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ABSTRACT This study presents alpha-stable autoregressive (AR) modeling of the dynamics of Chua’s
circuit in the presence of heavy-tailed noise. The parameters of the AR time series are estimated using the
covariation-based Yule-Walker method, and the parameters of alpha-stable distributed residuals are calculated
using the regression type method. Visual depictions of the calculated parameters of the AR model and
alpha-stable distributions of residuals are presented. The medians of the estimated parameters of the AR
model and alpha-stable distributions parameters of residuals are presented for heavy-tailed noise with various
stability index parameters. Thus, the impulsive behavior of Chua’s circuit can be modeled as alpha-stable AR
time series, and the model can provide an alternative approach to describe the chaotic systems driven by
heavy-tailed noise.
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INTRODUCTION

There has been an increasing interest in stochastic processes based
on heavy-tailed distributions for real-world data modeling. It
is well known that stochastic fluctuations are inevitable due to
various uncertainties or unpredictable factors in the real-world
systems. Understanding the effect of fluctuations on the chaotic
dynamics is also of fundamental interest. The importance of addi-
tive noise in chaotic attractors is considered in (Argyris et al. 1998).
The effect of stochastic excitations which have asymmetric distribu-
tions on chaotic dynamics is analyzed in (Yilmaz et al. 2018) by con-
sidering the generalized Chua’s circuit driven by skew-Gaussian
distributed noise. However, Gaussian distribution cannot be ap-
plied for modeling data across multiple application areas for which
real-world data exhibit significant peaks.

Some examples that might have heavy-tailed behavior include
tracking highly maneuvering objects (Gan and Godsill 2020; Gan
et al. 2021), interference in IoT networks (Clavier et al. 2021), fi-
nancial data (McCulloch 1996; Maleki et al. 2020; Janczura et al.
2011; Wesselhöfft 2021), chaotic systems (Savaci and Yilmaz 2015;
Contreras-Reyes 2021), frequency fluctuations in the power grid
(Schäfer et al. 2018; Anvari et al. 2020), the dose distributions for
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proton breast treatment (Van den Heuvel et al. 2015), proton pencil
beams for cancer therapy (Van den Heuvel et al. 2018), climate
dynamics (Ditlevsen 1999; Broszkiewicz-Suwaj and Wyłomańska
2021). Therefore, alpha-stable (α-stable) distributions are more suit-
able for modeling such impulsive behavior (Nolan 2003). Alpha-
stable distributions require four parameters: skewness parameter
(β), scale parameter (σ), location parameter (µ), and stability index
(α), which is responsible for the heavy-tailedness of the distribu-
tion.

To model the real-world data based on heavy-tailed time series,
the α-stable autoregressive (AR) model is proposed in (Gallagher
2001), and generalized Yule-Walker equations are used to estimate
the parameters of the α-stable AR process. The use of α-stable
distributions in multivariate processes is presented in (Pai and
Ravishanker 2010) and the approach is illustrated on time series of
daily average temperatures.

The α-stable distribution with α = 2 corresponds to the Gaus-
sian distribution. Since stable distributions have an infinite vari-
ance for α < 2, autocorrelation is not defined for heavy-tailed ran-
dom sequences. Therefore, other measures of dependence, such as
autocovariation are needed for consideration in an infinite variance
system. A new autocovariation estimator for α-stable AR processes
is introduced in (Gallagher 2001), in which the real-world data set
is considered as the time series of sea surface temperatures.
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A modified method of Yule-Walker is presented in (Kruczek
et al. 2017) to estimate the parameters of the stable periodic au-
toregressive (PAR) model. This method obtains the PAR model
for electricity market data describing the hourly volume of up-
regulating bid prices in Norway. The classical one-dimensional
α-stable AR model is generalized to the multidimensional case
in (Grzesiek et al. 2021). The method is applied to a real data set
which contains daily prices of KGHM and copper.

This paper considers a stochastic nonlinear electronic circuit,
specifically the Chua’s circuit with α-stable noise. Chua’s circuit is
a nonlinear chaotic circuit, and the presence of heavy-tailed noise
makes the circuit more unpredictable and complex. Our study
focuses on applying the α-stable autoregressive (AR) model to
characterize the impulsive behavior of the Chua’s circuit, and thus
aims to provide a better-linearized way to analyze the dynamics
of the states of stochastic Chua’s circuit.

