http://communications.science.ankara.edu.tr
Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat.
Volume 72, Number 2, Pages 417-428 (2023)
DOI:10.31801/cfsuasmas. 1165123
ISSN 1303-5991 E-ISSN 2618-6470
Research Article; Received: August 22, 2022; Accepted: December 30, 2022

THE FLOW-CURVATURE OF PLANE PARAMETRIZED CURVES

Mircea CRASMAREANU

Faculty of Mathematics, University Al. I. Cuza, Iasi, 700506, ROMANIA

Abstract

We introduce and study a new frame and a new curvature function for a fixed parametrization of a plane curve. This new frame is called flow since it involves the time-dependent rotation of the usual Frenet flow; the angle of rotation is exactly the current parameter. The flow-curvature is calculated for several examples obtaining the logarithmic spirals (and the circle as limit case) and the Grim Reaper as flat-flow curves. A main result is that the scaling with $\frac{1}{\sqrt{2}}$ of both Frenet and flow-frame belong to the same fiber of the Hopf bundle. Moreover, the flow-Fermi-Walker derivative is defined and studied.

1. Introduction

The theory of geometric flows is a new and fascinating field of research in geometric analysis. The most simple of them is the curve shortening flow and already the excellent survey 3$]$ is twenty years old. Recall that the main geometric tool in this last flow is the well-known curvature of plane curves. Hence, to give a re-start to this problem seams to search for variants of the curvature, or in terms of 9], deformations of the usual curvature. The goal of this short note is to propose such a deformation which in turn defines a Fermi-Walker type derivative.

Fix an open interval $I \subseteq \mathbb{R}$ and consider $C \subset \mathbb{R}^{2}$ a regular parametrized curve of equation:

$$
C: r(t)=(x(t), y(t))=x(t) \bar{i}+y(t) \bar{j}, \quad\left\|r^{\prime}(t)\right\|>0, \quad t \in I .^{\prime}
$$

The ambient setting \mathbb{R}^{2} is an Euclidean vector space with respect to the canonical inner product:

$$
\langle u, v\rangle=x^{1} y^{1}+x^{2} y^{2}, u=\left(x^{1}, x^{2}\right) \in \mathbb{R}^{2}, v=\left(y^{1}, y^{2}\right) \in \mathbb{R}^{2}, \quad 0 \leq\|u\|^{2}=\langle u, u\rangle .
$$

[^0]The infinitesimal generator of the rotations in $\mathbb{R}^{2}=\mathbb{C}$ is the linear vector field, called angular:

$$
\xi(u):=-x^{2} \frac{\partial}{\partial x^{1}}+x^{1} \frac{\partial}{\partial x^{2}}, \quad \xi(u)=i \cdot u=i \cdot\left(x^{1}+i x^{2}\right), \quad i=\sqrt{-1}
$$

It is a complete vector field with integral curves the circles $\mathcal{C}(O, r)$:

$$
\left\{\begin{array}{l}
\gamma_{u_{0}}^{\xi}(t)=\left(u_{0}^{1} \cos t-u_{0}^{2} \sin t, u_{0}^{1} \sin t+u_{0}^{2} \cos t\right)=R(t) \cdot\binom{u_{0}^{1}}{u_{0}^{2}}, \quad t \in \mathbb{R} \\
r=\left\|u_{0}\right\|=\left\|\left(u_{0}^{1}, u_{0}^{2}\right)\right\|, \quad R(t):=\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right) \in S O(2)=S^{1}
\end{array}\right.
$$

and since the rotations $R(t)$ are isometries of the Riemannian metric $g_{c a n}=d x^{2}+$ $d y^{2}=|d z|^{2}$ it follows that ξ is a Killing vector field of the Riemannian manifold $\left(\mathbb{R}^{2}, g_{c a n}\right)$. The first integrals of ξ are the Gaussian functions i.e. multiples of the square norm: $f_{\alpha}(x, y)=\alpha\left(x^{2}+y^{2}\right), \alpha \in \mathbb{R}$. For an arbitrary vector field $X=A(x, y) \frac{\partial}{\partial x}+B(x, y) \frac{\partial}{\partial y}$ its Lie bracket with ξ is:

$$
[X, \xi]=\left(y A_{x}-x A_{y}-B\right) \frac{\partial}{\partial x}+\left(A+y B_{x}-x B_{y}\right) \frac{\partial}{\partial y}
$$

where the subscript denotes the variable corresponding to the partial derivative. For example, ξ commutes with the radial (or Euler) vector field $E(x, y)=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}$, which is also a complete vector field having as integral curves the homotheties $\gamma_{u_{0}}^{E}(t)=e^{t} u_{0}$ for all $t \in \mathbb{R}$.

