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Abstract: In this study, two-electron one- and two-center Coulomb integrals with the same and 

different screening parameters are investigated numerically in the real Slater type orbital (STO) 

basis using Fourier transform method. In momentum space firstly, for atomic, i.e. one-center, 

Coulomb integrals are calculated, and analytical expressions are obtained in terms of binomial 

coefficients. Then, the solutions of the two-center Coulomb integrals are made with the modified 

Bessel function of second kind and the results are expressed in terms of binomial and Gaunt 

coefficients, irregular solid harmonics, and finite sum of STOs. A computer program is written in 

the MATHEMATICA language to determine the accuracy of the analytical expressions that are 

highly suitable for programming. The numerical results obtained from the program are given in 

the tables, and it is shown that the results agree with the literature. 

 

Key words: Coulomb integral, Fourier transform method, Slater type atomic orbital, Taylor 

expansion. 

 

Slater Tipi Orbitaller Bazında Bir- ve İki-Merkezli Coulomb İntegrallerinin  

 Özellikleri 
 

Öz: Bu çalışmada, aynı ve farklı perdeleme sabitlerine sahip iki elektronlu bir- ve iki-merkezli 

Coulomb integralleri, Fourier dönüşüm yöntemi kullanılarak reel Slater tipi orbitaller (STO) 

bazında sayısal olarak incelenmiştir. Momentum uzayında ilk olarak atomik, yani tek-merkezli, 

Coulomb integralleri için hesaplama yapılmış ve analitik ifadeler binom katsayıları cinsinden elde 

edilmiştir. Daha sonra, iki-merkezli Coulomb integrallerinin çözümleri, ikinci tür modifiye 

edilmiş Bessel fonksiyonları ile yapılmış ve sonuçlar binom ve Gaunt katsayıları, düzensiz katı 

harmonikler ve STO’ların sonlu toplamı cinsinden ifade edilmiştir. Programlamaya son derece 

uygun olan analitik ifadelerin doğruluğunu belirlemek için MATHEMATICA dilinde bir 

bilgisayar programı yazılmıştır. Programdan elde edilen sayısal sonuçlar tablolarda verilmiş ve 

sonuçların literatür ile uyumlu olduğu gösterilmiştir. 

 

Anahtar Kelimeler: Coulomb integrali, Fourier dönüşüm metodu, Slater tip atomik orbital, Taylor 

açılımı. 

 

1. Introduction 

Molecular integrals that arise in molecular electronic structure calculations based on the 

molecular orbital method, molecular orbitals are built from linear combinations of atomic 

orbitals (LCAO-MO), are an important research area in quantum mechanics. Here it is 

difficult and time consuming that computation of two-electron integrals containing 1 𝑟12⁄  

factor which describes the Coulomb interaction between the electrons. Therefore, the 
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further development of the methods used for the calculation of two-electron integrals is 

unavoidable. 

 

The wave functions of hydrogen atom obtained from the solution of the Schrödinger 

equation satisfy the cusp condition at the nucleus and exponential decay at large distances 

from the nucleus [1]. STOs and Gaussian type orbitals (GTOs) are basis functions widely 

used as atomic orbitals in calculation of molecular integrals. STOs exactly show the 

behavior of the wave functions near the nuclei and at large distances from them. But the 

use of STOs is limited due to the difficulty to evaluate efficiently all occurring integrals 

in a molecular calculation. GTOs do not provide a cusp represents the electron density at 

the nucleus and decay too quickly. However, molecular integrals can be easily calculated 

using GTOs. To provide the physical properties, the use of a linear combination of GTOs 

versus a single STO increases the number of the integrals to be computed over GTOs. As 

a result, compared to GTOs, STOs have the advantage as they can exhibit the two features 

of exact wave function. In reference [2], STOs and GTOs are compared and studies using 

STOs in molecular calculations from past to present are given in detail. 

 

There are many methods of integration used for solving the two-electron molecular 

integrals. Elliptic coordinate method [3-13] is the transformation of polar coordinates into 

the elliptical coordinates. Single-center expansion methods [14-25] are based on the 

translation of the orbitals from the one center to another. Fourier transform method [26-

37] evaluates the integrals in momentum space. In the Gaussian expansion method [38, 

39], STOs are written as a linear combination of GTOs. Gaussian transform method [40, 

41] uses the Laplace transform of the exponential function. The other approaches used in 

the calculation of molecular integrals are given in references [42-49]. 

