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ABSTRACT In the last two decades, the dynamics of difference and differential equations have found a cele-
brated place in science and engineering such as weather forecasting, secure communication, transportation
problems, biology, the population of species, etc. In this article, we deal with the dynamical behavior of the
logistic map using Euler’s numerical algorithm. The dynamical properties of the Euler’s type logistic system
are derived analytically as well as experimentally using the bifurcation diagram. In the analytical section the
dynamical properties such as fixed point, period-doubling, and irregularity are examined followed by a few
theorems. Further, in the experimental section, the dynamical properties of the Euler’s type logistic system
are studied using the period-doubling bifurcation plot. Because the dynamics of the Euler’s map depend on
the Euler’s control parameter h, therefore, the three major cases are discussed for h = 0.1, 0.4 and 0.7. The
result shows that as the value of parameter h decreases from 1 to 0 the growth rate parameter r increases
rapidly. Therefore, the improved chaotic regime in bifurcation plots may improve the chaos based applications
in science and engineering such as secure communication.
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INTRODUCTION

In the last few decades, the term “Chaos” has become the subject
matter of the study in mathematics which determines the fixed
and periodic and irregularity in the nonlinear dynamical systems.
This concept was described by Poincare (1899) when he examined
the qualitative results in nonlinear systems and celestial mechan-
ics. But in 1960’s Lorenz (1963) again recalled it and examined it
chaotic part which depends on the initial condition. Further, May
(1976) and Lorenz (1963) researched much important arithmetic
after that all the nonlinear dynamical system has been saturated
with analytical and numerical results of difference and differential
equations. The logistic map rx(1 − x), is the most researched dif-
ference map in the nonlinear dynamics which is also known as the
model of population growth introduced by V. F. Verhulst. In 1978,
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Feigenbaum (1978) examined the generic dynamical properties of
the logistic map using experimental and analytical simulations.
Moreover, for a brief elementary analysis of about the nonlinear
dynamical systems and their qualitative properties one may read
the following published and unpublished research like Robinson
(1995), Alligood et al. (1996), Ausloos et al. (2006), Devaney (1948),
Holmgren (1994), and Ashish et al. (2019b).

Since 1930, the nonlinear dynamical systems have played a
vital role in various applications of science and engineering such
as cryptography, transportation problems, traffic signal control
system, secure communication systems, neural network, switch
technology, electronics and many other branches of science. In last
two decades the discrete logistic map and its various generalized
versions have been studied in the literature as a road map in the
nonlinear dynamical systems. In 1996, Song et al. (1996) researched
the dynamical behavior of logistic map using error valued feedback
method for synchronization of the dynamics and Molina et al.
(1996) examined the embedded dimension of various chaotic maps
using time series methodology.

A communication system to develop irregular signals was de-
veloped using difference maps by Singh et al. (2010) in 2010. Fur-
ther, in 2013 Radwan et al. (2013) introduced the various modulated
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discrete difference systems and described their dynamical proper-
ties such as fixed-point state, period-doubling interpretations and
chaotic behavior. Parasad et al. (2014) described the stabilization
in the fixed and periodic states of the logistic maps. In 2005, Rani
et al. (2005) and Kumaret al. (2005), using the new technology ex-
amined the stabilization in the chaotic maps. They introduced a
two-step feedback method, that is, Ishikawa iterates, that shows
that the logistic map has fast convergence for the extra range of the
control parameter r as compared to one-step feedback procedure
and also presented a comparative study in Picard orbit in Agarwal
and Rani Rani et al. (2009). In 1953, Mann (1953) introduced a
novel three-step feedback procedure also known as Mann iterative
method which give superior results in functional analysis and ev-
ery branch of mathematics. Further, Chugh et al. (2012), in 2012
examined the stability and convergence of the logistic map using
another four-step feedback procedure also known as Noor iterative
method. Khamosh (2020) and Kumar (2020) studied the dynamics
of the generalized logistic map in superior orbit (see also Renu et
al. (2022)).

Recently, He et al. (2023) introduced an homotopy perturbation
method which increases the effectiveness in nonlinear oscillator
systems. It is also observed that the frequency accuracy may be
improved the oscillators by increasing the iteration in the system.
Ashish et al. (2019a) established the chaotic behavior of the logistic
map using superior technique and examined the onset chaos prop-
erties like period-doubling to chaos, period-3 window a road map
to chaos and maximum Lyapunov exponent. Later, they examined
the dynamical properties using cobweb plot, time-series analysis
and bifurcation plot in superior orbit Ashish et al. (2018).

