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THE FLOW-CURVATURE OF PLANE PARAMETRIZED CURVES

Mircea CRASMAREANU

Faculty of Mathematics, University Al. I. Cuza, Iasi, 700506, ROMANIA

Abstract. We introduce and study a new frame and a new curvature function

for a fixed parametrization of a plane curve. This new frame is called flow since
it involves the time-dependent rotation of the usual Frenet flow; the angle of

rotation is exactly the current parameter. The flow-curvature is calculated for

several examples obtaining the logarithmic spirals (and the circle as limit case)
and the Grim Reaper as flat-flow curves. A main result is that the scaling with
1√
2
of both Frenet and flow-frame belong to the same fiber of the Hopf bundle.

Moreover, the flow-Fermi-Walker derivative is defined and studied.

1. Introduction

The theory of geometric flows is a new and fascinating field of research in geo-
metric analysis. The most simple of them is the curve shortening flow and already
the excellent survey [3] is twenty years old. Recall that the main geometric tool in
this last flow is the well-known curvature of plane curves. Hence, to give a re-start
to this problem seams to search for variants of the curvature, or in terms of [9],
deformations of the usual curvature. The goal of this short note is to propose such
a deformation which in turn defines a Fermi-Walker type derivative.

Fix an open interval I ⊆ R and consider C ⊂ R2 a regular parametrized curve
of equation:

C : r(t) = (x(t), y(t)) = x(t)̄i+ y(t)j̄, ∥r′(t)∥ > 0, t ∈ I.′

The ambient setting R2 is an Euclidean vector space with respect to the canonical
inner product:

⟨u, v⟩ = x1y1 + x2y2, u = (x1, x2) ∈ R2, v = (y1, y2) ∈ R2, 0 ≤ ∥u∥2 = ⟨u, u⟩.
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The infinitesimal generator of the rotations in R2 = C is the linear vector field,
called angular:

ξ(u) := −x2 ∂

∂x1
+ x1 ∂

∂x2
, ξ(u) = i · u = i · (x1 + ix2), i =

√
−1.

It is a complete vector field with integral curves the circles C(O, r):
γξ
u0
(t) = (u1

0 cos t− u2
0 sin t, u

1
0 sin t+ u2

0 cos t) = R(t) ·
(

u1
0

u2
0

)
, t ∈ R,

r = ∥u0∥ = ∥(u1
0, u

2
0)∥, R(t) :=

(
cos t − sin t
sin t cos t

)
∈ SO(2) = S1

and since the rotations R(t) are isometries of the Riemannian metric gcan = dx2 +
dy2 = |dz|2 it follows that ξ is a Killing vector field of the Riemannian manifold
(R2, gcan). The first integrals of ξ are the Gaussian functions i.e. multiples of
the square norm: fα(x, y) = α(x2 + y2), α ∈ R. For an arbitrary vector field
X = A(x, y) ∂

∂x +B(x, y) ∂
∂y its Lie bracket with ξ is:

[X, ξ] = (yAx − xAy −B)
∂

∂x
+ (A+ yBx − xBy)

∂

∂y
,

where the subscript denotes the variable corresponding to the partial derivative. For
example, ξ commutes with the radial (or Euler) vector field E(x, y) = x ∂

∂x + y ∂
∂y ,

which is also a complete vector field having as integral curves the homotheties
γE
u0
(t) = etu0 for all t ∈ R.

The Frenet apparatus of the curve C is provided by:{
T (t) = r′(t)

∥r′(t)∥ , N(t) = i · T (t) = 1
∥r′(t)∥ (−y′(t), x′(t)),

k(t) = 1
∥r′(t)∥ ⟨T

′(t), N(t)⟩ = 1
∥r′(t)∥3 ⟨r′′(t), ir′(t)⟩ = 1

∥r′(t)∥3 [x
′(t)y′′(t)− y′(t)x′′(t)].

Hence, if C is naturally parametrized (or parametrized by arc-length) i.e. ∥r′(s)∥ =
1 for all s ∈ I then r′′(s) = k(s)ir′(s). In a complex approach based on z(t) =
x(t) + iy(t) ∈ C = R2 we have:{

k(t) = 1
|z′(t)|3 Im(z̄′(t) · z′′(t)) = 1

|z′(t)|Im
(

z′′(t)
z′(t)

)
= 1

|z′(t)|Im
[
d
dt (ln z

′(t))
]
∈ R,

Re(z̄′(t) · z′′(t)) = 1
2

d
dt∥r

′(t)∥2, fα(z) = α|z|2.