The Frenet apparatus of the curve C is provided by:
$\left\{\begin{array}{l}T(t)=\frac{r^{\prime}(t)}{\left\|r^{\prime}(t)\right\|}, \quad N(t)=i \cdot T(t)=\frac{1}{\left\|r^{\prime}(t)\right\|}\left(-y^{\prime}(t), x^{\prime}(t)\right), \\ k(t)=\frac{1}{\left\|r^{\prime}(t)\right\|}\left\langle T^{\prime}(t), N(t)\right\rangle=\frac{1}{\left\|r^{\prime}(t)\right\|^{3}}\left\langle r^{\prime \prime}(t), i r^{\prime}(t)\right\rangle=\frac{1}{\left\|r^{\prime}(t)\right\|^{3}}\left[x^{\prime}(t) y^{\prime \prime}(t)-y^{\prime}(t) x^{\prime \prime}(t)\right] .\end{array}\right.$
Hence, if C is naturally parametrized (or parametrized by arc-length) i.e. $\left\|r^{\prime}(s)\right\|=$ 1 for all $s \in I$ then $r^{\prime \prime}(s)=k(s) i r^{\prime}(s)$. In a complex approach based on $z(t)=$ $x(t)+i y(t) \in \mathbb{C}=\mathbb{R}^{2}$ we have:
$\left\{\begin{array}{l}k(t)=\frac{1}{\left|z^{\prime}(t)\right|^{3}} \operatorname{Im}\left(\bar{z}^{\prime}(t) \cdot z^{\prime \prime}(t)\right)=\frac{1}{\left|z^{\prime}(t)\right|} \operatorname{Im}\left(\frac{z^{\prime \prime}(t)}{z^{\prime}(t)}\right)=\frac{1}{\left|z^{\prime}(t)\right|} \operatorname{Im}\left[\frac{d}{d t}\left(\ln z^{\prime}(t)\right)\right] \in \mathbb{R}, \\ \operatorname{Re}\left(\bar{z}^{\prime}(t) \cdot z^{\prime \prime}(t)\right)=\frac{1}{2} \frac{d}{d t}\left\|r^{\prime}(t)\right\|^{2}, \quad f_{\alpha}(z)=\alpha|z|^{2} .\end{array}\right.$
The multiplication with the complex unit i corresponds to the rotation $R\left(\frac{\pi}{2}\right)$; we have also:

$$
\frac{d}{d t} R(t)=R\left(t+\frac{\pi}{2}\right)=R(t) R\left(\frac{\pi}{2}\right)=R\left(\frac{\pi}{2}\right) R(t)
$$

and the Frenet equations can be unified by means of the column matrix $\mathcal{F}(t)=$ $\binom{T}{N}(t)$ as:

$$
\frac{d}{d t} \mathcal{F}(t)=\left\|r^{\prime}(t)\right\| k(t) R\left(-\frac{\pi}{2}\right) \mathcal{F}(t)
$$

It is an amazing fact that if the general rotation $R(t)$ belongs to the Lie group $S O(2)=S^{1}$ its particular values $R\left(\pm \frac{\pi}{2}\right)$ are elements of its Lie algebra so(2) of skew-symmetric 2×2 matrices. In fact, $\left\{R\left(\frac{\pi}{2}\right)\right\}$ is exactly the basis of so(2).

2. Main Results

This short note defines a new frame and correspondingly a new curvature function for C :

Definition 1. The flow-frame of C consists in the pair of unit vectors $\left(E_{1}^{f}(t), E_{2}^{f}(t)\right) \in$ $T^{2}:=S^{1} \times S^{1}$ given by:

$$
\begin{equation*}
\mathcal{E}(t):=\binom{E_{1}^{f}}{E_{2}^{f}}(t)=R(t) \mathcal{F}(t)=\binom{\cos t T(t)-\sin t N(t)}{\sin t T(t)+\cos t N(t)} \tag{1}
\end{equation*}
$$

the letter f being the initial of the word "flow". The flow-curvature of C is the smooth function $k_{f}: I \rightarrow \mathbb{R}$ given by the flow-equations:

$$
\begin{equation*}
\frac{d}{d t} \mathcal{E}(t)=\left\|r^{\prime}(t)\right\| k_{f}(t) R\left(-\frac{\pi}{2}\right) \mathcal{E}(t) \tag{2}
\end{equation*}
$$

Before starting its study we point out that this work is dedicated the memory of Academician Radu Miron (1927-2022). He was always interested in the geometry of curves and besides his theory of Myller configurations (11) he generalized also a type of curvature for space curves in [10. We remark also that this note follows the idea of Bishop in his delightful note [2] and that the flow-curvature of spacelike parametrized curves in the Lorentz plane was introduced by the author in [4]. The hyperbolic curves are studied also by the author in [5].

Returning to our subject we note as a first main result:

Proposition 1. The expression of the flow-curvature is:

$$
\begin{equation*}
k_{f}(t)=k(t)-\frac{1}{\left\|r^{\prime}(t)\right\|}<k(t) \tag{3}
\end{equation*}
$$

As a consequence, the curve C and its trigonometrical rotation $i C$ share the same flow-curvature.

Proof We have directly in the flow-frame:

$$
\begin{equation*}
\left\|r^{\prime}(t)\right\| k_{f}(t) R\left(-\frac{\pi}{2}\right)=R\left(t+\frac{\pi}{2}\right) R(-t)+\left\|r^{\prime}(t)\right\| k(t) R(t) R\left(-\frac{\pi}{2}\right) R(-t) \tag{4}
\end{equation*}
$$

and the conclusion follows. Concerning the consequence it is obvious that C and $i C: t \rightarrow(-y(t), x(t))$ share the same curvature k and the same second term from (3).