In 2019, stabilization in fixed and periodic states was examined
and its application in transportation system was examined Ashish
et al. (2021a), Ashish et al. (2021b), and Ashish et al. (2021c). The
article is divided into five major sections. Section 1 is introductory
in nature and describes a brief literature review and Section 2
contains the basic definition of fixed point, periodic point and
Picard feedback procedure. In Section 3, the analytical results are
proved for the Euler’s type logistic map and experimental analysis
is carried out in section 4. Finally, the article is concluded in Section
5.

PRELIMINARIES

This section deals with the basic terminologies, notions and defini-
tion which are continuously used in the article.

Definition 1. . Let f be a one-dimensional map defined on non-
empty sets X. Then the Picard orbit which is also known as orbit
of function is the set of all iterates of an initial point x and defined
as xn+1 = f (xn) .

Definition 2. . Let f be a one-dimensional map defined on a set X,
where X is a non-empty set. A point x ∈ X is said to be periodic
fixed point of period-p or cycle-p if it satisfies f p(x) = x, where p
is a positive integer.

Definition 3. . Let f be a one-dimensional map defined on a set X,
where X is a non-empty set. A point x ∈ X is said to be fixed if it
satisfies the condition f (x) = x.

ANALYTICAL INTERPRETATION

This section deals with the analytical study of the logistic map
rz(1 − z) where r ∈ [0, 4] and z ∈ [0, 1] using Euler’s numerical
algorithm. The Euler’s numerical algorithm is given by

Eh(z, r) = z + h fr(z). (1)

This equation has two regular fixed points z∗ = 0 and z∗ = 1.
Since the solutions for an initiator z0 ∈ [0, 1] and r > 0, approaches
to the regular fixed state z∗ = 1 from the interval [−z, z]. But
such type of system has not much importance in the dynamics of
one-dimensional chaotic maps. Therefore, the given system (1) is
modified in more simplified quadratic discrete system. For this
let us consider the parameter x = hr

1+hr z, then the relation (1) is
described by

Eh(x, r) = (1 + hr)x(1 − x) (2)

where x belongs to the closed interval [0, 1] and the relation (2) is
called as Euler’s type novel logistic system. Now, let us determine
the following result regarding fixed point, periodic point and the
stability of this novel Euler’s logistic map.

Theorem 1. Let fr(x) = rx(1− x) be the one-dimensional logistic map
defined on the closed interval [0, 1] and r ∈ [0, 4]. Then, show that 0 and

hr
1+hr are the fixed points for the Euler’s type logistic map.

Proof. Since fr(x) = rx(1 − x) and Eh(x, r) = (1 + hr)x(1 − x), is
the Euler’s logistic system, then from the definition of the fixed
point, we can say

Eh(x, r) = x,

(1 + hr)x(1 − x) = x,

(1 + hr)x(1 − x)− x = 0,

x[(1 + hr)(1 − x)− 1] = 0,

thus, x = 0 and x =
hr

1 + hr
.

Thus, the point x = 0 and x = hr
1+hr , where h, r > 0 is the

Euler’s fixed point for the Euler’s Logistic map. This completes
the proof of the theorem. While, Figure 1 shows the functional
representation of the logistic map in Euler’s numerical algorithm.
Figure shows the fixed-point x = 0 and x = hr

1+hr where the
diagonal axis intersects the functional graph of the map. Similarly,
the periodic fixed point of order two are also derived using the
following theorem.

Theorem 2. Let fr(x) = rx(1 − x) be the one-dimensional logistic
map defined on the closed interval [0, 1] and r ∈ [0, 4]. Then, show that
E2

h(x, r) has four fixed points for the Euler’s map.

Proof. Since fr(x) = rx(1 − x) and Eh(x, r) = (1 + hr)x(1 − x), is
the Euler’s logistic system, then from the definition of fixed point,
we can say

E2
h(x, r) = Eh(Eh(x, r), r) = x,

(1 + hr)2x(1 − x)(1 − ((1 + hr)x(1 − x))) = x,

(1 + hr)2x(1 − x)(1 − ((1 + hr)x(1 − x)))− x = 0.

CHAOS Theory and Applications 129



Then, solving the above relation, we obtain the following four
roots:

x1 = 0,

x2 =
hr

1 + hr
,

x3 =
(1 + hr)−

√
(hr − 2)(2 + hr)

2(1 + hr)
,

x4 =
(1 + hr) +

√
(hr − 2)(2 + hr)

2(1 + hr)
.