The multiplication with the complex unit i corresponds to the rotation R
(
π
2

)
; we

have also:
d

dt
R(t) = R

(
t+

π

2

)
= R(t)R

(π
2

)
= R

(π
2

)
R(t),

and the Frenet equations can be unified by means of the column matrix F(t) =(
T
N

)
(t) as:

d

dt
F(t) = ∥r′(t)∥k(t)R

(
−π

2

)
F(t).
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It is an amazing fact that if the general rotation R(t) belongs to the Lie group
SO(2) = S1 its particular values R

(
±π

2

)
are elements of its Lie algebra so(2) of

skew-symmetric 2× 2 matrices. In fact, {R
(
π
2

)
} is exactly the basis of so(2).

2. Main Results

This short note defines a new frame and correspondingly a new curvature func-
tion for C:

Definition 1. The flow-frame of C consists in the pair of unit vectors (Ef
1 (t), E

f
2 (t)) ∈

T 2 := S1 × S1 given by:

E(t) :=
(

Ef
1

Ef
2

)
(t) = R(t)F(t) =

(
cos tT (t)− sin tN(t)
sin tT (t) + cos tN(t)

)
(1)

the letter f being the initial of the word ”flow”. The flow-curvature of C is the
smooth function kf : I → R given by the flow-equations:

d

dt
E(t) = ∥r′(t)∥kf (t)R

(
−π

2

)
E(t). (2)

Before starting its study we point out that this work is dedicated the memory of
Academician Radu Miron (1927-2022). He was always interested in the geometry
of curves and besides his theory of Myller configurations ( [11]) he generalized also
a type of curvature for space curves in [10]. We remark also that this note follows
the idea of Bishop in his delightful note [2] and that the flow-curvature of spacelike
parametrized curves in the Lorentz plane was introduced by the author in [4]. The
hyperbolic curves are studied also by the author in [5].

Returning to our subject we note as a first main result:

Proposition 1. The expression of the flow-curvature is:

kf (t) = k(t)− 1

∥r′(t)∥
< k(t). (3)

As a consequence, the curve C and its trigonometrical rotation iC share the same
flow-curvature.

Proof We have directly in the flow-frame:

∥r′(t)∥kf (t)R
(
−π

2

)
= R

(
t+

π

2

)
R(−t) + ∥r′(t)∥k(t)R(t)R

(
−π

2

)
R(−t) (4)

and the conclusion follows. Concerning the consequence it is obvious that C and
iC : t → (−y(t), x(t)) share the same curvature k and the same second term from
(3). □
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Example 1. i) If C is the line r0 + tu, t ∈ R with the vector u ̸= 0̄ = (0, 0) then
kf is constant:

kf (t) = − 1

∥u∥
= constant < 0. (5)

In particular, if u is an unit vector then kf (t) = −1.
ii) The circle C(O,R) with the usual parametrization r(t) = Reit is a flat-flow curve
i.e. kf = 0. Indeed, the flow-frame is constant and universal for the families of
concentric circles i.e. it does not depend on the radius R (exactly as the Frenet
frame):

Ef
1 = (0, 1) = j̄, Ef

2 = (−1, 0) = −ī. (6)

More generally, if C is expressed in polar coordinates as C : ρ = ρ(t) for t ∈ I
then C is a flat-flow curve if and only if C is a logarithmic spiral ρR,α(t) = Reαt,
R,α > 0 and t ∈ R. The limit case α → 0 gives the circle C(O,R) and the

flow-frame of the logarithmic spiral is: Ef
1 = 1√

α2+1
(α, 1), Ef

2 = 1√
α2+1

(−1, α); if

α = cotφ then Ef
1 = eφi, Ef

2 = ei(
π
2 +φ).

iii) Fix R ∈ (0,+∞) and the plane curve C : w = F (Reit) with t as an increasing
parameter and F = F (z) a holomorphic function. Then the curvatures are:

k(t) =
1

|zF ′(z)|
Re

(
1 +

zF ′′(z)

F ′(z)

)
, kf (t) =

1

|zF ′(z)|
Re

(
zF ′′(z)