Example 1. i) If C is the line $r_{0}+t u, t \in \mathbb{R}$ with the vector $u \neq \overline{0}=(0,0)$ then k_{f} is constant:

$$
\begin{equation*}
k_{f}(t)=-\frac{1}{\|u\|}=\text { constant }<0 \tag{5}
\end{equation*}
$$

In particular, if u is an unit vector then $k_{f}(t)=-1$.
ii) The circle $\mathcal{C}(O, R)$ with the usual parametrization $r(t)=R e^{i t}$ is a flat-flow curve i.e. $k_{f}=0$. Indeed, the flow-frame is constant and universal for the families of concentric circles i.e. it does not depend on the radius R (exactly as the Frenet frame):

$$
\begin{equation*}
E_{1}^{f}=(0,1)=\bar{j}, \quad E_{2}^{f}=(-1,0)=-\bar{i} \tag{6}
\end{equation*}
$$

More generally, if C is expressed in polar coordinates as $C: \rho=\rho(t)$ for $t \in I$ then C is a flat-flow curve if and only if C is a logarithmic spiral $\rho_{R, \alpha}(t)=R e^{\alpha t}$, $R, \alpha>0$ and $t \in \mathbb{R}$. The limit case $\alpha \rightarrow 0$ gives the circle $\mathcal{C}(O, R)$ and the flow-frame of the logarithmic spiral is: $E_{1}^{f}=\frac{1}{\sqrt{\alpha^{2}+1}}(\alpha, 1), E_{2}^{f}=\frac{1}{\sqrt{\alpha^{2}+1}}(-1, \alpha)$; if $\alpha=\cot \varphi$ then $E_{1}^{f}=e^{\varphi i}, E_{2}^{f}=e^{i\left(\frac{\pi}{2}+\varphi\right)}$.
iii) Fix $R \in(0,+\infty)$ and the plane curve $C: w=F\left(R e^{i t}\right)$ with t as an increasing parameter and $F=F(z)$ a holomorphic function. Then the curvatures are:

$$
\begin{equation*}
k(t)=\frac{1}{\left|z F^{\prime}(z)\right|} \operatorname{Re}\left(1+\frac{z F^{\prime \prime}(z)}{F^{\prime}(z)}\right), \quad k_{f}(t)=\frac{1}{\left|z F^{\prime}(z)\right|} \operatorname{Re}\left(\frac{z F^{\prime \prime}(z)}{F^{\prime}(z)}\right) . \tag{7}
\end{equation*}
$$

For the circle example of $F(z)=z^{2}$ it results $k=\frac{1}{R^{2}}=$ constant and $k_{f}=\frac{1}{2 R^{2}}=$ constant which proves the proper dependence of k_{f} on the parametrizations of C.

Remark 1. i) Suppose that I is symmetric with respect to $0 \in \mathbb{R}$ and that C is positively oriented in the terms of Definition 1.14 from [14, p. 17]. Suppose also the C is convex; then applying the Theorem 1.18 of page 19 from the same book it results for the usual curvature the inequality $k \geq 0$. Hence the opposite curve $C^{-}: t \in I \rightarrow r(-t)$ has the flow-curvature $k_{f}<0$.
ii) An important tool in dynamics is the Fermi-Walker derivative. Let \mathcal{X}_{C} be the set of vector fields along the curve C. Then the Fermi-Walker derivative is the map ([6]) $\nabla_{C}^{F W}: \mathcal{X}_{C} \rightarrow \mathcal{X}_{C}$:

$$
\begin{equation*}
\nabla_{C}^{F W}(X):=\frac{d}{d t} X+\left\|r^{\prime}(\cdot)\right\| k[\langle X, N\rangle T-\langle X, T\rangle N]=\frac{d}{d t} X+\left\|r^{\prime}(\cdot)\right\| k\left[X^{b}(N) T-X^{b}(T) N\right] \tag{8}
\end{equation*}
$$

with X^{b} the differential 1-form dual to X with respect to the Euclidean metric. In a matrix form we can express this as follows:

$$
\nabla_{C}^{F W}=\frac{d}{d t}-\left\|r^{\prime}\right\| k\left|\begin{array}{cc}
(\cdot)^{b}(T) & (\cdot)^{b}(N) \tag{9}\\
T & N
\end{array}\right|=\frac{d}{d t}+\left\|r^{\prime}\right\| k\left|\begin{array}{cc}
T & (\cdot)^{b}(T) \\
N & (\cdot)^{b}(N)
\end{array}\right|
$$

It is natural to make here a remark concerning rotation-minimizing fields $X \in \mathcal{X}_{C}$ i.e. fields satisfying:

$$
\frac{d}{d t} X(t)=\lambda(t) T(t), \quad\langle X(t), T(t)\rangle=0
$$

for a smooth function $\lambda=\lambda(t)$. Then the Fermi-Walker derivative of such X is also parallel with the tangent T :

$$
\nabla_{C}^{F W} X(t)=\left[\lambda(t)+\left\|r^{\prime}(t)\right\| k(t)\langle X(t), N(t)\rangle\right] T(t)
$$

Calculating the Fermi-Walker derivative on our frames we get:

$$
\begin{equation*}
\nabla_{C}^{F W}(T)=\nabla_{C}^{F W}(N)=0, \quad \nabla_{C}^{F W}\left(E_{1}^{f}\right)=-E_{2}^{f}, \quad \nabla_{C}^{F W}\left(E_{2}^{f}\right)=E_{1}^{f} \tag{10}
\end{equation*}
$$