The paper is structured as follows. In the first part, Chua’s
circuit in the presence of heavy-tailed noise is presented, and its
α-stable AR model is proposed. The next part gives the modified
Yule-Walker equations for α-stable AR models based on the autoco-
variation estimator. In the last part, the dynamical behaviors of the
system are obtained by using the Euler-Maruyama method, and
the estimation method presented is applied to the simulated data.

CHUA’S CIRCUIT IN THE PRESENCE OF ALPHA-STABLE
NOISE

The set of differential equations representing the dynamics of di-
mensionless Chua’s circuit in the presence of heavy-tailed noise is
given as follows (Suykens and Huang 1997):

dx = a[y − h(x)]dt + dLα(t)
dy = (x − y + z)dt (1)

dz = −bydt.

with the bifurcation parameters a, b and the piecewise-linear func-
tion h(x):

h(x) = m1x + 0.5(m0 − m1)(|x + 1| − |x − 1|) (2)

and dLα(t) is α-stable random variable ∼ Sα(β, σ, µ) with the stabil-
ity index α ∈ (0, 2], the skewness parameter β ∈ [−1, 1], the scale
parameter σ ∈ R+ and the location parameter µ ∈ R (Samorodnit-
sky and Taqqu 1994; Nikias and Shao 1995).

The characteristic function of an α-stable random variable is
given as (Samorodnitsky and Taqqu 1994; Nikias and Shao 1995)

φ(w)=


exp

{
−|γw|α[1 − iβsign(w) tan(πα

2 )] + iµw
}

for α ̸= 1

exp
{
−|γw|[1 + iβsign(w) 2

π log(|w|)] + iµw
}

for α = 1
(3)

where sign(w) is signum function.
Due to the lack of analytical expression for α-stable density

functions, the numerical approximation of the corresponding den-
sity function f (y; α, β, σ, µ) of an α-stable random variable can be
evaluated by the inverse Fourier transform of the characteristic
function given in (3) as:

f (y; α, β, σ, µ) =
1

2π

∫ ∞

−∞
e−jwy φ(w)dw. (4)

When β = 0, the distribution is symmetric around µ. The impul-
siveness of the distribution increases with the decreasing stability
index α, which makes the tails of the corresponding distributions

heavier. Gaussian distribution (α = 2 and β = 0), Cauchy distribu-
tion (α = 1 and β = 0), and Lévy distribution (α = 0.5 and β = 1)
are the exceptional cases of the α-stable distributions.

In this paper, steady states of the dynamical behaviors of the
system (1) are proposed to model as an α-stable third-order AR
process given as

x(t) =
3

∑
i=1

ϕ1,ix(t − i) + ξ1(t)

y(t) =
3

∑
i=1

ϕ2,iy(t − i) + ξ2(t) (5)

z(t) =
3

∑
i=1

ϕ3,iz(t − i) + ξ3(t)

where ϕj,i is the AR parameter and ξi(t) is the sequence of i.i.d.
symmetric alpha-stable (SαS) random variables for i, j = 1, 2, 3.

ESTIMATION METHOD FOR ALPHA-STABLE AR MODELS

The autoregressive model parameters are commonly estimated us-
ing the Yule-Walker method based on the autocorrelation function
(ACF) (Brockwell and Davis 2002). Since ACF is not defined for
α-stable random variables, the modified Yule-Walker method is
introduced based on the autocovariation function in (Gallagher
2001), and the parameters of α-stable AR models are found using
the modified Yule-Walker method. The procedure of the method is
described in the following part:

Let Xt be an autoregressive process of order p which satisfies
the following equation:

Xt − ϕ1Xt−1 − ϕ2Xt−2 − · · · ϕpXt−p = ξt (6)

where the sequence {ξt} is an i.i.d. SαS random variables with
α > 1.

Multiplying (6) by vector S =
[
St−1, St−2, . . . , St−p

]′ where
St = sign(Xt) and taking the expectation, the system consisting of
p number of equations is obtained as follows:

EXtSt−1 −
p

∑
i=1

ϕiEXt−iSt−1 = Eξt

EXtSt−2 −
p

∑
i=1

ϕiEXt−iSt−2 = Eξt (7)

...