F ′(z)

)
. (7)

For the circle example of F (z) = z2 it results k = 1
R2 = constant and kf = 1

2R2 =
constant which proves the proper dependence of kf on the parametrizations of C.
□

Remark 1. i) Suppose that I is symmetric with respect to 0 ∈ R and that C is
positively oriented in the terms of Definition 1.14 from [14, p. 17]. Suppose also
the C is convex; then applying the Theorem 1.18 of page 19 from the same book
it results for the usual curvature the inequality k ≥ 0. Hence the opposite curve
C− : t ∈ I → r(−t) has the flow-curvature kf < 0.
ii) An important tool in dynamics is the Fermi-Walker derivative. Let XC be the
set of vector fields along the curve C. Then the Fermi-Walker derivative is the map
( [6]) ∇FW

C : XC → XC :

∇FW
C (X) :=

d

dt
X+∥r′(·)∥k[⟨X,N⟩T−⟨X,T ⟩N ] =

d

dt
X+∥r′(·)∥k[X♭(N)T−X♭(T )N ]

(8)
with X♭ the differential 1-form dual to X with respect to the Euclidean metric. In
a matrix form we can express this as follows:

∇FW
C =

d

dt
− ∥r′∥k (·)♭(T ) (·)♭(N)

T N
=

d

dt
+ ∥r′∥k T (·)♭(T )

N (·)♭(N)
. (9)
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It is natural to make here a remark concerning rotation-minimizing fields X ∈ XC

i.e. fields satisfying:

d

dt
X(t) = λ(t)T (t), ⟨X(t), T (t)⟩ = 0

for a smooth function λ = λ(t). Then the Fermi-Walker derivative of such X is
also parallel with the tangent T :

∇FW
C X(t) = [λ(t) + ∥r′(t)∥k(t)⟨X(t), N(t)⟩]T (t).

Calculating the Fermi-Walker derivative on our frames we get:

∇FW
C (T ) = ∇FW

C (N) = 0, ∇FW
C (Ef

1 ) = −Ef
2 , ∇FW

C (Ef
2 ) = Ef

1 . (10)

With the matrix notation we can express these relations as:

∇FW
C (F) =

(
0
0

)
, ∇FW

C (E) = R
(π
2

)
E (11)

and the Fermi-Walker derivative can be expressed in terms of kf as:

∇FW
C (X) =

d

dt
X + (1 + ∥r′∥kf )[X♭(N)T −X♭(T )N ]. (12)

Also, we can define the flow-Fermi-Walker derivative as:

∇fFW
C (X) :=

d

dt
X + ∥r′(·)∥kf [X♭(N)T −X♭(T )N ] = ∇FW

C (X) + T ∧N(X) (13)

with the skew-symmetric endomorphism ∧ ∈ so(2) defined by:

X∧Y := ⟨X, ·⟩Y −⟨Y, ·⟩X = (X1Y 2−X2Y 1)R
(π
2

)
, X = (X1, X2), Y = (Y 1, Y 2).

Then:

∇fFW
C (F) = R

(
−π

2

)
F , ∇fFW

C (E) =
(

0
0

)
. (14)

As in the usual case, if V,W ∈ XC are flow-Fermi-Walker fields i.e. with zero
flow-Fermi-Walker derivative then the value < V,W >∈ R is constant along C.
iii) Remark that the 4-dimensional vectors 1√

2
F and 1√

2
E belong to the Clifford

torus 1√
2
T 2 ⊂ S3. A remarkable Riemannian submersion is the Hopf map H :

S3 ⊂ C2 → S2( 12 ) ⊂ R× C:

H(z, w) =

(
1

2
(|z|2 − |w|2), zw̄

)
. (15)

It follows:

H

(
1√
2
F(t)

)
=

(
0,

1

2
T (t)N̄(t)

)
=

(
0,− i

2

)
= H

(
1√
2
E(t)

)
. (16)

Hence, considering H as a projection map of the S1-principal bundle S3 → S2( 12 )

we have that 1√
2
F and 1√

2
E belong to the same fiber, namely that over the South



422 M. CRASMAREANU

pole of the sphere S2( 12 ).
iv) Suppose now that our curve C belongs to the plane xOz of the physical space
R3 as C : r(t) = (f(t), 0, F (t)) with f > 0 on I and consider the rotational surface
generated by C as:

Σ : r̄(t, φ) := (f(t) cosφ, f(t) sinφ, F (t)), φ ∈ S1.