With the matrix notation we can express these relations as:

$$
\begin{equation*}
\nabla_{C}^{F W}(\mathcal{F})=\binom{0}{0}, \quad \nabla_{C}^{F W}(\mathcal{E})=R\left(\frac{\pi}{2}\right) \mathcal{E} \tag{11}
\end{equation*}
$$

and the Fermi-Walker derivative can be expressed in terms of k_{f} as:

$$
\begin{equation*}
\nabla_{C}^{F W}(X)=\frac{d}{d t} X+\left(1+\left\|r^{\prime}\right\| k_{f}\right)\left[X^{b}(N) T-X^{b}(T) N\right] \tag{12}
\end{equation*}
$$

Also, we can define the flow-Fermi-Walker derivative as:

$$
\begin{equation*}
\nabla_{C}^{f F W}(X):=\frac{d}{d t} X+\left\|r^{\prime}(\cdot)\right\| k_{f}\left[X^{b}(N) T-X^{b}(T) N\right]=\nabla_{C}^{F W}(X)+T \wedge N(X) \tag{13}
\end{equation*}
$$

with the skew-symmetric endomorphism $\wedge \in$ so(2) defined by:
$X \wedge Y:=\langle X, \cdot\rangle Y-\langle Y, \cdot\rangle X=\left(X^{1} Y^{2}-X^{2} Y^{1}\right) R\left(\frac{\pi}{2}\right), X=\left(X^{1}, X^{2}\right), Y=\left(Y^{1}, Y^{2}\right)$.
Then:

$$
\begin{equation*}
\nabla_{C}^{f F W}(\mathcal{F})=R\left(-\frac{\pi}{2}\right) \mathcal{F}, \quad \nabla_{C}^{f F W}(\mathcal{E})=\binom{0}{0} \tag{14}
\end{equation*}
$$

As in the usual case, if $V, W \in \mathcal{X}_{C}$ are flow-Fermi-Walker fields i.e. with zero flow-Fermi-Walker derivative then the value $<V, W>\in \mathbb{R}$ is constant along C. iii) Remark that the 4-dimensional vectors $\frac{1}{\sqrt{2}} \mathcal{F}$ and $\frac{1}{\sqrt{2}} \mathcal{E}$ belong to the Clifford torus $\frac{1}{\sqrt{2}} T^{2} \subset S^{3}$. A remarkable Riemannian submersion is the Hopf map H : $S^{3} \subset \mathbb{C}^{2} \rightarrow S^{2}\left(\frac{1}{2}\right) \subset \mathbb{R} \times \mathbb{C}:$

$$
\begin{equation*}
H(z, w)=\left(\frac{1}{2}\left(|z|^{2}-|w|^{2}\right), z \bar{w}\right) \tag{15}
\end{equation*}
$$

It follows:

$$
\begin{equation*}
H\left(\frac{1}{\sqrt{2}} \mathcal{F}(t)\right)=\left(0, \frac{1}{2} T(t) \bar{N}(t)\right)=\left(0,-\frac{i}{2}\right)=H\left(\frac{1}{\sqrt{2}} \mathcal{E}(t)\right) \tag{16}
\end{equation*}
$$

Hence, considering H as a projection map of the S^{1}-principal bundle $S^{3} \rightarrow S^{2}\left(\frac{1}{2}\right)$ we have that $\frac{1}{\sqrt{2}} \mathcal{F}$ and $\frac{1}{\sqrt{2}} \mathcal{E}$ belong to the same fiber, namely that over the South
pole of the sphere $S^{2}\left(\frac{1}{2}\right)$.
iv) Suppose now that our curve C belongs to the plane $x O z$ of the physical space \mathbb{R}^{3} as $C: r(t)=(f(t), 0, F(t))$ with $f>0$ on I and consider the rotational surface generated by C as:

$$
\Sigma: \bar{r}(t, \varphi):=(f(t) \cos \varphi, f(t) \sin \varphi, F(t)), \quad \varphi \in S^{1}
$$

Its principal curvatures depend only on t, [8, p. 85]:

$$
\begin{equation*}
k_{1}=k, \quad k_{2}=\frac{F^{\prime}}{\left\|r^{\prime}\right\| f} \tag{17}
\end{equation*}
$$

and then for $F^{\prime}=f$ we have that k_{f} of C is exactly the difference $k_{1}-k_{2}$ of the principal curvatures of Σ; consequently the umbilic circles of Σ are provided by the zeros of k_{f} and are parametrized by $\varphi \in S^{1}$.

For $F^{\prime}=f$ the curvatures of C are expressed only through the function F as:

$$
\begin{equation*}
k(t)=\frac{\left[F^{\prime \prime}(t)\right]^{2}-F^{\prime}(t) F^{\prime \prime \prime}(t)}{\left[F^{\prime}(t)^{2}+F^{\prime \prime}(t)^{2}\right]^{\frac{3}{2}}}, \quad k_{f}(t)=\frac{-F^{\prime}(t) F^{\prime \prime \prime}(t)-\left[F^{\prime}(t)\right]^{2}}{\left[F^{\prime}(t)^{2}+F^{\prime \prime}(t)^{2}\right]^{\frac{3}{2}}} \tag{18}
\end{equation*}
$$

and due to the presence of the third derivative of F we recall its Schwarzian derivative:

$$
\begin{equation*}
S_{F}=\frac{F^{\prime \prime \prime}}{F^{\prime}}-\frac{3}{2}\left(\frac{F^{\prime \prime}}{F^{\prime}}\right)^{2} \tag{19}
\end{equation*}
$$

which implies the new formulae:

$$
\begin{equation*}
k=\frac{\left(F^{\prime \prime}\right)^{2}-2\left(F^{\prime}\right)^{2} S_{F}}{2\left[\left(F^{\prime}\right)^{2}+\left(F^{\prime \prime}\right)^{2}\right]^{\frac{3}{2}}}, \quad k_{f}=\frac{-3\left(F^{\prime \prime}\right)^{2}-2\left(F^{\prime}\right)^{2} S_{F}-2\left(F^{\prime}\right)^{2}}{2\left[\left(F^{\prime}\right)^{2}+\left(F^{\prime \prime}\right)^{2}\right]^{\frac{3}{2}}} \tag{20}
\end{equation*}
$$