EXtSt−p −
p

∑
i=1

ϕiEXt−iSt−p = Eξt

Then dividing the equations respectively by
E|Xt−1|, E|Xt−2|, . . . , E|Xt−p| the following system is obtained:

EXtSt−1
E|Xt−1|

−
p

∑
i=1

ϕi
EXt−iSt−1

E|Xt−1|
= 0

EXtSt−2
E|Xt−2|

−
p

∑
i=1

ϕi
EXt−iSt−2

E|Xt−2|
= 0 (8)

...
EXtSt−p

E|Xt−p|
−

p

∑
i=1

ϕi
EXt−iSt−p

E|Xt−p|
= 0

in which Eξt = 0 since ξt has SαS distribution with α > 1.
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By using the normalized autocovariation (NCV) for stationary
SαS process {Xt} for lag k proposed in (Gallagher 2001), the matrix
form of (8) can be written as follows:

λ = ΛΦ (9)

where λ and ϕ are vectors with the length of p, and they are defined
as

λ =
[
NCV(Xt, Xt−1), . . . , NCV(Xt, Xt−p)

]′
Φ =

[
ϕ1, . . . , ϕp

]′ (10)

in which

NCV(Xt, Xt−k) =
EXtsign(Xt−k)

E|Xt−k|
(11)

The Λ is the p × p matrix, and its elements are described by:

Λ(i, j) = NCV(Xt, Xt−i+j) for i, j=1, . . . ,p. (12)

The values of the model parameters Φ can be estimated using
the sample autocovariation estimator N̂CV based on p-th moment.
The sample estimator of the normalized autocovariation N̂CV for
{X(t)} proposed in (Gallagher 2001) is given by:

N̂CV(Xt, Xt−k) =
∑r

t=l xtsign(xt−k)

∑N
t=1 |xt|

(13)

where x1, x2, . . . , xN is a vector set denotes the realization of the
random variable X(t), N is the trajectory size, l = max(1, 1 + k),
and r = min(N, N + k).

If the matrix Λ is nonsingular, then the estimators for AR pa-
rameters Φ̂ can be written as:

Φ̂ = Λ̂−1λ̂ (14)

Since the residuals of the model are thought to be a sample
of i.i.d. SαS random variables, having estimated the parameters
of the AR(p) model, the distribution of the residuals is analyzed
using the Kolmogorov-Smirnov (KS) test.

SIMULATION RESULTS

The bifurcation parameters of (1) are fixed as a = 9, b = 14.28, and
the parameters of the piecewise-linear function (2) are chosen as
m0 = −1/7, m1 = 2/7. Using the Euler-Maruyama method given
in (Janicki and Weron 1993; Platen 1999) with the step size τ = 0.01,
the system of (1) is solved numerically as

X(ti) = X(ti−1) + F(X(ti−1))τ + ∆Lτ
α,i (15)

where τ = ti − ti−1. An increment of the α-stable Lévy process is
an α-stable random variable generated in (Janicki and Weron 1993)
and is defined by

Lτ
α,i = Lα([ti−1, ti]) ∼ Sα(β, σ, µ). (16)

In the first case, Chua’s circuit is regarded in the presence of
α-stable noise with α = 1.6, β = 0, σ = 4.217 × 10−5 and µ = 0
and a time series consisting of 105 data is obtained for each state
variable.

The parameters ϕj,i of the AR(3) model in (5) are estimated
using the sample autocovariation estimator based on the p-th mo-
ment proposed in (Gallagher 2001). Afterward, it is assumed that
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Figure 1 Visual depictions of the calculated parameters of AR(3) model (5) for the system (1) in the presence of α-stable noise with
α = 1.6, β = 0, σ = 4.217 × 10−5, µ = 0 and N = 105. Simulations were carried out 100 times using the Monte Carlo method.
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(a) Visual depictions of the calculated parameters of α-stable distribu-
tion residuals ξ1(t).
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(b) Visual depictions of the calculated parameters of α-stable distri-
bution residuals ξ2(t).
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(c) Visual depictions of the calculated parameters of α-stable distribu-
tion residuals ξ3(t).

