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Abstract

In this paper, we define flux surface as surfaces in which its normal vector is orthogonal
to the vector corresponding to a flux with its associate scalar flux functions in ambient
manifold M. Next, we determine, in 3-dimensional homogenous Riemannian manifold Sol3,
the parametric flux surfaces according to the flux corresponding to the Killing magnetic
vectors and we calculate its associate scalar flux functions. Finally, examples of such
surfaces are presented with their graphical representation in Euclidean space.

1. Introduction

An effect, which passes or moves through a surface or substance, is called a flux or flow. It has many applications that we can
cited a fluid mechanics, thermodynamics, electromagnetism, radiation, energy and in particular particle flux. Surfaces that
do not disturb the flux are called flux surface, it plays an important role in physics, particulary the magnetism, and geometry
(see [1–5] and [6–10]).
Geometrically, let M be a smooth surface in Riemannian manifold (N,g) , −→n is the normal vector and

−→
V is a smooth vector

field on N. The flux F corresponding to the smooth vector
−→
V , (to simplify, we denote the vectors

−→
V ,−→n by V,n) passing

through the surface M is given by

F =
∫
M

g(V,n)ds.

The smooth surface M is called a flux surface of a smooth vector field V if

g(V,n) = 0

everywhere on M. We denoted M by V -flux surface (see Figure 1.1).
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Figure 1.1: Flux surface M for linear flux in (R3,geuc)

When V is magnetic vector fields which is zero divergence according to Biot and Savart’s law ( [11]), V does not cross the
surface M anywhere, i.e. the magnetic flux traversing M is zero, then M is called flux surface corresponding to the magnetic
vector V. In this case M is denoted by Magnetic V-flux surface.
Hence, we can define a scalar flux function f according to the magnetic vector V, such that its value is constant on the surface
M, and

g(V,∇ f ) = 0

where ∇ f is Riemannian gradient on M.
Moreover, If V is a Killing i.e. magnetic vector fields satisfying the Killing equation

g(∇XV,Y )+g(∇YV,X) = 0 (1.1)

then M is called Killing magnetic V-flux surface, where ∇ is a connection and X ,Y are a vector fields on M.
The plasma is an example of flux surfaces. Considered as fourth state of matter, it is a hot ionized gas made up of approximately
equal numbers of positively charged ions and negatively charged electrons which makes it a good electrical conductor. The
electrical conductivity creates currents flowing in a plasma that interact with magnetic fields to produce the forces necessary
for containment. Ordinary matter ionizes and forms a plasma at temperatures above about 5000 K, and most of the visible
matter in the universe is in the plasma state (see for more detail [1, 5, 10–12]).
In magnetic confinement fusion, a flux surface is a surface on which magnetic field lines lie. Poincare-Hopf prove that such
surfaces must be either a torus, or a knot (see [13]). Another applications of a flux surfaces, in Minkowski context, on the
dynamics of solitons and dispersive effects can be found in ( [6–8]).
In [2] and [9], the Killing V -magnetic flux surfaces was determined in Heisenberg three group and in Euclidean space,
respectively. In our study, we determine all Killing V -magnetic flux surfaces and its associate Killing scalar flux functions in
three-dimensional Riemannian manifold Sol3 which is among the eight models of the geometry of Thurston ( [14]).
The paper is organized as follow. In Section 2, we present the geometry of Sol3 and its three Killing vectors representations.
We determine, in the Section 3, all parameterizations of Killing V -flux surfaces and its associate Killing V -magnetic scalar flux
functions with examples.
We use the computer software ”Wolfram Mathematica” to present the computer graphics in Euclidean 3-space.

2. Geometry of Riemannian Space Sol3

The Sol3 space is seen as R3 with the standard representation in SL(3,R) as

Sol3 =


 e−z 0 x

0 ez y
0 0 1

 | (x,y,z) ∈ R3


endowed with the multiplication

(x1,y1,z1)(x2,y2,z2) = (x1 + e−zx2,y1 + ezy2,z1 + z2).