In conclusion, a smooth F with negative Schwarzian derivative will give a positive curvature k for C while a positive Schwarzian derivative S_{F} produces a negative flow-curvature k_{f}.
v) The nature and the relationship between our frames can be put in the framework of moving frames of [8, p. 32]. Recall that the set of all orientation-preserving Euclidean isometries forms a Lie group, $E(2):=\mathbb{R}^{2} \times S O(2)$, with the standard projection π_{1} on the first factor making $E(2) \rightarrow \mathbb{R}^{2}$ an S^{1}-principal bundle. A moving frame along C is a map $F: I \rightarrow E(2)$ such that $\pi_{1} \circ F=r$. But C defines also a 1-parameter family of bijections of $S O(2)$:
$L^{C}: I \rightarrow \operatorname{Bijections}(S O(2)), t \rightarrow L^{C}(t): S O(2) \rightarrow S O(2), A \rightarrow R(t) A,\left(L^{C}(t)\right)^{-1}=L^{C}(-t)$. Then our frames are $\mathcal{F}: I \rightarrow E(2)$ as $\mathcal{F}(t)=(r(t), T(t), N(t))$ and $\mathcal{E}: I \rightarrow E(2)$ as $\mathcal{E}(t)=\left(r(t),\left(L^{C}(t) \circ \pi_{2} \circ \mathcal{F}\right)(t)\right)$.
vi) Suppose now that the curve C is in the space \mathbb{R}^{3} and is bi-regular; hence it has the Frenet frame (T, N, B) and the pair (curvature, torsion) $=(k, \tau)$. We define its flow-frame as:

$$
\left(\begin{array}{c}
T \\
E_{2}^{f} \\
E_{3}^{f}
\end{array}\right)(t):=\left(\begin{array}{cc}
1 & 0_{2}(h) \\
0_{2}(v) & R(t)
\end{array}\right)\left(\begin{array}{c}
T \\
N \\
B
\end{array}\right), \quad 0_{2}(h):=(0,0), \quad 0_{2}(v):=\binom{0}{0}
$$

and then, its matrix moving equation is:

$$
\frac{d}{d t}\left(\begin{array}{c}
T \\
E_{2}^{f} \\
E_{3}^{f}
\end{array}\right)(t)=\left\|r^{\prime}(t)\right\|\left(\begin{array}{ccc}
0 & k_{f}^{2}(t) & k_{f}^{3}(t) \\
-k_{f}^{2}(t) & 0 & \tau_{f}(t) \\
-k_{f}^{3}(t) & -\tau_{f}(t) & 0
\end{array}\right)\left(\begin{array}{c}
T \\
E_{2}^{f} \\
E_{3}^{f}
\end{array}\right)(t)
$$

A similar computation yields:

$$
k_{f}^{2}(t)=k(t) \cos t, \quad k_{f}^{3}(t)=k(t) \sin t, \quad \tau_{f}(t)=\tau(t)-\frac{1}{\left\|r^{\prime}(t)\right\|}<\tau(t)
$$

We point out the formal similarity with the Darboux equations of a curve on a given surface and then a curve C with vanishing τ_{f} will be called flow-geodesic in \mathbb{R}^{3}. Hence, if C is naturally parametrized then C is a flow-geodesic if and only if its torsion has the constant value 1; for this class of space curves and examples see [1]. In order to express the above moving equation in the compact form as in the theory of space curves:

$$
\omega_{f}(t) \times T(t)=T^{\prime}(t), \quad \omega_{f}(t) \times E_{2}^{f}(t)=\left(E_{2}^{f}\right)^{\prime}(t), \quad \omega_{f}(t) \times E_{3}^{f}(t)=\left(E_{3}^{f}\right)^{\prime}(t)
$$

we associate a vector field along C, called flow-Darboux:

$$
\omega_{f}(t):=\left\|\gamma^{\prime}(t)\right\|\left[\tau_{f}(t) T(t)-k_{f}^{3}(t) E_{f}^{2}(t)+k_{f}^{2}(t) E_{3}^{f}(t)\right]
$$

Something similar but with the rotation with respect to an angle $\theta=\theta(s)$ appears in [13] under the name of quasi frame for C. Our choice corresponds to the angle $\theta(s)=-s$.
vii) Suppose that the curvature function $t \rightarrow k(t)$ is always strictly positive (or strictly negative). Then the evolute of C is the curve:

$$
C_{e}: r_{e}(t):=r(t)+\frac{1}{k(t)} N(t)
$$

With this model in mind, for a non-flat-flow curve we associate its flow-evolute as being the curve:

$$
C_{f e}: r_{f e}(t):=r(t)+\frac{1}{k_{f}(t)} E_{2}^{f}(t)
$$

We will obtain this curve for some examples below. So, the line C discussed in the example $1 i$ has the flow-evolute

$$
C_{f e}: r_{f e}(t)=r_{0}+(t-\sin t) u-\cos t(i u)
$$

and for $r_{0}=(0,1)=$ iu this last curve is exactly the cycloid of radius $R=1$ according to the example 3 below.