 

Fourier transform method, primarily suggested by Prosser and Blanchard [50] for one-

electron integrals and developed by Geller [26-28] for two-electron integrals, is one of 

the most important methods used to simplify of the calculation of many-center molecular 

integrals. Through this method where integrals are transformed into inverse Fourier 

integrals, two-dimensional integrals in coordinate space with non-separable integration 

variables can be expressed in one-dimensional integrals in momentum space with easily 

separable integration variables. A different class of exponentially decreasing basis 

functions is B functions. Although the B functions, defined in terms of the reduced Bessel 

functions, have a complicated mathematical structure in coordinate space, their Fourier 

transforms are exceptional simplicity [31-33]. 

 

In this study, using the Fourier transform method, firstly the atomic Coulomb integrals 

over real STOs has been expressed as finite sums of binomial coefficients. Later for the 

molecular Coulomb integrals with the same and different screening parameters new 

expressions have been obtained in terms of Gegenbauer and Gaunt coefficients, irregular 

solid harmonics, and linear combination of STOs. A computer program in the 

MATHEMATICA 10.0 software [51] is constructed and the comparisons of numerical 

results with literature values have been given in Table 1 and Table 2. Atomic units are 

used throughout this article. 

 

2. Material and Method 

2.1 General formulas 
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As is well known two-electron two-center Coulomb integral includes Coulomb operator 

that describes the interactions between the charge distributions of each electron. The 

charge distribution is defined as the product of two atomic orbitals located at the same 

center. The general formula of two-center Coulomb integral based on STOs is as follows: 

 

 𝐽𝑛1𝑙1𝑚1,𝑛2𝑙2𝑚2

𝑛3𝑙3𝑚3,𝑛4𝑙4𝑚4(𝜀𝑎, 𝜀𝑎′ , 𝜀𝑏 , 𝜀𝑏′; 𝐑) =  

∬ 𝜒𝑛1𝑙1

𝑚1
∗

(εa, 𝐫1𝑎)𝜒𝑛2𝑙2

𝑚2 (ε𝑎′ , 𝐫1𝑎)
1

𝑟12
𝜒𝑛3𝑙3

𝑚3
∗

(ε𝑏 , 𝐫2𝑏)𝜒𝑛4𝑙4

𝑚4 (ε𝑏′ , 𝐫2𝑏)𝑑𝐫1𝑑𝐫2 (1) 

 

We will use the normalized real STOs defined as: 

 

𝜒𝑛 𝑙
𝑚 (𝛼, 𝐫) =

(2𝛼)𝑛+1 2⁄

√(2𝑛)!
𝑟𝑛−1𝑒−𝛼𝑟𝑌𝑙

𝑚(𝜃, 𝜑) (2) 

 

where n, l, and m are quantum numbers and 𝛼 is the screening parameter. The principal 

quantum number n is a positive integer. There are also studies using non-integer n-STOs 

in the literature [53, 54]. 𝑌𝑙
𝑚(𝜃, 𝜑) is the complex or real spherical harmonic and 

described as follows 

 

𝑌𝑙
𝑚(𝜃, 𝜑) = 𝑃𝑙

|𝑚|(𝑐𝑜𝑠𝜃)Φ𝑚(𝜑) (3) 

 

in which 𝑃𝑙
|𝑚|(𝑐𝑜𝑠𝜃) is the normalized associated Legendre polynomial [52]. For real 

spherical harmonics Φ𝑚(𝜑) is defined by 

 

Φ𝑚(𝜑) =
1

√𝜋(1 + 𝛿𝑚,0)

{
𝑐𝑜𝑠𝑚𝜑 for 𝑚 ≥ 0

𝑠𝑖𝑛|𝑚|𝜑 for 𝑚 < 0
 (4) 

 

The product of two real spherical harmonics: 

 

𝑌𝑙1

𝑚1∗(𝜃, 𝜑)𝑌𝑙2

𝑚2(𝜃, 𝜑) = ∑ ∑ ⟨𝑙1𝑚1|𝑙2𝑚2|𝐿𝑀⟩𝐴𝑚1𝑚2
𝑀

𝐿

𝑀=−𝐿

   𝑙1+𝑙2
(2)

𝐿=|𝑙1−𝑙2|

𝑌𝐿
𝑀∗(𝜃, 𝜑) (5) 

 

where ⟨𝑙1𝑚1|𝑙2𝑚2|𝐿𝑀⟩, so-called generalized Gaunt coefficient and linearized the 

product of two spherical harmonics, and 𝐴𝑚1𝑚2
𝑀  are the coefficients obtained with the 

integration of the product of three real spherical surface harmonics [10]. The symbol Σ(2) 

implies that the summation index L proceeds in two steps. 