Its principal curvatures depend only on t, [8, p. 85]:

k1 = k, k2 =
F ′

∥r′∥f
(17)

and then for F ′ = f we have that kf of C is exactly the difference k1 − k2 of the
principal curvatures of Σ; consequently the umbilic circles of Σ are provided by the
zeros of kf and are parametrized by φ ∈ S1.

For F ′ = f the curvatures of C are expressed only through the function F as:

k(t) =
[F ′′(t)]2 − F ′(t)F ′′′(t)

[F ′(t)2 + F ′′(t)2]
3
2

, kf (t) =
−F ′(t)F ′′′(t)− [F ′(t)]2

[F ′(t)2 + F ′′(t)2]
3
2

(18)

and due to the presence of the third derivative of F we recall its Schwarzian deriv-
ative:

SF =
F ′′′

F ′ − 3

2

(
F ′′

F ′

)2

(19)

which implies the new formulae:

k =
(F ′′)2 − 2(F ′)2SF

2[(F ′)2 + (F ′′)2]
3
2

, kf =
−3(F ′′)2 − 2(F ′)2SF − 2(F ′)2

2[(F ′)2 + (F ′′)2]
3
2

. (20)

In conclusion, a smooth F with negative Schwarzian derivative will give a positive
curvature k for C while a positive Schwarzian derivative SF produces a negative
flow-curvature kf .
v) The nature and the relationship between our frames can be put in the framework
of moving frames of [8, p. 32]. Recall that the set of all orientation-preserving
Euclidean isometries forms a Lie group, E(2) := R2 × SO(2), with the standard
projection π1 on the first factor making E(2) → R2 an S1-principal bundle. A
moving frame along C is a map F : I → E(2) such that π1 ◦ F = r. But C defines
also a 1-parameter family of bijections of SO(2):
LC : I → Bijections(SO(2)), t → LC(t) : SO(2) → SO(2), A → R(t)A, (LC(t))−1 = LC(−t).

Then our frames are F : I → E(2) as F(t) = (r(t), T (t), N(t)) and E : I → E(2)
as E(t) = (r(t), (LC(t) ◦ π2 ◦ F)(t)).
vi) Suppose now that the curve C is in the space R3 and is bi-regular; hence it has
the Frenet frame (T,N,B) and the pair (curvature, torsion)=(k, τ). We define its
flow-frame as: T

Ef
2

Ef
3

 (t) :=

(
1 02(h)

02(v) R(t)

) T
N
B

 , 02(h) := (0, 0), 02(v) :=

(
0
0

)
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and then, its matrix moving equation is:

d

dt

 T

Ef
2

Ef
3

 (t) = ∥r′(t)∥

 0 k2f (t) k3f (t)

−k2f (t) 0 τf (t)

−k3f (t) −τf (t) 0

 T

Ef
2

Ef
3

 (t).

A similar computation yields:

k2f (t) = k(t) cos t, k3f (t) = k(t) sin t, τf (t) = τ(t)− 1

∥r′(t)∥
< τ(t).

We point out the formal similarity with the Darboux equations of a curve on a
given surface and then a curve C with vanishing τf will be called flow-geodesic in
R3. Hence, if C is naturally parametrized then C is a flow-geodesic if and only
if its torsion has the constant value 1; for this class of space curves and examples
see [1]. In order to express the above moving equation in the compact form as in
the theory of space curves:

ωf (t)× T (t) = T ′(t), ωf (t)× Ef
2 (t) = (Ef

2 )
′(t), ωf (t)× Ef

3 (t) = (Ef
3 )

′(t)

we associate a vector field along C, called flow-Darboux:

ωf (t) := ∥γ′(t)∥[τf (t)T (t)− k3f (t)E
2
f (t) + k2f (t)E

f
3 (t)].

Something similar but with the rotation with respect to an angle θ = θ(s) appears
in [13] under the name of quasi frame for C. Our choice corresponds to the angle
θ(s) = −s.
vii) Suppose that the curvature function t → k(t) is always strictly positive (or
strictly negative). Then the evolute of C is the curve:

Ce : re(t) := r(t) +
1

k(t)
N(t).