Thus, x1, x2, x3, and x4 are the four fixed points for the system
E2

h(x, r). The fixed point x1 and x2 are the trivial point of order
one as discussed in Theorem 1 and x3 and x4 are periodic point of
order two for the given Euler’s logistic system. But it is observed
that the periodic roots are real if and only if r > 2/h. Further, the
Figure 2 shows the graphical representation for the fixed points
x1, x2, x3, and x4 which intersect the diagonal axis y = x of the
graph. Proceeding in this way the we can get the periodic points
of higher orders, that is the periodic points of order 4, 8, 16, 32,
and so on using the dynamical system E3

h(x, r), E4
h(x, r), E5

h(x, r),
E6

h(x, r), and so on. But it is not so simple to solve the higher order
equations using analytically. Therefore, they are determined using
the numerical simulation in computational software Mathematica,
and SPSS.
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Figure 1 Functional plot for the Euler’s Logistic Map
Eh(x, r) for a variety of r value at h = 0.4
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Figure 2 Functional plot for the Euler’s Logistic Map
E2

h(x, r) for r = 7.5 and 6 at h = 0.4

EXPERIMENTAL INTERPRETATION

This section deals with the experimental study of the one-
dimensional logistic map rx(1 − x), where r ∈ [0, 4] and x ∈ [0, 1]
using Euler’s numerical algorithm. As studied in the above section
the dynamics of the Euler’s type logistic map depends on the two-
control parameter, Euler’s parameter h and the logistic parameter r.
Therefore, the nature of the Euler’s system Eh(x, r) is examined for
different parameter values of h and the regime and the dynamical
behavior for the advanced range of parameter r is determined. Let
us take the three cases for h = 0.1, 0.4 and 0.7 and examine the
dynamical nature using bifurcation plot as follows:

Case-1: Dynamics for Eh(x, r) at h = 0.1, and 0 ≤ r ≤ 30
When h = 0.1, the Euler’s map has stable fixed-point behavior up
to value r = 20, after that the first bifurcation is seen at r > 20 at
which the Euler’s orbit is divided in to two period orbits x3 and
x4 of order two as determined in above section and. The stability
in the periodic fixed point of order 2 is then studied for 20 < r ≤
24.899 as shown in Figures 3 and 4. Further, for r > 24.899 the
characteristics of the Euler’s map is again noticed in which the
periodicity of order two, that is, x3 and x4 are further divided in
to the periodic fixed points of order four as shown in the Figure 4
for the range of parameter 24.899 < r ≤ 25.44. But the parameter
r increases through 24.899, the periodicity of order two becomes
unstable and the periodic point of order four become stable for
24.899 < r ≤ 25.44.

Proceeding in this way as the value of parameter r increases
through 25.44 the Euler’s orbit bifurcates in to higher order peri-
odic fixed points, that is, in the order of 8, 16, 32, 64, . . . and soon
as shown in the Figure 4. But as the parameter r approaches to
25.6996 the dynamics of the Euler’s logistic map tends to chaotic
regime. The magnified Figure 4 shows the complete period-
doubling regime, Figure 5 shows the magnified chaotic regime
and Figure 6 represents the magnified period-3 window regime.
Finally, the above analysis is summarized in the following proposi-
tion.

Proposition 1. It is noticed that the dynamics of the Euler’s type logistic
system admits higher range of the control parameter r, that is, r lies
between 0 and 30 at h = 0.1 as compared to the standard logistic system
rx(1 − x), where r approaches from 0 to 4.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Parameter r

x
n
∈

[0
, 
1
]

For h = 0.1

z
*
 = hr/1+hr

Figure 3 Bifurcation plot for the map Eh(x, r) for
h = 0.1 and r ∈ [0, 30]
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Figure 5 Magnified Chaotic regime for the map
Eh(x, r) for h = 0.1

Case-2: Dynamics for Eh(x, r) at h = 0.4, and 0 ≤ r ≤ 7.5

Further, as the range of parameter h is increased and is taken as
h = 0.4, range the control parameter r decreases rapidly, that is,
r approaches from 0 to 7.5 as shown in bifurcation plot Figure 4.
While Figure 7 gives the complete dynamics of the Euler’s logistic
system which describes fixed-point state, periodic state and chaotic
regime. At h = 0.4, the Euler’s map has stable fixed-point behavior
up to r = 5, after that the first bifurcation occurs at r = 6.1255
at which the Euler’s orbit is divided in to two period orbits x3
and x4 of order two as determined in above the section. The
stability in the periodic fixed points of order 2 is then studied for
6.1255 < r ≤ 6.3573 as shown in Figure 8. Further, for r > 6.3573
the orbit of the Euler’s logistic map is again noticed in which the
periodicity of order two, that is, x3 and x4 are further divided in
to the periodic fixed points of order four as shown in the Figure 8
for the range of parameter 6.1255 < r ≤ 6.3573. But the parameter
r increases through 6.1255, the periodicity of order two becomes
unstable and the periodic point of order four become stable for
6.1255 < r ≤ 6.3573.