 

One-center charge distribution which consists of two real STOs centered at the same 

nuclei can be expressed as a linear combination of STOs using the Equation (5) in 

reference [55]: 
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𝜒𝑛1𝑙1

𝑚1∗(ε𝑎, 𝐫1)𝜒𝑛2 𝑙2

𝑚2 (ε𝑎′ , 𝐫1) = √
23(2(𝑛1 + 𝑛2 − 1))!

(2𝑛1)! (2𝑛2)!

𝜀𝑎
𝑛1+1 2⁄

𝜀𝑎′
𝑛2+1 2⁄

(𝜀𝑎 + 𝜀𝑎′)𝑛1+𝑛2−1 2⁄
  

∑ ∑ ⟨𝑙1𝑚1|𝑙2𝑚2|𝐿𝑀⟩𝐴𝑚1𝑚2
𝑀

𝐿

𝑀=−𝐿

   𝑙1+𝑙2
(2)

𝐿=|𝑙1−𝑙2|

𝜒𝑛1+𝑛2−1 𝐿
𝑀 (𝜀𝑎 + ε𝑎′ , 𝐫1) (6) 

 

Two-center Coulomb integrals can be written by using the Equation (6) in terms of basic 

Coulomb integrals as follows: 

 

𝐽𝑛1𝑙1𝑚1,𝑛2𝑙2𝑚2

𝑛3𝑙3𝑚3,𝑛4𝑙4𝑚4(εa, εa′ , εb, εb′; 𝐑) =  

23 𝜀𝑎
𝑛1+1 2⁄

𝜀𝑎′
𝑛2+1 2⁄

𝜀𝑏
𝑛3+1 2⁄

𝜀𝑏′
𝑛4+1 2⁄

(𝜀𝑎 + 𝜀𝑎′)𝑛1+𝑛2−1 2⁄ (𝜀𝑏 + 𝜀𝑏′)𝑛3+𝑛4−1 2⁄
√

(2(𝑛1 + 𝑛2 − 1))! (2(𝑛3 + 𝑛4 − 1))!

(2𝑛1)! (2𝑛2)! (2𝑛3)! (2𝑛4)!
  

∑ ∑ ⟨𝑙1𝑚1|𝑙2𝑚2|𝐿𝑀⟩

𝐿

𝑀=−𝐿

    𝑙1+𝑙2
(2)

𝐿=|𝑙1−𝑙2|

𝐴𝑚1𝑚2
𝑀 ∑ ∑ ⟨𝑙3𝑚3|𝑙4𝑚4|𝐿′𝑀′⟩

𝐿′

𝑀′=−𝐿′

    𝑙3+𝑙4
(2)

𝐿′=|𝑙3−𝑙4|

𝐴𝑚3𝑚4
𝑀′   

𝐶𝑛1+𝑛2−1 𝐿 𝑀
𝑛3+𝑛4−1 𝐿′ 𝑀′(𝜀𝑎 + 𝜀𝑎′ , 𝜀𝑏 + 𝜀𝑏′; 𝐑) (7) 

 

where the basic Coulomb integrals are defined by: 

 

𝐶𝑁1𝐿1𝑀1

𝑁2𝐿2𝑀2(𝛼, 𝛽; 𝐑) = ∬ 𝜒𝑁1𝐿1

𝑀1
∗

(𝛼, 𝐫1)
1

𝑟12
𝜒𝑁2𝐿2

𝑀2 (𝛽, 𝐫2)𝑑𝐫1𝑑𝐫2 (8) 

 

If the Fourier transform method defined for the two-electron two-center integrals [26-28] 

is applied to Equation (8), the two-center basic Coulomb integrals are obtained in 

momentum space as follows [33]: 

 

𝐶𝑁1𝐿1𝑀1

𝑁2𝐿2𝑀2(𝛼, 𝛽; 𝐑) = 4𝜋 ∫
𝑒−𝑖𝐑.𝐩

𝑝2
𝑈𝑁1𝐿1

𝑀1
∗

(𝛼, 𝐩)𝑈𝑁2𝐿2

𝑀2 (𝛽, 𝐩)𝑑𝐩 (9) 

 

where 𝑈𝑁 𝐿
𝑀 (𝛼, 𝐩)  denotes the Fourier transform of STOs. 