With this model in mind, for a non-flat-flow curve we associate its flow-evolute as
being the curve:

Cfe : rfe(t) := r(t) +
1

kf (t)
Ef

2 (t).

We will obtain this curve for some examples below. So, the line C discussed in the
example 1i has the flow-evolute

Cfe : rfe(t) = r0 + (t− sin t)u− cos t(iu)

and for r0 = (0, 1) = iu this last curve is exactly the cycloid of radius R = 1
according to the example 3 below. □

Returning to the plane curves let J ⊆ R be another open interval and fix the dif-
feomorphism φ : s ∈ J → t ∈ I with the smooth inverse φ−1 : t ∈ I → s ∈ J . Since
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r′(s) = φ′(s)r′(t(s)) we restrict our study to the class Diff+(J, I) of orientation-
preserving diffeomorphisms: φ′(s) > 0, for all s ∈ J . The transformation of the
flow-curvature under the action of φ is:

kf (s) = k(t)− 1

φ′(s)∥r′(t)∥
(21)

and then:

kf (s)− kf (t) =
1

∥r′(t)∥

[
1− 1

φ′(s)

]
. (22)

Proposition 2. (the rigidity of the flow-curvature) The only orientation-preserving
diffeomorphism φ which preserves also the flow-curvature of C is an interval shift
on the real line φ(s) = s+ s0, s0 ∈ (0,+∞).

A natural important problem is the class of curves with prescribed flow-curvature.
For example, if we ask the vanishing of the flow-curvature for a graphic curve
CF : r(t) = (t, F (t)) then it follows the differential equation:

F ′′(t)

[1 + (F ′(t))2]
3
2

=
1

[1 + (F ′(t))2]
1
2

. (23)

Since this equation reads:

F ′′(t)

1 + (F ′(t))2
= 1 (24)

we have exactly the Grim Reaper solution, [3, p. 28], a famous solution of the curve
shortening flow:

Fu(t) = u− ln(cos t), t ∈
(
−π

2
,
π

2

)
, u ∈ R (25)

with the usual curvature k(t) = cos t and the frames:

F(t) =

(
eit

ei(t+
π
2 )

)
, E =

(
(1, 0) = ī
(0, 1) = j̄

)
= constant. (26)

Another formalism is that of [15, p. 2] if r : S1 ≃ [0, 2π) → R2 is naturally
parametrized then there exists the smooth function θ : S1 → R, called normal
angle, such that:

N(s) = eiθ(s) = (cos θ(s), sin θ(s)), T (s) = −iN(s) = −ieiθ(s) = ei(θ(s)−
π
2 ) (27)

and then the Frenet equations yield:

dθ

ds
(s) = k(s). (28)
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In conclusion, the constant value β ∈ R of the flow-curvature of a closed convex
curve means θ(s) = (β + 1)s + α for all s ∈ S1 with α ∈ R an arbitrary constant.
The flow-frame corresponding to the equations (27) is:

Ef
1 (s) = (sin(θ(s)−t(s)),− cos(θ(s)−t(s))), Ef

2 (s) = (cos(θ(s)−t(s)), sin(θ(s)−t(s)))
(29)

which, in turn, is the Frenet frame of a new curve with the same natural parameter
s but having the normal angle θ̃(s) := θ(s)− t(s).

The formula (28) can be replaced with d(θ−π/2)
ds (s) = k(s) which expresses the

curvature k as the derivative of the angle between T ∈ XC and the unit vector ī.
Following this approach the paper [7] generalizes k to a curvature-type function kV
defined with respect to an arbitrary V ∈ XC . A main result of the cited work is that
kV = kW if and only if the angle between V and W is constant along C. Hence,
we can apply the last statement of the Remark ii) and then two flow-Fermi-Walker
unit vectors V,W ∈ XC yield the same curvature-type function.

In the following we present a couple of examples in order to remark the compu-
tational aspects of our approach.