The Riemannian metrics on the Sol3 is given by

gSol3 = e2zdx2 + e−2zdy2 +dz2. (2.1)

We define an orthonormal basis (ei)i=1,3 as

e1 = e−z
∂x, e2 = ez

∂y, e3 = ∂ z, (2.2)

and its dual basis
(
ω i
)

i=1,3 by

ω
1 = ezdx; ω

2 = e−zdy; ω
3 = dz.
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The Lie bracket of the basis (ei)i=1,3 are given by the following identities

[e1,e2] = 0; [e2,e3] =−e2, [e1,e3] = e1. (2.3)

The Levi-Civita connection ∇ of the metric gSol3 with respect to the orthonormal basis (ei)i=1,3 is ∇e1e1 =−e3
∇e1e2 = 0
∇e1e3 = e1

;
∇e2e1 = 0
∇e2e2 = e3
∇e2e3 =−e2

;
∇e3e1 = 0
∇e3e2 = 0
∇e3e3 = 0

. (2.4)

The algebra of Killing vector field of Sol3 it is generated by the basis K= (Ki)i=1,3 , which are solutions of Eq. (1.1), where
the Killing vectors (Ki)i=1,3 are presented in the following

K1 = ∂x, K2 = ∂y and K3 = x∂x− y∂y−∂ z.

The Killing vectors, in the base (ei)i=1,3 from the Eq. (2.2), are

K1 = eze1, K2 = e−ze2 and K3 = xeze1− ye−ze2− e3, (2.5)

(for more detail see [3, 4, 15]).

3. Killing V -flux Surfaces in Sol3

Definition 3.1. Let M be a smooth surface in a Riemannian manifold (N,g) and n be its normal vector field. We call M a flux
surface of a smooth vector field V (denoted by V -flux surface) on (N,g) if

g(V,n) = 0

everywhere on M.
Moreover, if V is a Killing field then we call M flux surface according to the Killing vector V denoted by Killing V -flux surface.

Lemma 3.2. Let f be a scalar function in (N,g), then the Riemannian gradient of f is

∇ f = fx∂x+ fy∂y+ fz∂ z = ez fxe1 + e−z fye2 + fze3.

The determination of flux surfaces needs the resolution of partial differential equations denoted by PDE, therefore we use the
resolution method in the following proposition.

Proposition 3.3. Let P and Q two functions in real parameters s and t. The general solutions of the PDE

P(s, t)hs +Q(s, t)∂tht = R(s, t) (3.1)

are in the following form:
1. When the PDE (3.1) is homogeneous (i.e. R≡ 0)

i. If P≡ 0 (resp. Q≡ 0) then h(s, t) = h(s) (resp. h(s, t) = h(t))

ii. If P and Q are non null functions, then

h(s, t) = ϕ (ψ(s, t))

where ψ(s, t) = c (c is a constant) is the solution of ODE

ds
P

=
dt
Q

(3.2)

and ϕ is arbitrary real function.

2. When the PDE (3.1) is nonhomogeneous (i.e. R 6= 0)

i. If P≡ 0 (resp. Q≡ 0) then h(s, t) =
∫ R

Q dt (resp. h(s, t) =
∫ R

P ds)

ii. If P and Q are non null functions, then the solution h is given implicitly from

ψ1(s, t,h) = ϕ (ψ2(s, t,h))

where ψ1,2(s, t) = c1,2 (c1,2 are a constants) are the choice of two functions among three functions solutions of three
ODEs

ds
P

=
dt
Q

=
dh
R

and ϕ is arbitrary function in R. (See the method to solve linear PDE in [16]).
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3.1. Killing K1-flux surfaces in Sol3

Let M be a surface in Sol3 and X(s, t) = (x(s, t),y(s, t),z(s, t)) its parametrization. The tangent vectors Xs and Xt are described
by {

Xs = xs∂x+ ys∂y+ zs∂ z = ezxse1 + e−zyse2 + zse3
Xt = xt∂x+ yt∂y+ zt∂ z = ezxte1 + e−zyte2 + zte3.

Its normal vector n, in the base (ei)i=1,3 , is

n =
Xs×Xt

‖Xs×Xt‖
=

1
‖Xs×Xt‖

 (yszt − ytzs)e−z

(xtzs− xszt)ez

xsyt − xtys

 . (3.3)

Now, we have the theorem.

Theorem 3.4. Let M be a surface in Sol3 and X(s, t) = (x(s, t),y(s, t),z(s, t)) its parametrization. Then M is a Killing K1-flux
surface if and only if

yszt − ytzs = 0 (3.4)

Proof. It’s a direct consequence by using the inner product given in Eq. (2.1), in the orthonormal base (ei)i=1,3 defined in the
Definition 3.1, of the normal vector n given from the Eq. (3.3) and the Killing vector K1.