 

The Fourier transform of STOs is given in terms of regular solid spherical harmonic 

defined as 𝑆𝑙
𝑚(𝐩) = 𝑝𝑙𝑌𝑙

𝑚(𝜃𝑝, 𝜑𝑝) in reference [56] 

 

𝑈𝑛 𝑙
𝑚 (𝛼, 𝐩) =

2𝑛+𝑙+1𝛼𝑛+1 2⁄

𝐹𝑙(𝑛)√𝜋𝐹𝑛(2𝑛)(𝛼2 + 𝑝2)𝑛+𝑙+2
𝐶𝑛−𝑙

𝑙+1 (
𝛼

√𝛼2 + 𝑝2
) 𝑆𝑙

𝑚(−𝑖𝐩) (10) 

 

here 𝐹𝑙(𝑛) are the binomial coefficients and 𝐶𝑛
𝜆(𝑥) is Gegenbauer polynomial defined by 

the following relation [57, 58]; 
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𝐶𝑛
𝜆(𝑥) = ∑ (−1)𝑠𝑎𝑠(𝜆, 𝑛)(2𝑥)𝑛−2𝑠

[𝑛 2⁄ ]

𝑠=0

 (11) 

 

where 

 

[
𝑛

2
] =

𝑛

2
−

1 − (−1)𝑛

4
  

 𝑎𝑠(𝜆, 𝑛) = 𝐹𝜆−1(𝜆 + 𝑛 − 𝑠 − 1)𝐹𝑠(𝑛 − 𝑠)  

 

The Rayleigh expansion of the plane wave is defined by the well-known relation in terms 

of spherical Bessel functions 𝑗𝑙(𝑝𝑅) and spherical harmonics 

 

𝑒±𝑖𝐩.𝐑 = 4𝜋 ∑ ∑ (±𝑖)𝑙𝑗𝑙(𝑝𝑅)𝑌𝑙
𝑚∗

(𝜃𝑝, 𝜑𝑝)𝑌𝑙
𝑚(𝜃𝑅 , 𝜑𝑅)

𝑙

𝑚=−𝑙

∞

𝑙=0

 (12) 

 

2.2 Basic Coulomb integrals in momentum space 

2.2.1 One-center basic Coulomb integrals 

It is well known that both electrons are centered on the same nuclei in one-center 

Coulomb integrals, take the name atomic Coulomb integrals, and determined by R=0 at 

Equation (9). In momentum space, atomic Coulomb integrals with the same screening 

parameters are given by: 

 

𝐶𝑁1𝐿1𝑀1

𝑁2𝐿2𝑀2(𝛼, 𝛼; 0) = 4𝜋 ∫
𝑈𝑁1𝐿1

𝑀1
∗

(𝛼, 𝐩)

𝑝2
𝑈𝑁2𝐿2

𝑀2 (𝛼, 𝐩)𝑑𝐩 (13) 

 

Substituting Equation (10) into Equation (13), and then by using the orthogonality relation 

of the spherical harmonics, we write: 

 

𝐶𝑁1𝐿1𝑀1

𝑁2𝐿2𝑀2(𝛼, 𝛼; 0) = 𝛿𝐿1𝐿2
𝛿𝑀1𝑀2

(−1)𝐿122𝑁1+2𝑁2+4𝛼2𝑁1+2𝑁2−𝐿1−𝐿2+1

𝐹𝐿1
(𝑁1)𝐹𝐿2

(𝑁2)√𝐹𝑁1
(2𝑁1)𝐹𝑁2

(2𝑁2)

 
 

∑ ∑
(−1)𝑠+𝑟𝑎𝑠(𝐿1 + 1, 𝑁1 − 𝐿1)𝑎𝑟(𝐿2 + 1, 𝑁2 − 𝐿2)

(2𝛼)2𝑠+2𝑟

[
𝑁2−𝐿2

2
]

𝑟=0

[
𝑁1−𝐿1

2
]

𝑠=0

  

∫
𝑝𝐿1+𝐿2𝑑𝑝

(𝛼2 + 𝑝2)𝑁1+𝑁2−𝑠−𝑟+2
 

∞

0

 (14) 
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When the radial integral is solved easily with the help of the integral tables of reference 

[57] atomic Coulomb integrals with the same screening parameters are obtained as follows 

[59]: 

 

𝐶𝑁1𝐿1𝑀1

𝑁2𝐿2𝑀2(𝛼, 𝛼; 0) = 𝛿𝐿1𝐿2
𝛿𝑀1𝑀2

  

(−1)𝐿122𝑁1+2𝑁2+3

𝐹𝐿1
(𝑁1)𝐹𝐿2

(𝑁2)√𝐹𝑁1
(2𝑁1)𝐹𝑁2

(2𝑁2)𝛼2

 
 