Figure 2 Each box visually represents the estimated parameter
value of the α-stable AR(3) model in (5). Simulations were per-
formed 100 times using the Monte Carlo method.

the noise series ξ1, ξ2 and ξ3 for each state are the representatives
of independent α-stable distributed random variables. These resid-
uals are analyzed using the KS test to confirm that they are drawn
from the α-stable distribution. By utilizing the KS test, it is ob-
tained that the hypothesis of α-stable distribution for univariate
samples and ξ1(t), ξ2(t), and ξ3(t) cannot be rejected at the sig-
nificance level of 0.05. Then, the α-stable distribution is fitted to
the residual time series of each state, and the parameters of the
corresponding α-stable distribution for ξ1, ξ2 and ξ3 are estimated
using the regression type method. This procedure is performed
100 times using the Monte Carlo simulations, and the boxplots of
the estimated parameters are created.

Visual depictions of the calculated parameters of AR(3) model
and residuals distributions are presented in Figure 1 and Figure 2,
respectively. Each box visually represents the estimated param-
eter value of the α-stable AR model. The red line indicates the
sample median on each box, and the bottom and top edges of the
box denoted by blue lines indicate the first and third quartiles, re-
spectively. The black lines represent the most extreme data points,
and an outlier is plotted using the red ’+’ marker symbol. For the
presence of α-stable noise with the parameters α = 1.6, β = 0,
σ = 4.217 × 10−5 and µ = 0, the medians of parameters of the
α-stable AR model (5) which corresponds to the red line on each
box shown in Figure 1 are obtained as:

ϕ1,1 = 1.7599, ϕ1,2 = −0.5207, ϕ1,3 = −0.2393,

ϕ2,1 = 1.2615, ϕ2,2 = 0.4779, ϕ2,3 = −0.7408, (17)

ϕ3,1 = 2.1048, ϕ3,2 = −1.1734, ϕ3,3 = 0.0688

The medians of α-stable distribution parameters (α̂, β̂, σ̂, µ̂) for
residual series ξ1, ξ2 and ξ3 are estimated (1.8882,−0.004, 0.3666×
10−3, 0.105 × 10−6), (1.3865, 0.0019, 0.4 × 10−4, 0.0898 × 10−6) and
(1.9983,−0.0074, 0.7492 × 10−3,−0.1028 × 10−5), respectively, as
shown in Figure 2.

In the second case, Chua’s circuit is considered in the presence
of α-stable noise with different impulsive behaviors. The stability
index α ranges from 1.1 to 1.9, and the estimation method is applied
for each α value. The medians of the estimated parameters of the
AR(3) model are obtained as shown in Table 1. After the analysis
of residuals, the medians of the parameters of α-stable distribution
for the residual series ξ1(t), ξ2(t) and ξ3(t) are obtained as given
in Table 2, 3, and 4, respectively.

As seen in Table 2, the estimated stability index α̂ for the series
ξ1 is in the range of 1.898 to 1.932, and the estimated value of
the scale parameter σ̂ decreases as the Chua’s circuit is driven by
noise with heavier tails. It is also seen in Table 3 that the estimated
stability index α̂ for the residual series ξ2 is around 1.38, which
implies the residual series ξ2 is impulsive. On the other hand,
the estimated stability index α̂ for the residual series ξ3 is around
1.998, as seen in Table 4, which implies that the corresponding
distribution is the Gaussian. The phase portrait of the system
(5) with the parameters in (17) is obtained as shown in Figure 3.
Figure 3 shows that the attractors reconstructed from the time
series (5) characterize the double scroll observed in Chua’s circuit.

Moreover, the largest Lyapunov exponents of both systems (1)
and (5) are determined numerically. Largest Lyapunov exponents
from the time series are estimated using the algorithm presented
in (Wolf et al. 1985). Figure 4 presents the time evolution of the
largest Lyapunov exponents. The blue line shows the value of the
Lyapunov exponent obtained from the system of (1) (blue line)
and the red line shows the Lyapunov exponents obtained from the
simulated data of the proposed system of (5).
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■ Table 1 The medians of the estimated parameters of AR(3) in (5).