Proposition 3.5. All Killing K1-flux surfaces in Sol3 are parameterized by

1. X(s, t) = (x(s, t),y(s, t),ϕ(ψ2(s, t))),

2. X(s, t) = (x(s, t),ϕ(ψ3(s, t)),z(s, t)),

3. X(s, t) = (x(s, t),ϕ1(s),ϕ2 (s)),

4. X(s, t) = (x(s, t),ϕ1(t),ϕ2 (t)),

where x,y,z and ϕ ,ϕ1,2 are arbitrary smooth functions in R2 and R, respectively.

Proof. Using the Proposition 3.3(1-ii), the parameterizations X(s, t) are a general solution of the first order linear PDE given
in the Theorem 3.4 for arbitrary functions x,y and x,z for the assertions 1 and 2, respectively. For the assertions 3 and 4, it’s a
direct consequence from the Proposition 3.3(1-i).

Example 3.6. 1. Let y(s, t) = cosst, from the Proposition 3.5-1(ii) and substituting the value of y in the Eq. (3.4), we have
P = ys and Q = yt and

ds
ssinst

=
−dt

t sinst

its solution is

ψ2(s, t) = st = c, c is a constant

then the surface M1.1 parameterized by

X(s, t)=(x(s, t),cosst,ϕ (st))

is Killing K1-flux surface in Sol3, where ϕ and x are arbitrary smooth functions in R and R2 respectively. We present the
surface M1.1 in the Figure 3.1 for (s, t) ∈ [−π,π]2 in Euclidean space

(
R3,geuc

)
.
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Figure 3.1: Killing K1-flux surface M1.1 =
(
(s+ t)2,cosst,sinst

)
2. Let z(s, t) = est , similarly the Eq. (3.4) turns to

sys− tyt = 0

we have P = s,Q = t and

ds
s

=
−dt

t

its solution is

ψ3(s, t) = st = c, c is a constant

Using the assertion 2 of Proposition 3.5, then the surface M1.2 parameterized by

X(s, t)=
(
x(s, t),ϕ (st) ,est)

is Killing K1-flux surface in Sol3, where ϕ and x are arbitrary smooth functions in R and R2 respectively.
3. Let z(s, t) = es+t , we have

ds
es+t =

−dt
es+t

its solution is

ψ3(s, t) = s+ t = c, c is a constant

By the assertion 2 of Proposition 3.5, the surface M1.3 parameterized by

X(s, t)=
(
x(s, t),ϕ (s+ t) ,es+t)

is Killing K1-flux surface in Sol3, where ϕ and x are arbitrary smooth functions in R and R2, respectively.

3.1.1. Scalar flux functions

Definition 3.7. Let f be a function on (N,g) . Then f is called a scalar flux function corresponding to the magnetic vector
field V if its value is constant on the surface M, and

g(V,∇ f ) = 0

we denoted here f , to simplify, a V -magnetic scalar flux function. Moreover, if V is Killing, f is denoted Killing V -magnetic
scalar flux function.

Now, we can present the following theorem.

Theorem 3.8. Let M be a Killing magnetic K1-flux surface in Sol3. Then the function f given by

f (x,y,z) = f (y,z) ( f depend only on parameters y,z)

and constant on M is Killing K1-magnetic scalar flux function to M, where ψ is arbitrary smooth function in R.
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Proof. Using the Definition 3.7 and the Lemma 3.2, we have

gSol3 (K1,∇ f ) = e2z fx = 0

by solving the above first order PDE we get

f (x,y,z) = f (y,z)

and f must be also constant on M to be Killing K1-magnetic scalar flux function on M

Example 3.9. Using the Example 3.6(3), the surface M1.3 parameterized by

X(s, t)=
(

cosst,
√

es+t ,es+t
)

is Killing magnetic K1-flux surface. The Killing K1-magnetic scalar flux function f to M1.3, from the Theorem 3.7, is in the
form f (x,y,z) = f (y,z) and it must be constant on M, (i.e. f (X(s, t))≡C , C is a constant). Let

f (x,y,z) = y2− z+a, a ∈ R

We have

f (X(s, t)) = a

then f (x,y,z)= y2−z+a is Killing K1-magnetic scalar flux function to the Killing magnetic K1-flux surface M1.3 parameterized

by X(s, t)=
(

cosst,
√

es+t ,es+t
)

.

3.2. Killing K2-flux surfaces in Sol3

Similar as Section 3.1, we characterise and present all Killing K2-flux surfaces given in the Eq. (2.52).