Returning to the plane curves let $J \subseteq \mathbb{R}$ be another open interval and fix the diffeomorphism $\varphi: s \in J \rightarrow t \in I$ with the smooth inverse $\varphi^{-1}: t \in I \rightarrow s \in J$. Since
$r^{\prime}(s)=\varphi^{\prime}(s) r^{\prime}(t(s))$ we restrict our study to the class Diff $f_{+}(J, I)$ of orientationpreserving diffeomorphisms: $\varphi^{\prime}(s)>0$, for all $s \in J$. The transformation of the flow-curvature under the action of φ is:

$$
\begin{equation*}
k_{f}(s)=k(t)-\frac{1}{\varphi^{\prime}(s)\left\|r^{\prime}(t)\right\|} \tag{21}
\end{equation*}
$$

and then:

$$
\begin{equation*}
k_{f}(s)-k_{f}(t)=\frac{1}{\left\|r^{\prime}(t)\right\|}\left[1-\frac{1}{\varphi^{\prime}(s)}\right] . \tag{22}
\end{equation*}
$$

Proposition 2. (the rigidity of the flow-curvature) The only orientation-preserving diffeomorphism φ which preserves also the flow-curvature of C is an interval shift on the real line $\varphi(s)=s+s_{0}, \quad s_{0} \in(0,+\infty)$.

A natural important problem is the class of curves with prescribed flow-curvature. For example, if we ask the vanishing of the flow-curvature for a graphic curve $C_{F}: r(t)=(t, F(t))$ then it follows the differential equation:

$$
\begin{equation*}
\frac{F^{\prime \prime}(t)}{\left[1+\left(F^{\prime}(t)\right)^{2}\right]^{\frac{3}{2}}}=\frac{1}{\left[1+\left(F^{\prime}(t)\right)^{2}\right]^{\frac{1}{2}}} \tag{23}
\end{equation*}
$$

Since this equation reads:

$$
\begin{equation*}
\frac{F^{\prime \prime}(t)}{1+\left(F^{\prime}(t)\right)^{2}}=1 \tag{24}
\end{equation*}
$$

we have exactly the Grim Reaper solution, [3] p. 28], a famous solution of the curve shortening flow:

$$
\begin{equation*}
F_{u}(t)=u-\ln (\cos t), \quad t \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \quad u \in \mathbb{R} \tag{25}
\end{equation*}
$$

with the usual curvature $k(t)=\cos t$ and the frames:

$$
\begin{equation*}
\mathcal{F}(t)=\binom{e^{i t}}{e^{i\left(t+\frac{\pi}{2}\right)}}, \quad \mathcal{E}=\binom{(1,0)=\bar{i}}{(0,1)=\bar{j}}=\text { constant } . \tag{26}
\end{equation*}
$$

Another formalism is that of 15 , p. 2] if $r: S^{1} \simeq[0,2 \pi) \rightarrow \mathbb{R}^{2}$ is naturally parametrized then there exists the smooth function $\theta: S^{1} \rightarrow \mathbb{R}$, called normal angle, such that:

$$
\begin{equation*}
N(s)=e^{i \theta(s)}=(\cos \theta(s), \sin \theta(s)), \quad T(s)=-i N(s)=-i e^{i \theta(s)}=e^{i\left(\theta(s)-\frac{\pi}{2}\right)} \tag{27}
\end{equation*}
$$

and then the Frenet equations yield:

$$
\begin{equation*}
\frac{d \theta}{d s}(s)=k(s) \tag{28}
\end{equation*}
$$

In conclusion, the constant value $\beta \in \mathbb{R}$ of the flow-curvature of a closed convex curve means $\theta(s)=(\beta+1) s+\alpha$ for all $s \in S^{1}$ with $\alpha \in \mathbb{R}$ an arbitrary constant. The flow-frame corresponding to the equations (27) is:
$E_{1}^{f}(s)=(\sin (\theta(s)-t(s)),-\cos (\theta(s)-t(s))), E_{2}^{f}(s)=(\cos (\theta(s)-t(s)), \sin (\theta(s)-t(s)))$
which, in turn, is the Frenet frame of a new curve with the same natural parameter s but having the normal angle $\tilde{\theta}(s):=\theta(s)-t(s)$.

The formula (28) can be replaced with $\frac{d(\theta-\pi / 2)}{d s}(s)=k(s)$ which expresses the curvature k as the derivative of the angle between $T \in \mathcal{X}_{C}$ and the unit vector \bar{i}. Following this approach the paper [7] generalizes k to a curvature-type function k_{V} defined with respect to an arbitrary $V \in \mathcal{X}_{C}$. A main result of the cited work is that $k_{V}=k_{W}$ if and only if the angle between V and W is constant along C. Hence, we can apply the last statement of the Remark ii) and then two flow-Fermi-Walker unit vectors $V, W \in \mathcal{X}_{C}$ yield the same curvature-type function.

In the following we present a couple of examples in order to remark the computational aspects of our approach.