Proceeding in this way as the value of parameter r increases
through 6.4299 the Euler’s orbit bifurcates in to higher order peri-
odic fixed points, that is, in the order of 8, 16, 32, 64, . . . and soon as
shown in the Figure 8. But as the parameter r approaches to 6.4299
the dynamics of the Euler’s logistic map tends to chaotic regime as
shown in the magnified Figure 9. The magnified Figure 8 shows
the complete period-doubling regime while the magnified Figure
10 represent the complete chaotic regime with period-3 window.
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Figure 6 Magnified period-3 window for the map
Eh(x, r) for h = 0.1

Proposition 2. It is noticed that the dynamics of the Euler’s type logistic
system again admits higher range of the control parameter r, that is, r
lies between 0 and 7.5 at h = 0.4 as compared to the standard logistic
system rx(1 − x), where r approaches from 0 to 4.
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Figure 7 Bifurcation plot for the map Eh(x, r) for
h = 0.4 and r ∈ [0, 7.5]
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Figure 10 Magnified period-3 window regime for the
map Eh(x, r) for h = 0.4

Case-3: Dynamics for Eh(x, r) at h = 0.7, and 0 ≤ r ≤ 4.25
Further, as the range of parameter h is increased and is taken as
h = 0.4, range the control parameter r decreases rapidly, that is, r
approaches from 0 to 4.25 as shown in bifurcation plot Figure 11.
While Figure 11 gives the complete dynamics of the Euler’s logistic
system which describes fixed-point state, periodic state and chaotic
regime. At h = 0.7, the Euler’s map has stable fixed-point behavior
up to r = 2.8339, after that the first bifurcation occurs at r = 3.4953
at which the Euler’s orbit is divided in to two period orbits x3 and
x4 of order two as determined in above section and.

Proceeding in this way as the value of parameter r increases
through 3.4953 the Euler’s orbit bifurcates in to higher order peri-
odic fixed points, that is, in the order of 8, 16, 32, 64, . . . and soon as
shown in the Figure 12. But as the parameter r approaches to 3.6696
the dynamics of the Euler’s logistic map tends to chaotic regime.
The magnified Figure 12 shows the complete period-doubling
regime while the magnified Figure 13 represent the complete
chaotic regime with period-3 window. While Figure 14 shows
a comparative representation of the bifurcation plots for the pa-
rameter value h = 0.1, 0.4 and 0.7. Thus, we summarize the case 3
as follows:

Proposition 3. It is observed that as the Euler’s parameter range of
the h is increased the range of the growth rate parameter r are decreases
simultaneously. But for the lower range of Euler’s parameter h the growth
rate parameter range is higher than the standard logistic system.
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Figure 11 Bifurcation plot for the map Eh(x, r) for
h = 0.7 and r ∈ [0, 4.25]
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Figure 12 Magnified periodic regime for the map
Eh(x, r) for h = 0.7
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CONCLUSION

In this article using some computational work on conventional
logistic map in Euler’s numerical algorithm is studied. The whole
dynamics depends on the two control parameters h and r. There-
fore, the following results are concluded from the main section:

• The dynamical properties of the Euler’s type logistic map are
determined analytically as well as experimentally.

• In the analytical section the Euler’s logistic type map is de-
rived and the fixed and periodic points are calculated followed
by the Theorem 1 and Theorem 2.

• Further, in experimental section the dynamical properties of
the Euler’s logistic map are studied using period-doubling
bifurcation plot. Because the dynamics of the Euler’s map
depends on the Euler’s control parameter h, three cases are
discussed for all the dynamical properties for h = 0.1, 0.4 and
0.7.

• It is also observed that the map exhibits its dynamical prop-
erties for a large range of parameter r, as compared to the
existing methods. It is also observed that as compared to Pi-
card iteration method which has growth rate r ∈ [0, 4] and
Mann iteration r ∈ [0, 4.22], in this technique the growth rate
parameter r approaches to 30. Hence it may improve the
chaos-based application in engineering and science such as
secure communication and cryptography.
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