Theorem 3.10. Let M be a surface in Sol3 and X(s, t) = (x(s, t),y(s, t),z(s, t)) its parametrization. Then M is a Killing
K2-flux surface if and only if

xuzv− xvzu = 0.

Proof. The proof is similar as the proof of the Theorem 3.4 using the Killing vector K2 given in Eq. (2.52).

Proposition 3.11. All Killing K1-flux surfaces in Sol3 are parameterized by

1. X(s, t) = (x(s, t),y(s, t),ϕ(ψ1 (u,v))),

2. X(s, t) = (ϕ(ψ3(s, t)),y(s, t),z(s, t)),

3. X(s, t) = (ϕ1(s),y(s, t),ϕ2(s)),

4. X(s, t) = (ϕ1(t),y(s, t),ϕ2(t)),

where x,y,z and ϕ, ϕ1,2 are arbitrary smooth functions in R2 and R, respectively.

Proof. The proof is similar as the proof of the Proposition 3.5.

Example 3.12. 1. Let x(s, t) = sin(s+ t) , from the assertion 1 of Proposition 3.5-1(ii) and same computations as the Example
3.6, we have

ψ1(s, t) = s+ t = c, c is a constant,

then the surface M2.1 parameterized by

X(s, t)=(sin(s+ t) ,y(s, t),ϕ (s+ t))

is Killing K2-flux surface in Sol3.

2. Similarly, from the assertion 2 of Proposition 3.5, let z(s, t) = (1+ cos t)sins, we have

ψ3(s, t) = (1+ cos t)sins = c, c is a constant,

then the Killing K2-flux surface M2.2 in Sol3 have the parametrization

X(s, t) = (ϕ((1+ cos t)sins),y(s, t),(1+ cos t)sins),

where ϕ and y are arbitrary smooth functions in R and R2 respectively. The following Figure 3.2 presents the surface M2.2 in(
R3,geuc

)
for parameters (s, t) ∈ [−π,2π]× [−π,π] .
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Figure 3.2: Killing K2-flux surface M2 = (((1+ cos t)sins)2,s+ t,(1+ cos t)sins)

3. Similarly, from the assertion 4 of Proposition 3.5, the surface M2.3 parameterized by X(s, t) = (t cos t,s3+ t, t sin t) is Killing
K2-flux surface in Sol3. The Figure 3.3 presents M2.3 for (s, t) ∈ [−3,3]× [−2π,2π] ..

Figure 3.3: Killing K2-flux Surface M2.3

3.2.1. Killing K2-magnetic scalar flux functions

We present the Killing K2-magnetic scalar flux functions in the following theorem.

Theorem 3.13. Let M be a Killing magnetic K2-flux surface in Sol3. Then the function f given by

f (x,y,z) = f (x,z)

and constant on M is Killing K2-magnetic scalar flux function to M.

Proof. Using the Definition 3.7 and the Lemma 3.2, we have

g(K2,∇ f ) = e−2z fy = 0

we get Killing K2-magnetic scalar flux function f by solving the above linear first order PDE and f must be constant on M.

Example 3.14. From the Theorem 3.13, the Killing K2-magnetic scalar flux function corresponding to the M parameterized by

X(s, t)=
(
sin(s+ t) ,cos(s2 + t2),arcsin(s+ t)

)
given in Example 3.12 is in the form f (x,y,z) = f (x,z) = arcsinx− sinz+a; a ∈ R and f (X(s, t)) = a, i.e. f is constant on
M. See Figure 3.4 (here (s, t) ∈ [−π,π]2).
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Figure 3.4: Flux surface M of Killing K2-magnetic scalar flux function f

3.3. Killing K3-flux surfaces in Sol3

Following the above subsections, we have the following theorem.

Theorem 3.15. Let M be a surface in Sol3 and X(s, t) = (x(s, t),y(s, t),z(s, t)) its parametrization. Then M is a Killing
K3-flux surface if and only if

xtys− xsyt + xyszt − xytzs + yxszt − yxtzs = 0. (3.5)

Proof. The proof is similar as the Theorem 3.4 using the Killing vector K3 given in Eq. (2.53).

The surface M in Sol3 parameterized by X(s, t) = (x(s, t),y(s, t),z(s, t)) is Killing K3-flux surface if the Eq. (3.5) holds.
However, the Eq. (3.5) have three cases to solve. The first case is where we assume that x(s, t) and y(s, t) are arbitrary functions
and find the solution z(s, t) of the Eq. (3.5) in the form

[yxt + xyt ]zs− [xys + yxs]zt +[xsyt − xtys] = 0.