α ϕ1,1 ϕ1,2 ϕ1,3 ϕ2,1 ϕ2,2 ϕ2,3 ϕ3,1 ϕ3,2 ϕ3,3

1.1 2.9705 -2.9362 0.9657 1.2614 0.4781 -0.7409 2.0907 -1.1461 0.0554

1.2 2.8887 -2.7765 0.8877 1.2656 0.4696 -0.7366 2.0754 -1.1158 0.0402

1.3 2.6506 -2.3026 0.6520 1.2603 0.4803 -0.7420 2.0944 -1.1528 0.0583

1.4 2.2825 -1.5650 0.2824 1.2647 0.4714 -0.7375 2.0925 -1.1492 0.0566

1.5 1.8815 -0.7660 -0.1155 1.2627 0.4755 -0.7395 2.0948 -1.1529 0.0580

1.6 1.7599 -0.5207 -0.2393 1.2615 0.4779 -0.7408 2.1048 -1.1734 0.0688

1.7 1.5509 -0.1055 -0.4454 1.2594 0.4821 -0.7408 2.1190 -1.2024 0.0829

1.8 1.4834 0.0029 -0.4863 1.2631 0.4747 -0.7391 2.1361 -1.2375 0.1013

1.9 1.6056 -0.2196 -0.3861 1.2621 0.4767 -0.7401 2.1397 -1.2451 0.1053

■ Table 2 The medians of the estimated parameters of α-stable distribution for the residual series ξ1(t) in (5).

α α̂ β̂ σ̂ (×10−3) µ̂ (×10−6)

1.1 1.8987 -0.0019 0.0858 -0.1476

1.2 1.8985 -0.0123 0.1203 -0.1750

1.3 1.8839 -0.0049 0.1678 -02307

1.4 1.9004 0.0076 0.2892 -0.2303

1.5 1.8924 0.0054 0.3360 0.3027

1.6 1.8882 -0.0040 0.3666 0.1050

1.7 1.8967 0.0009 0.4142 0.5840

1.8 1.9037 -0.0086 0.4641 0.3841

1.9 1.9320 0.0018 0.5109 0.1495
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■ Table 3 The medians of the parameters of α-stable distribution for the residual series ξ2(t) in (5).

α α̂ β̂ σ̂ (×10−4) µ̂ (×10−6)

1.1 1.3850 -0.0023 0.3954 -0.0955

1.2 1.3834 0.036 0.4048 0.3872

1.3 1.3836 -0.0005 0.4015 0.0148

1.4 1.3863 -0.0002 0.3985 0.2201

1.5 1.3854 -0.0012 0.4042 0.0455

1.6 1.3865 0.0019 0.4000 0.0898

1.7 1.3898 -0.0044 0.3989 -0.2566

1.8 1.3879 0.0016 0.3963 0.0507

1.9 1.3996 -0.0034 0.4137 -0.1121

■ Table 4 The medians of the parameters of α-stable distribution for the residual series ξ3(t) in (5).

α α̂ β̂ σ̂ (×10−3) µ̂ (×10−5)

1.1 1.9976 -0.0091 0.7518 0.0349

1.2 1.9984 0.0093 0.7561 -0.0897

1.3 1.9981 -0.0028 0.7493 -0.0293

1.4 1.9987 0.0112 0.7514 -0.0735

1.5 1.9986 0.0342 0.7560 -0.1394

1.6 1.9983 -0.0074 0.7492 -0.1028

1.7 1.9994 -0.0169 0.7436 -0.0556

1.8 1.9982 -0.0534 0.7329 -0.0061

1.9 1.9984 -0.0184 0.7257 -0.0408
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Figure 3 3D phase portrait of system (5) in the presence of α-
stable noise with α = 1.6, β = 0, σ = 4.217 × 10−5 and µ = 0. The
corresponding estimated parameters of (5) are given in Table 1-4.

CONCLUSION

In this study, the states of Chua’s circuit in the presence of α-stable
noise have been modeled as α-stable autoregressive processes. The
AR model parameters have been estimated by using the modi-
fied Yule-Walker equations and calculating the autocovariation
function based on the p-th moment. By estimating the model pa-
rameters, the α-stable distribution is fitted to the residual time
series of each state, and the parameters of the α-stable distribution
have been obtained using the regression type method.

The structure of the double scroll has been observed using the
estimated parameters and it has been shown that the model fits
very well on simulated data. Chua’s circuit has also been consid-
ered in the presence of α-stable noise with various stability index
α, and the corresponding α-stable AR models have been obtained.
Such models will provide new insights into studying nonlinear
dynamics in chaotic systems involving stochastic noises. How-
ever, further researchs could be considered by using more complex
models such as the trivariate vector autoregressive fractional inte-
grated moving average (VARFIMA) model (Contreras-Reyes 2022)
instead of simple univariate AR processes. VARFIMA models
are considered adaptive estimation methods and also defined for
α-stable distributions (Pai and Ravishanker 2010).
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