Example 2. The involute of the unit circle S^{1} is:

$$
\begin{equation*}
C: r(t)=(\cos t+t \sin t, \sin t-t \cos t)=(1-i t) e^{i t}, \quad t \in(0,+\infty) \tag{30}
\end{equation*}
$$

A direct computation gives:

$$
\begin{equation*}
r^{\prime}(t)=(t \cos t, t \sin t)=t e^{i t}, \quad\left\|r^{\prime}(t)\right\|=t, \quad k(t)=\frac{1}{t}>0 \tag{31}
\end{equation*}
$$

and then this curve is also a flat-flow one and having the same flow-frame as the Grim Reaper. This example can be treated also with respect to a natural parameter $s \in(0,+\infty)$ which is provided by $t:=\sqrt{2 s}$. For example, the normal angle function is $\theta(s)=\frac{\pi}{2}+\sqrt{2 s}$ since then $r^{\prime}(s)=e^{i \sqrt{2 s}}$. Comparing with the approach above it results the constants $\alpha=\frac{\pi}{2}$ and $\beta=\sqrt{2}-1$.

Example 3. Recall that for $R>0$ the cycloid of radius R has the equation:

$$
\begin{equation*}
C: r(t)=R(t-\sin t, 1-\cos t)=R\left[(t, 1)-e^{i\left(\frac{\pi}{2}-t\right)}\right], \quad t \in \mathbb{R} \tag{32}
\end{equation*}
$$

Remark that here we have a twisted situation of the Remark iv) namely the derivative of the first component of the vector $r(t)$ is exactly the second component. The Schwarzian derivative is:

$$
\begin{equation*}
S_{t-\sin t}(t)=\frac{\cos t}{\sin t}-\frac{3}{2}\left(\frac{\cos \frac{t}{2}}{\sin \frac{t}{2}}\right)^{2}, \quad t \in \mathbb{R} \backslash \mathbb{Z} \pi \tag{33}
\end{equation*}
$$

We have immediately:

$$
\begin{equation*}
r^{\prime}(t)=R(1-\cos t, \sin t)=R\left[(1,0)-e^{i t}\right],\left\|r^{\prime}(t)\right\|=2 R\left|\sin \frac{t}{2}\right|, k(t)=-\frac{1}{4 R\left|\sin \frac{t}{2}\right|} \tag{34}
\end{equation*}
$$

and then we restrict our definition domain to $(0, \pi)$. It follows:

$$
\left\{\begin{array}{l}
k_{f}(t)=-\frac{3}{4 R \sin \frac{t}{2}}<0, \tag{35}\\
E_{1}^{f}(t)=\left(\sin \frac{3 t}{2}, \cos \frac{3 t}{2}\right)=e^{i\left(\frac{\pi}{2}-\frac{3 t}{2}\right)}, E_{2}^{f}(t)=\left(-\cos \frac{3 t}{2}, \sin \frac{3 t}{2}\right)=e^{i\left(\pi-\frac{3 t}{2}\right)}
\end{array}\right.
$$

Again a natural parameter s is provided by: $t=2 \arccos \left(1-\frac{s}{4 R}\right)$ and the flowevolute of C is the curve:

$$
C_{f e}: r_{f e}(t)=R(t-\sin t, 1-\cos t)+\frac{4}{3} R \sin \frac{t}{2}(\cos t,-\sin t), \quad t \in(0, \pi)
$$

Example 4. The derivative curve r^{\prime} from (31) is an Archimedes' spiral. This spiral is given in polar coordinates as:

$$
\begin{equation*}
A(\text { spiral }): \rho(t)=R t, \quad R>0 \tag{36}
\end{equation*}
$$

and hence:

$$
\begin{equation*}
k_{f}(t)=\frac{1}{R\left(t^{2}+1\right)^{\frac{3}{2}}}>0 \tag{37}
\end{equation*}
$$

while its flow-evolute is the curve:

$$
C_{f e}: r_{f e}(t)=R(t \cos t, t \sin t)+R\left(1+t^{2}\right)(-\sin t-t \cos t, \cos t-t \sin t)
$$

Example 5. Fix $\alpha \in \mathbb{R}^{*}$ and the naturally parametrized curve C. Then the α parallel curve of C is the new curve:

$$
\begin{equation*}
C_{\alpha}: \tilde{r}(t):=r(t)+\alpha N(t), \quad t \in I \tag{38}
\end{equation*}
$$

with:

$$
\begin{equation*}
\tilde{T}(t)=\frac{1-\alpha k(t)}{|1-\alpha k(t)|} T(t), \quad \tilde{N}(t)=\frac{1-\alpha k(t)}{|1-\alpha k(t)|} N(t), \quad \tilde{k}(t)=k(t) \tag{39}
\end{equation*}
$$

Hence, we consider that α does not belongs to the range of the function $\frac{1}{k}$ and the new flow-curvature is:

$$
\begin{equation*}
\tilde{k}_{f}(t)=k(t)-\frac{1}{|1-\alpha k(t)|} \tag{40}
\end{equation*}
$$

We finish this note with the problem raised in the beginning, namely the possible variants of the curve shortening flow. Recall that the setting of this question consists in a 1-parameter family of plane curves $C_{u}: r=r_{u}(t)=r(t, u)$ satisfying:

$$
\begin{equation*}
\frac{\partial r(t, u)}{\partial u}=k(t, u) N(t, u) \tag{41}
\end{equation*}
$$

It follows immediately an expression in terms of flow-apparatus:

$$
\begin{equation*}
\frac{\partial r(t, u)}{\partial u}=\left(k_{f}(t, u)+\frac{1}{\left\|r^{\prime}(t, u)\right\|}\right)\left[-\sin t E_{1}^{f}(t, u)+\cos t E_{2}^{f}(t, u)\right] \tag{42}
\end{equation*}
$$

