are derived from equation 9 

and 10 as 

 A

= 

[
 
 
 1 − 

∆t

CcoreRcore

∆t

CcoreRcore
∆t

CsurfRcore
1 − 

∆t

CsurfRsurf
−

∆t

CsurfRcore]
 
 
 

 

 

𝐵 =  

[
 
 
 
 
∆𝑡

𝐶𝑐𝑜𝑟𝑒
0

0
∆𝑡

𝐶𝑠𝑢𝑟𝑓𝑅𝑠𝑢𝑟𝑓]
 
 
 
 

 

 

 

 

 

(17

) 
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3. RESULTS AND DISCUSSION 

This section presents the simulation results as well as the 

validation of the TSM battery model and the core 

temperature estimation results using the KF algorithm. 
 

3.1.  Simulation Results of the Electrochemical 

Battery Model 

The battery is placed in a compartment where air flows 

with an inlet velocity of 𝑣𝑖𝑛= 0.1 m/s and an initial 

temperature of 𝑇𝑎𝑖𝑟,0 = 298.15 𝐾   to simulate a thermal 

chamber. We start with a fully charged battery SOC = 

100% and 𝑉0 = 4.2 𝑉, and we apply a 1C (-12Ah) 

constant current charge (see Figure 4) to bring the cell’s 

SOC to 2%. 

The 1D cell model was built and validated by COMSOL 

Multiphysics. The 1D and 3D are linked using a coupling 

function of the cell temperature and the generated heat. 

The cell and the air compartment are meshed using 

physics-controlled mesh to simulate the cell and the 

cooling air.    

 

 
Figure 4. Discharge current load 

To avoid over-discharging the battery cell, we applied a 

1C-rate current load for 3500s, and we stopped when 

SOC = 2%. The simulation results are shown in Figure 5 

and will be later used to estimate the battery core and 

surface temperature. 

Figure 3 Schematic diagram of the battery core temperature estimation process 
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Figure 5. Battery SOC 

The core, surface and air temperature measured under the 

CC load are illustrated in Figure 6 and will be used as 

experimental results to calculate the battery thermal 

model parameters and validate later on the estimation 

results of the core temperature using Kalman filter with 

the identified parameters. It can be seen that the battery 

core temperature is slightly higher than the surface 

temperature. This is due to the air flowing inside the 

compartment to cool the cell and reduce the temperature 

gradient. The air, core and surface temperature reached 

its maximum value of 300.7K at the end of the simulation 

without exceeding the permissible thermal limits for safe 

operation, and this is due to the effective thermal 

management.  

 
Figure 6. Simulation results of the battery core, surface and 

air temperature for parameter identification 

 

During discharge, the crystal phase transition from 

hexagonal to monoclinic of the cathode material of the 

LMO battery leads to endothermic heat effect, which 

explains the distinct drop in the battery temperature near 

2400 s. 
 

3.2.  Thermal Parameters Estimation Results 

To test the RLS algorithm and estimate the TSM 

parameters including 𝑪𝒄𝒐𝒓𝒆, 𝑹𝒄𝒐𝒓𝒆, 𝑹𝒔𝒖𝒓𝒇, we used the 

data that we acquired from the SP2D model. 

 

Figure 7. Battery thermal parameters identification results 

 

As illustrated in Figure 7, The battery thermal parameters 

do not change with the physical properties of the cell and 

thus can be identified as constants. We can acquire the 

battery surface heat capacity (𝐶𝑠𝑢𝑟𝑓) from the heat 

capacity and the size of the battery canister. Therefore, 

only the other three parameters can be identified using 

the RLS algorithm. Finally, the estimated thermal 

parameters of the TSM model are listed in Table 2. 

 

Table 2. Battery thermal parameters 

Thermal 

parameters 

Value 95% confidence 

interval 

𝐶𝑐𝑜𝑟𝑒(𝐽𝐾
−1) 50.0162 50.0158 - 

50.0166 

𝐶𝑠𝑢𝑟𝑓(𝐽𝐾
−1) 3.42 - 

𝑅𝑐𝑜𝑟𝑒(𝐽𝐾
−1) 2.104 2.1039 - 2.1041 

𝑅𝑠𝑢𝑟𝑓(𝐽𝐾
−1) 3.5067 3.5065 - 3.5069 

 

To validate the accuracy of the TSM battery model, we 

used the identified thermal parameters to calculate the 

surface temperature, and we compared it to the surface 

temperature acquired from the CFD simulation. The 

results are shown in Figure 8. 