∑ ∑
(−1)𝑠+𝑟𝑎𝑠(𝐿1 + 1, 𝑁1 − 𝐿1)𝑎𝑟(𝐿2 + 1, 𝑁2 − 𝐿2)

22𝑠+2𝑟(𝑁1 + 𝑁2 − 𝑠 − 𝑟 + 1)𝐹𝐿1+𝐿2−1

2

(𝑁1 + 𝑁2 − 𝑠 − 𝑟)

[
𝑁2−𝐿2

2
]

𝑟=0

[
𝑁1−𝐿1

2
]

𝑠=0

 (15) 

 

For the atomic Coulomb integrals with the different screening parameters the following 

radial integral is acquired: 

 

𝐶𝑁1𝐿1𝑀1

𝑁2𝐿2𝑀2(𝛼, 𝛽; 0) = 𝛿𝐿1𝐿2
𝛿𝑀1𝑀2

(−1)𝐿122𝑁1+2𝑁2+4𝛼2𝑁1−𝐿1+1 2⁄ 𝛽2𝑁2−𝐿2+1 2⁄

𝐹𝐿1
(𝑁1)𝐹𝐿2

(𝑁2)√𝐹𝑁1
(2𝑁1)𝐹𝑁2

(2𝑁2)

 
 

∑ ∑
(−1)𝑠+𝑟𝑎𝑠(𝐿1 + 1, 𝑁1 − 𝐿1)𝑎𝑟(𝐿2 + 1, 𝑁2 − 𝐿2)

(2𝛼)2𝑠(2𝛽)2𝑟

[
𝑁2−𝐿2

2
]

𝑟=0

[
𝑁1−𝐿1

2
]

𝑠=0

  

∫
𝑝𝐿1+𝐿2𝑑𝑝

(𝛼2 + 𝑝2)𝑁1−𝑠+1(𝛽2 + 𝑝2)𝑁2−𝑟+1

∞

0

 (16) 

 

Using the Taylor expansion given by Equation (4.1) of reference [33], we can write the 

denominator of the integral in terms of simpler functions: 

 

𝐶𝑁1𝐿1𝑀1

𝑁2𝐿2𝑀2(𝛼, 𝛽; 0) = 𝛿𝐿1𝐿2
𝛿𝑀1𝑀2

(−1)𝐿122𝑁1+2𝑁2+4𝛼2𝑁1−𝐿1+1 2⁄ 𝛽2𝑁2−𝐿2+1 2⁄

𝐹𝐿1
(𝑁1)𝐹𝐿2

(𝑁2)√𝐹𝑁1
(2𝑁1)𝐹𝑁2

(2𝑁2)

 
 

∑ ∑
(−1)𝑠+𝑟𝑎𝑠(𝐿1 + 1, 𝑁1 − 𝐿1)𝑎𝑟(𝐿2 + 1, 𝑁2 − 𝐿2)

(2𝛼)2𝑠(2𝛽)2𝑟

[
𝑁2−𝐿2

2
]

𝑟=0

[
𝑁1−𝐿1

2
]

𝑠=0

  

{
(−1)𝑁2−𝑟+1

(𝑁2 − 𝑟)!
∑

(𝑁1 + 𝑁2 − 𝑠 − 𝑟 − 𝑣1)!

(𝑁1 − 𝑠 − 𝑣1)! (𝛼2 − 𝛽2)𝑁1+𝑁2−𝑠−𝑟−𝑣1+1

𝑁1−𝑠

𝑣1=0

∫
𝑝𝐿1+𝐿2𝑑𝑝

(𝛼2 + 𝑝2)𝑣1+1

∞

0

  

+
(−1)𝑁1−𝑠+1

(𝑁1 − 𝑠)!
∑

(𝑁1 + 𝑁2 − 𝑠 − 𝑟 − 𝑣2)!

(𝑁2 − 𝑟 − 𝑣2)! (𝛽2 − 𝛼2)𝑁1+𝑁2−𝑠−𝑟−𝑣2+1

𝑁2−𝑟

𝑣2=0

∫
𝑝𝐿1+𝐿2𝑑𝑝

(𝛽2 + 𝑝2)𝑣2+1

∞

0

} (17) 
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Finally, the radial integrals in Equation (17) by solving like Equation (14), the atomic 

Coulomb integral with the different screening parameter is obtained [59]: 

 