The second and the third cases are when we assume x(s, t), z(s, t) and y(s, t), z(s, t) to be arbitrary functions and find the
solutions y(s, t) and x(s, t), respectively. We present in the following proposition only the first case. A similar result, with a
similar method, can be obtained for the second and third cases which will not be presented in this paper.

Proposition 3.16. The parametric surfaces in Sol3 with the parametrization X(s, t) given by
1. X(s, t) = (x(s, t),ϕ1 (x(s, t)) ,ϕ4 (ψ(s, t))) ,

2. X(s, t) =
(

x(s, t), ϕ2(s)
x(s,t) ,z(s)

)
,

3. X(s, t) =
(

x(s, t), ϕ3(t)
x(s,t) ,z(t)

)
,

4. X(s, t) = (x(s, t),y(s, t),ψ(s, t)),

are Killing K3-flux surfaces, where x,y,z and ϕ1,4 are arbitrary smooth functions in R2 and R, the functions ψ,ψ are given in

the Eqs. (3.7) and (3.8), respectively, and we assume that ∂ (x,y)
∂ (s,t) 6= 0.

Proof. (case 1). Let x(s, t) and y(s, t) be an arbitrary smooth functions then the Eq. (3.5) turns to the PDExyt + yxt︸ ︷︷ ︸
P

zs +

−xys− yxs︸ ︷︷ ︸
Q

zt +

xsyt − xtys︸ ︷︷ ︸
R

= 0 (3.6)

in the form of the PDE in Eq. (3.1), with respect to z.

i. If R(s, t) = xtys− xsyt = 0 (i.e. the Eq. (3.6) is homogeneous PDE), using the assertion 1 of the Proposition 3.3, then y
must be

y(s, t) = ϕ1 (x(s, t))

With cases when y(s, t) = ϕ2(s)
x(s,t) (i.e. P ≡ 0) (resp. y(s, t) = ϕ3(t)

x(s,t) (i.e. Q ≡ 0), by using again the assertion 1(i) of the
Proposition 3.3, we obtain z = z(t) (resp. z = z(s)), which prove the assertions 2 and 3. If P,Q 6= 0 then

z(s, t) = ϕ4 (ψ(s, t)) (3.7)
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where ψ is solution of the OED

dt
xys + yxs

=− ds
xyt + yxt

and ϕ1,4 are arbitrary real smooth functions, then the assertion 1 is proved.

ii. If P = 0
(

i.e. y(s, t) = ϕ2(s)
x(s,t)

)
we obtain R = 0 as (i), and similarly when Q = 0 .

iii. If P,R,Q 6= 0 then the solution z(s, t) = ψ(s, t) of the nonhomogeneous PDE (3.6), using the assertion 2(ii) of the
Proposition 3.3, is given implicitly from the equation

ψ1(s, t,z) = ϕ (ψ2(s, t,z)) , (3.8)

which prove the assertion 4.

Example 3.17. We construct an example using the assertion 1 of the Proposition 3.16. Let x(s, t) = st and y(s, t) = (st)2,
using the Proposition 3.3, we have

P = 3s3t2, Q =−3s2t3 and R = 0

and the ODE

ds
P

=
dt
Q

with solution

ψ1(s, t) = s3t3 = c, c is a constant

then the surface M3.1 parameterized by X(s, t) =
(

st,(st)2 ,ϕ(s3t3)
)

is Killing K3-flux surface in Sol3, where ϕ is arbitrary

real smooth function. We present, in (R3,geuc), the Killing K3-flux surface X(s, t)=
(
st,(st)2,sin(s3t3 +1)

)
in Sol3 in Figure

3.5, where (s, t) ∈
[
−π

2 ,
π

2

]
× [−π,π]

Figure 3.5: Killing K3-flux surface M3.1

Example 3.18. We present an example, using the assertion 2 of the Proposition 3.16, of Killing K3-flux surface M3.2 in Sol3
parameterized by X(s, t) =

(
st, s

t ,coss
)

see Figure 3.6 (s, t) ∈ [−2π,2π]2.
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Figure 3.6: Killing K3-Flux surface M3.2