 

 

Figure 8. Comparison of the battery reference and estimated 

surface temperature using the identified TSM model 

The estimation root means square errors of the battery 

surface temperature using the estimated thermal 

parameters is 𝟑. 𝟖 𝟏𝟎−𝟑 𝐊, which proves the accuracy of 



Khadija SAQLI, Houda BOUCHAREB, Mohammed OUDGHIRI, Kouder Nacer M. SIRDI  / POLİTEKNİK  DERGİSİ, Politeknik Dergisi,2023;26(4): 1495-1504 

1502 

the developed TSM to predict the thermal behavior of the 

battery. 

3.3. Core and Surface Temperature Estimation 

Results 

To investigate the performance of the KF algorithm, we 

set the simulated core and surface temperature under the 

CC test obtained from the CFD simulation as reference 

data upon which we compare the results of the KF. 

The state initial value is set as x = [298.15, 298.15] the 

air temperature 𝑇𝑎𝑖𝑟 = 298.15𝐾, the inlet velocity 𝑣𝑖𝑛 =
0.1𝑚/𝑠 and sampling time ∆𝑡 = 1𝑠.  
Figure 9 shows comparison of the estimated core 

temperature and reference temperature at (a) 298.15 K, 

(b) 303.15. K, (c) 316.15. K. The results show that the 

core and surface temperature acquired from the KF 

algorithm are in good accord with the reference values. 

For 298.15 K, the errors of the core temperature are kept 

between -0.014 K and 0.13 K with a RMSE of 0.037 K, 

which proves the accuracy of the proposed model to 

predict with high confidence the thermal behavior of the 

li-ion battery.   

To investigate the impact of temperature on the accuracy 

and performance of the developed model, we compared 

the core temperature simulated by the SP2D battery 

model to the core temperature estimated by the proposed 

model at different range of temperatures. We set the 

coolant air temperature to match the ambient temperature 

during the test to decrease its impact on the battery 

thermal response. At 303,15K, the core temperature 

estimation errors are between -0,01 K and 0,13 K. At the 

end of the simulation, the battery's core temperature 

increased by 2.39 K. At 316,15 K, the model was able to 

accurately estimate the battery core temperature with an 

RMSE of 0.046 K. Even at elevated temperatures that’s 

outside the optimum range of operation and with poor 

thermal management system, the proposed estimation 

scheme accurately predicted the battery's thermal 

behavior. 

 

3. CONCLUSION 

Battery temperature, be it core or surface temperature, is 

a crucial factor influencing battery Safety and other 

parameters such as the battery SOC and SOH. 

Monitoring the battery core and surface temperature is 

essential for thermal management. Thus, the focus of this 

study was to study and model first the thermal behavior 

of the 18650 LMO battery cell and present a reliable 

estimate of the battery core temperature based on KF. We 

started by acquiring the essential data needed for the 

identification process of the TSM and the estimation 

algorithm, using the SP2D battery model. Next, we 

applied the RLS algorithm to identify the TSM 

parameters, including𝐶𝑐𝑜𝑟𝑒 , 𝐶𝑠𝑢𝑟𝑓 , 𝑅𝑐𝑜𝑟𝑒 , 𝑅𝑠𝑢𝑟𝑓, and 

 𝑅𝑐𝑜𝑟𝑒 . The surface temperature estimated using the 

identified thermal parameters has an estimation error of 

3.8 10−3 𝐾, proving the developed TSM to track the 

battery's thermal behaviour with high accuracy. Finally, 

we applied KF to estimate the battery core temperature. 

The results show good accordance between the estimated 

and the reference core temperature with RMSE of 0.037 

K for an initial temperature of 298.15 K, which proves 

the accuracy of the developed thermal model and the 

estimator. The performance of the TSM model was tested 

at an extreme operating condition of 303.15 K and 316.15 

K. At 303,15K the battery core temperature estimation 

errors were between - 0,01 K and 0,13 K, while for 

316.15 K the estimated core temperature has an RMSE 

of 0.046 K. These results revealed the ability of the 

proposed TSM with the KF algorithm to provide sturdy 

Figure 9. Estimation results of the battery core temperature using KF at :(a) 298.15K, (b) 303.15 K and (c) 316.15 K 
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results even under elevated temperatures that exceed the 

optimum range of operation. 
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