Example 2. The involute of the unit circle S1 is:

C : r(t) = (cos t+ t sin t, sin t− t cos t) = (1− it)eit, t ∈ (0,+∞). (30)

A direct computation gives:

r′(t) = (t cos t, t sin t) = teit, ∥r′(t)∥ = t, k(t) =
1

t
> 0, (31)

and then this curve is also a flat-flow one and having the same flow-frame as the
Grim Reaper. This example can be treated also with respect to a natural parameter
s ∈ (0,+∞) which is provided by t :=

√
2s. For example, the normal angle function

is θ(s) = π
2 +

√
2s since then r′(s) = ei

√
2s. Comparing with the approach above it

results the constants α = π
2 and β =

√
2− 1. □

Example 3. Recall that for R > 0 the cycloid of radius R has the equation:

C : r(t) = R(t− sin t, 1− cos t) = R[(t, 1)− ei(
π
2 −t)], t ∈ R. (32)

Remark that here we have a twisted situation of the Remark iv) namely the deriva-
tive of the first component of the vector r(t) is exactly the second component. The
Schwarzian derivative is:

St−sin t(t) =
cos t

sin t
− 3

2

(
cos t

2

sin t
2

)2

, t ∈ R \ Zπ. (33)
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We have immediately:

r′(t) = R(1− cos t, sin t) = R[(1, 0)− eit], ∥r′(t)∥ = 2R| sin t

2
|, k(t) = − 1

4R| sin t
2 |
,

(34)
and then we restrict our definition domain to (0, π). It follows:{

kf (t) = − 3
4R sin t

2

< 0,

Ef
1 (t) = (sin 3t

2 , cos
3t
2 ) = ei(

π
2 − 3t

2 ), Ef
2 (t) = (− cos 3t

2 , sin
3t
2 ) = ei(π−

3t
2 ).

(35)

Again a natural parameter s is provided by: t = 2arccos
(
1− s

4R

)
and the flow-

evolute of C is the curve:

Cfe : rfe(t) = R(t− sin t, 1− cos t) +
4

3
R sin

t

2
(cos t,− sin t), t ∈ (0, π).

□

Example 4. The derivative curve r′ from (31) is an Archimedes’ spiral. This spiral
is given in polar coordinates as:

A(spiral) : ρ(t) = Rt, R > 0 (36)

and hence:

kf (t) =
1

R(t2 + 1)
3
2

> 0 (37)

while its flow-evolute is the curve:

Cfe : rfe(t) = R(t cos t, t sin t) +R(1 + t2)(− sin t− t cos t, cos t− t sin t).

□

Example 5. Fix α ∈ R∗ and the naturally parametrized curve C. Then the α-
parallel curve of C is the new curve:

Cα : r̃(t) := r(t) + αN(t), t ∈ I (38)

with:

T̃ (t) =
1− αk(t)

|1− αk(t)|
T (t), Ñ(t) =

1− αk(t)

|1− αk(t)|
N(t), k̃(t) = k(t). (39)

Hence, we consider that α does not belongs to the range of the function 1
k and the

new flow-curvature is:

k̃f (t) = k(t)− 1

|1− αk(t)|
. (40)

□
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We finish this note with the problem raised in the beginning, namely the possible
variants of the curve shortening flow. Recall that the setting of this question consists
in a 1-parameter family of plane curves Cu : r = ru(t) = r(t, u) satisfying:

∂r(t, u)

∂u
= k(t, u)N(t, u). (41)

It follows immediately an expression in terms of flow-apparatus:

∂r(t, u)

∂u
=

(
kf (t, u) +

1

∥r′(t, u)∥

)
[− sin tEf

1 (t, u) + cos tEf
2 (t, u)]. (42)

The first variant which we propose as an open problem is to study the flow-variant
of (41):

∂r(t, u)

∂u
= kf (t, u)E

f
2 (t, u). (43)

The second variant is to generalize all this study through a general smooth function
Ω ∈ C∞(R). More precisely, we use the equation (1) with R replaced by R ◦ Ω to
define the notion of Ω-frame for the plane curve C; we note that for a particular
choice of Ω the 3-dimensional variant of the remark vi) is called positional adapted
frame in [12]. Then the Ω-curvature of the plane curve C is:

kΩ(t) = k(t)− Ω′(t)

∥r′(t)∥
(44)

and the curves in polar coordinates with vanishing Ω-curvature are provided by:

ρ(t) = Re
∫ t
t0

cot[Ω(u)−u+C]du
, R > 0, C ∈ R. (45)

The flow-curvature corresponds to the identity map Ω = 1R. Moreover, if C is nat-
urally parametrized then kΩ = (θ−Ω)′ which means that the case Ω = θ+constant
provides a zero Ω-curvature.
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