Example 3.19. Now, we consider the assertion 4 of the Proposition 3.16. Let x(s, t) = cos(s+ t) and y(s, t) = st2, then the Eq.
(3.6) turns to an nonhomogeneous PDE given by

s [cos(s+ t)− t sin(s+ t)]zs + t [ssin(s+ t)− cos(s+ t)]zt − [ssin(s+ t)+ t sin(s+ t)] = 0 (3.9)

using the Proposition 3.3-2(ii), we must make a choice of two functions among three functions which are solutions of three
following ODEs

ds
s [cos(s+ t)− t sin(s+ t)]︸ ︷︷ ︸

(1)

=
dt

t [ssin(s+ t)− cos(s+ t)]︸ ︷︷ ︸
(2)

=
−dz

[ssin(s+ t)+ t sin(s+ t)]︸ ︷︷ ︸
(3)

The ODE (1 = 2) has a solution ψ1(s, t,z) = −2st cos(s+ t) = c1 and the solution of the ODE (1 = 3) has a solution
ψ2(s, t,z) = (s+ t + tz)cos(s+ t)− (1+ stz)sin(s+ t) = c2, where c1,2 are a real constants.
Hence, the solution z of the Eq. (3.9) is given implicitly from the equation

ψ1(s, t,h) = ϕ (ψ2(s, t,h))

which turns, after substitution the values of ψ1,2, to

−2st cos(s+ t) = ϕ ((s+ t + tz)cos(s+ t)− (1+ stz)sin(s+ t))

where ϕ is arbitrary function in R. By taking ϕ = IdR, we get

z(s, t) =
sin(s+ t)− (s+ t +2st)cos(s+ t)

t cos(s+ t)+ st sin(s+ t)

and the surface M3.3 parameterized by

X(s, t) =
(

cos(s+ t) ,st2,
sin(s+ t)− (s+ t +2st)cos(s+ t)

t cos(s+ t)+ st sin(s+ t)

)
is Killing K3-flux surface in Sol3. We present, in (R3,geuc), the Killing K3-flux surface M3.3, in Sol3, in Figure 3.7 where
(s, t) ∈

[
−π

2 ,−
π

2

]2.
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Figure 3.7: Killing K3-flux surface M3.3

3.3.1. Killing K3-magnetic scalar flux functions

For the Killing K2-magnetic Scalar flux functions, we have the following theorem.

Theorem 3.20. Let M be a Killing magnetic K3-flux surface in Sol3. Then the function f given by

f (x,y,z) = Ψ
(
2lnx+ e2z,2lny− e−2z)

and constant on M is Killing K3-magnetic scalar flux function to M.

Proof. Using the Definition 3.7 and the Lemma 3.2, we have

gSol3 (K3,∇ f ) = xe2z fx− ye−2z fy− fz = 0

solving the above linear first order PDE, we get

f (x,y,z) = Ψ
(
2lnx+ e2z,2lny− e−2z)

Killing magnetic K3-scalar flux function f and constant on M, where Ψ is arbitrary function.

Example 3.21. Using the the assertion 2 of the Proposition 3.16, let M be a Killing magnetic K3-flux surface in Sol3
parameterized by

X(s, t) =
(

st,
ϕ (s)

st
,z(s)

)
Next, the Killing K3-magnetic scalar flux function f is in the form

f (x,y,z) = Ψ
(
2lnx+ e2z,2lny− e−2z)

= Ψ

(
2ln(st)+ e2z(s),2ln

ϕ (s)
st
− e−2z(s)

)
and constant on M. By choosing

Ψ(u,v) = u+ v; ϕ (s) =−sinh2z(s)

we get

f (x,y,z) = 2(lnxy+ sinh2z) and f (X(s, t)) = Ψ(0)

then f is constant on M parameterized by X(s, t) =
(

st, −sinh2z(s)
st ,z(s)

)
.
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Conclusion

The flux surface are surfaces that appear in many phenomena that we can cited, in Euclidean context, magnetic confinement
fusion, dynamics of solitons and dispersive effects and plasma state. These surfaces are characterized that its normal vector is
orthogonal to the vector corresponding to a flux in ambient spaces. Moreover, if the flux is magnetic (i.e. the associate vector to
the flux is magnetic vector), we can define flux functions is which its gradient is orthogonal to the magnetic vector and constant
on the associate flux surface. Inspired by the determination of the flux surfaces and associate flux function in Euclidean and
Heisenberg group as three-dimensional manifolds. We have extended this determination, in this paper, to three-dimensional
Riemannian space Sol3.
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