𝐶𝑁1𝐿1𝑀1

𝑁2𝐿2𝑀2(𝛼, 𝛽; 0) = 𝛿𝐿1𝐿2
𝛿𝑀1𝑀2

(−1)𝑁2+𝐿2−122𝑁1+2𝑁2+4𝛼2𝑁1−𝐿1+1 2⁄ 𝛽2𝑁2−𝐿2+1 2⁄

(𝐿1 + 𝐿2 + 1)𝐹𝐿1
(𝑁1)𝐹𝐿2

(𝑁2)√𝐹𝑁1
(2𝑁1)𝐹𝑁2

(2𝑁2)

 
 

∑ ∑
(−1)𝑠𝑎𝑠(𝐿1 + 1, 𝑁1 − 𝐿1)𝑎𝑟(𝐿2 + 1, 𝑁2 − 𝐿2)

(2𝛼)2𝑠(2𝛽)2𝑟(𝛼2 − 𝛽2)𝑁1+𝑁2−𝑠−𝑟+1

[
𝑁2−𝐿2

2
]

𝑟=0

[
𝑁1−𝐿1

2
]

𝑠=0

  

{𝛼𝐿1+𝐿2−1 ∑
𝐹𝑁2−𝑟(𝑁1 + 𝑁2 − 𝑠 − 𝑟 − 𝑣1)

𝐹𝐿1+𝐿2+1

2

(𝑣1)

𝑁1−𝑠

𝑣1=0

 (1 −
𝛽2

𝛼2
)

𝑣1

  

−𝛽𝐿1+𝐿2−1 ∑
𝐹𝑁1−𝑠(𝑁1 + 𝑁2 − 𝑠 − 𝑟 − 𝑣2)

𝐹𝐿1+𝐿2+1

2

(𝑣2)

𝑁2−𝑟

𝑣2=0

(1 −
𝛼2

𝛽2
)

𝑣2

} (18) 

 

2.2.2 Two-center basic Coulomb integrals 

Two-center Coulomb integrals represent the molecular Coulomb integrals that each one-

center charge distribution centered on different nuclei in configuration space. The integral 

obtained as Equation (9) in momentum space is written for the same screening parameters 

as follows: 

 

𝐶𝑁1𝐿1𝑀1

𝑁2𝐿2𝑀2(𝛼, 𝛼; 𝐑) = 4𝜋 ∫
𝑒−𝑖𝐑.𝐩

𝑝2
𝑈𝑁1𝐿1

𝑀1
∗

(𝛼, 𝐩)𝑈𝑁2𝐿2

𝑀2 (𝛼, 𝐩)𝑑𝐩 (19) 

 

In Equation (9), using the definitions of the FTSTO (Equation (10)), the product of two 

real spherical harmonics (Equation (5)), and the Rayleigh expansion (Equation (12)), one 

obtains: 

 

𝐶𝑁1𝐿1𝑀1

𝑁2𝐿2𝑀2(𝛼, 𝛼; 𝐑) =
(−1)𝐿2𝑖𝐿1+𝐿2𝜋22𝑁1+2𝑁2+6𝛼2𝑁1+2𝑁2−𝐿1−𝐿2+1

𝐹𝐿1
(𝑁1)𝐹𝐿2

(𝑁2)√𝐹𝑁1
(2𝑁1)𝐹𝑁2

(2𝑁2)

 
 

∑ ∑
(−1)𝑠+𝑟𝑎𝑠(𝐿1 + 1, 𝑁1 − 𝐿1)𝑎𝑟(𝐿2 + 1, 𝑁2 − 𝐿2)

(2𝛼)2𝑠+2𝑟

[
𝑁2−𝐿2

2
]

𝑟=0

[
𝑁1−𝐿1

2
]

𝑠=0

  

∑ ∑ (−𝑖)𝑙⟨𝐿1𝑀1|𝐿2𝑀2|𝑙𝑚⟩𝐴𝑀1𝑀2

𝑚

𝑙

𝑚=−𝑙

    𝐿1+𝐿2
(2)

𝑙=|𝐿1−𝐿2|

  

𝑌𝑙
𝑚(𝜃, 𝜑) ∫

𝑗𝑙(𝑝𝑅)𝑝2𝐿+𝑙+2𝑑𝑝

𝑝2(𝛼2 + 𝑝2)𝑁1+𝑁2−𝑠−𝑟+2
 

∞

0

 (20) 
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here 2𝐿 = 𝐿1 + 𝐿2 − 𝑙 is an even positive integer or zero. The series expansion of 𝑝2𝐿 is 

given by [33]: 

 

𝑝2𝐿 = (−1)𝐿𝛼2𝐿 ∑(−1)𝑡𝐹𝑡(𝐿)
(𝛼2 + 𝑝2)𝑡

𝛼2𝑡

𝐿

𝑡=0

 (21) 