The first variant which we propose as an open problem is to study the flow-variant of (41):

$$
\begin{equation*}
\frac{\partial r(t, u)}{\partial u}=k_{f}(t, u) E_{2}^{f}(t, u) \tag{43}
\end{equation*}
$$

The second variant is to generalize all this study through a general smooth function $\Omega \in C^{\infty}(\mathbb{R})$. More precisely, we use the equation (1) with R replaced by $R \circ \Omega$ to define the notion of Ω-frame for the plane curve C; we note that for a particular choice of Ω the 3-dimensional variant of the remark vi) is called positional adapted frame in 12]. Then the Ω-curvature of the plane curve C is:

$$
\begin{equation*}
k_{\Omega}(t)=k(t)-\frac{\Omega^{\prime}(t)}{\left\|r^{\prime}(t)\right\|} \tag{44}
\end{equation*}
$$

and the curves in polar coordinates with vanishing Ω-curvature are provided by:

$$
\begin{equation*}
\rho(t)=R e^{\int_{t_{0}}^{t} \cot [\Omega(u)-u+C] d u}, \quad R>0, \quad C \in \mathbb{R} \tag{45}
\end{equation*}
$$

The flow-curvature corresponds to the identity map $\Omega=1_{\mathbb{R}}$. Moreover, if C is naturally parametrized then $k_{\Omega}=(\theta-\Omega)^{\prime}$ which means that the case $\Omega=\theta+$ constant provides a zero Ω-curvature.

Declaration of Competing Interests The author declare that there is no conflict of interest regarding the publication of this article

Acknowledgements I am grateful to Professor Dr. Vladimir Balan for several corrections to an initial version of this work. Also, I am extremely indebted to two anonymous referees for their remarks concerning my paper.

References

[1] Bates, L. M., Melko, O. M., On curves of constant torsion I, J. Geom., 104 (2) (2013), 213-227. https://doi.org/10.1007/s00022-013-0166-2
[2] Bishop, R. L., There is more than one way to frame a curve, Am. Math. Mon., 82 (1975), 246-251. https://doi.org/10.2307/2319846
[3] Chou, K.-S., Zhu, X.-P., The Curve Shortening Problem, Boca Raton, FL: Chapman \& Hall/CRC, 2001. Zbl 1061.53045
[4] Crasmareanu, M., The flow-curvature of spacelike parametrized curves in the Lorentz plane, Proceedings of the International Geometry Center, 15 (2) (2022), 100-108. https://doi.org/10.15673/tmgc.v15i2.2281
[5] Crasmareanu, M., The flow-geodesic curvature and the flow-evolute of hyperbolic plane curves, Int. Electron. J. Geom., 16 (2023), no. 1, 225-231. https://doi.org/10.36890/iejg. 1229215
[6] Crasmareanu, M., Frigioiu, C. Unitary vector fields are Fermi-Walker transported along Rytov-Legendre curves, Int. J. Geom. Methods Mod. Phys., 12 (10) (2015), , Article ID 1550111. https://doi.org/10.1142/S021988781550111X
[7] Góźdź, S., Curvature type functions for plane curves, An. Ştiint. Univ. Al. I. Cuza Iaşi Mat., 39 (3) (1993), 295-303. Zbl 0851.53001
[8] Jensen, G. R., Musso, E., Nicolodi, L., Surfaces in Classical Geometries. A Treatment by Moving Frames, Universitext, Springer, 2016. Zbl 1347.53001
[9] Mazur, B., Perturbations, deformations, and variations (and "near-misses") in geometry, physics, and number theory, Bull. Am. Math. Soc., 41 (3) (2004), 307-336. https://doi.org/10.1090/S0273-0979-04-01024-9
[10] Miron, R., Une généralisation de la notion de courbure de parallélisme, Gaz. Mat. Fiz., Bucureşti, Ser. A 10 (63) (1958), 705-708. Zbl 0087.36101
[11] Miron, R., The geometry of Myller configurations. Applications to theory of surfaces and nonholonomic manifolds, Bucharest: Editura Academiei Române, 2010. Zbl 1206.53003
[12] Özen, K. E., Tosun, M., A new moving frame for trajectories with non-vanishing angular momentum, J. of Mathematical Sciences and Modelling, 4 (1) (2021), 7-18. https://doi.org/10.33187/jmsm. 869698
[13] Soliman, M. A., Nassar, H.A.-A., Hussien, R. A., Youssef, T., Evolutions of the ruled surfaces via the evolution of their directrix using quasi frame along a space curve, J. of Applied Mathematics and Physics, 6 (2018), 1748-1756. https://doi.org/10.4236/jamp.2018.68149
[14] Younes, L., Shapes and Diffeomorphisms, 2nd Updated Edition, Applied Mathematical Sciences 171, Berlin, Springer, 2019. Zbl 1423.53002
[15] Zhu, X.-P., Lectures on Mean Curvature Flows, AMS/IP Studies in Advanced Mathematics vol. 32, Providence, RI: American Mathematical Society, 2002. Zbl 1197.53087

[^0]: 2020 Mathematics Subject Classification. 53A04, 53A45, 53A55.
 Keywords. Plane parametrized curve, angular vector field, flow-frame, flow-curvature.

 - mcrasm@uaic.ro; ©0000-0002-5230-2751.