 

To convert the radial integral in Equation (20) simpler, we use Equation (21) for 

numerator and Taylor expansion given by Equation (4.2) in reference [33] for 

denominator: 

 

𝐶𝑁1𝐿1𝑀1

𝑁2𝐿2𝑀2(𝛼, 𝛼; 𝐑) =
(−1)𝐿2𝜋22𝑁1+2𝑁2+6

𝐹𝐿1
(𝑁1)𝐹𝐿2

(𝑁2)√𝐹𝑁1
(2𝑁1)𝐹𝑁2

(2𝑁2)

 
 

∑ ∑
(−1)𝑠+𝑟𝑎𝑠(𝐿1 + 1, 𝑁1 − 𝐿1)𝑎𝑟(𝐿2 + 1, 𝑁2 − 𝐿2)

22𝑠+2𝑟

[
𝑁2−𝐿2

2
]

𝑟=0

[
𝑁1−𝐿1

2
]

𝑠=0

  

∑ ∑ ⟨𝐿1𝑀1|𝐿2𝑀2|𝑙𝑚⟩𝐴𝑀1𝑀2

𝑚 𝑌𝑙
𝑚(𝜃, 𝜑)

𝑙

𝑚=−𝑙

∑
(−1)𝑡𝐹𝑡(𝐿)

𝛼𝑙+3

𝐿

𝑡=0

    𝐿1+𝐿2
(2)

𝑙=|𝐿1−𝐿2|

  

{∫ 𝑝𝑙𝑗𝑙(𝑝𝑅)𝑑𝑝 − ∑ 𝛼2𝑣

𝑁1+𝑁2−𝑠−𝑟−𝑡+1

𝑣=0

∞

0

∫
𝑝𝑙+2𝑗𝑙(𝑝𝑅)𝑑𝑝

(𝛼2 + 𝑝2)𝑣+1

∞

0

} (22) 

 

The first integral in Equation (22) can be proved in terms of irregular solid spherical 

harmonics defined as £𝑙
𝑚(𝐫) = 𝑟−𝑙−1𝑌𝑙

𝑚(𝜃, 𝜑) [56], 

 

𝑌𝑙
𝑚(𝜃, 𝜑) ∫ 𝑝𝑙𝑗𝑙(𝑝𝑅)𝑑𝑝 =

𝜋

2
(2𝑙 − 1)‼ £𝑙

𝑚(𝐑)

∞

0

 (23) 

 

Using the integral tables of spherical Bessel functions [57], the second radial integral can 

be expressed in terms of modified Bessel function of second kind: 

 

∫
𝑝𝑙+2𝑗𝑙(𝑝𝑅)𝑑𝑝

(𝛼2 + 𝑝2)𝑣+1

∞

0

= √𝜋
𝑅𝑣−1 2⁄ 𝛼𝑙−𝑣+1 2⁄

2𝑣+1𝑣!
𝐾𝑙−𝑣+1 2⁄ (𝛼𝑅) (24) 

 

Then, this integral with spherical harmonic can be written as a linear combination of STOs 

when the series expansion of modified Bessel function of second kind is used: 

 

𝑌𝑙
𝑚(𝜃, 𝜑) ∫

𝑝𝑙+2𝑗𝑙(𝑝𝑅)𝑑𝑝

(𝛼2 + 𝑝2)𝑣+1

∞

0

= 𝜋
𝛼𝑙−2𝑣−1 2⁄

22𝑣+3 2⁄
∑ 𝑔𝑣,𝑞

𝑙 𝜒𝑣−𝑞 𝑙
𝑚 (𝛼, 𝐑)

𝑙−𝑣

𝑞=0

 (25) 
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where 

 

𝑔𝑣,𝑞
𝑙 =

(𝑙 − 𝑣 + 𝑞)! √(2(𝑣 − 𝑞))!

(𝑙 − 𝑣 − 𝑞)! 𝑣! 𝑞!
 

(26) 

 

Taking into the account Equations (23) and (25), two-center Coulomb integrals with the 

same screening parameters take the following form [59]: 

 

𝐶𝑁1𝐿1𝑀1

𝑁2𝐿2𝑀2(𝛼, 𝛼; 𝐑) =
(−1)𝐿2𝜋222𝑁1+2𝑁2+5

𝛼2𝐹𝐿1
(𝑁1)𝐹𝐿2

(𝑁2)√𝐹𝑁1
(2𝑁1)𝐹𝑁2

(2𝑁2)

 
 

∑ ∑
(−1)𝑠+𝑟𝑎𝑠(𝐿1 + 1, 𝑁1 − 𝐿1)𝑎𝑟(𝐿2 + 1, 𝑁2 − 𝐿2)

22𝑠+2𝑟

[
𝑁2−𝐿2

2
]

𝑟=0

[
𝑁1−𝐿1

2
]

𝑠=0

  

∑ ∑ ⟨𝐿1𝑀1|𝐿2𝑀2|𝑙𝑚⟩𝐴𝑀1𝑀2

𝑚

𝑙

𝑚=−𝑙

∑(−1)𝑡𝐹𝑡(𝐿)

𝐿

𝑡=0

    𝐿1+𝐿2
(2)

𝑙=|𝐿1−𝐿2|

  

{(2𝑙 − 1)‼ £𝑙
𝑚(𝛼𝐑) − ∑

𝛼−3 2⁄

22𝑣+1 2⁄

𝑁1+𝑁2−𝑠−𝑟−𝑡+1

𝑣=0

∑ 𝑔𝑣,𝑞
𝑙 𝜒𝑣−𝑞 𝑙

𝑚 (𝛼, 𝐑)

𝑙−𝑣

𝑞=0

} (27) 

 

In the analytical evaluation of two-center Coulomb integrals with the different screening 

parameters the radial integrals written in the following form: 

 

𝐶𝑁1𝐿1𝑀1

𝑁2𝐿2𝑀2(𝛼, 𝛽; 𝐑) =
(−1)𝐿2𝜋22𝑁1+2𝑁2+6𝛼2𝑁1−𝐿1+1 2⁄ 𝛽2𝑁2−𝐿2+1 2⁄

𝐹𝐿1
(𝑁1)𝐹𝐿2

(𝑁2)√𝐹𝑁1
(2𝑁1)𝐹𝑁2

(2𝑁2)

 
 

∑ ∑
(−1)𝑠+𝑟𝑎𝑠(𝐿1 + 1, 𝑁1 − 𝐿1)𝑎𝑟(𝐿2 + 1, 𝑁2 − 𝐿2)

(2𝛼)2𝑠(2𝛽)2𝑟

[
𝑁2−𝐿2

2
]

𝑟=0

[
𝑁1−𝐿1

2
]

𝑠=0

  

∑ ∑ (−1)𝐿⟨𝐿1𝑀1|𝐿2𝑀2|𝑙𝑚⟩𝐴𝑀1𝑀2

𝑚 𝑌𝑙
𝑚(𝜃, 𝜑)

𝑙

𝑚=−𝑙

    𝐿1+𝐿2
(2)

𝑙=|𝐿1−𝐿2|

  

∫
𝑗𝑙(𝑝𝑅)𝑝2𝐿+𝑙+2𝑑𝑝

𝑝2(𝛼2 + 𝑝2)𝑁1−𝑠+1(𝛽2 + 𝑝2)𝑁2−𝑟+1

∞

0

 (28) 

 

The use of Taylor expansion given by Equation (4.4) in reference [33] allows separating 

the denominators in Equation (28) as follows: 
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𝐶𝑁1𝐿1𝑀1

𝑁2𝐿2𝑀2(𝛼, 𝛽; 𝐑) =
(−1)𝐿2𝜋22𝑁1+2𝑁2+6𝛼2𝑁1−𝐿1+1 2⁄ 𝛽2𝑁2−𝐿2+1 2⁄

𝐹𝐿1
(𝑁1)𝐹𝐿2

(𝑁2)√𝐹𝑁1
(2𝑁1)𝐹𝑁2

(2𝑁2)

 
 

∑ ∑
(−1)𝑠+𝑟𝑎𝑠(𝐿1 + 1, 𝑁1 − 𝐿1)𝑎𝑟(𝐿2 + 1, 𝑁2 − 𝐿2)

(2𝛼)2𝑠(2𝛽)2𝑟

[
𝑁2−𝐿2

2
]

𝑟=0

[
𝑁1−𝐿1

2
]

𝑠=0

  

∑ ∑ (−1)𝐿⟨𝐿1𝑀1|𝐿2𝑀2|𝑙𝑚⟩𝐴𝑀1𝑀2

𝑚 𝑌𝑙
𝑚(𝜃, 𝜑)

𝑙

𝑚=−𝑙

    𝐿1+𝐿2
(2)

𝑙=|𝐿1−𝐿2|

  

{ ∑
(−1)𝑁2−𝑟+1𝐹𝑁2−𝑟(𝑁1 + 𝑁2 − 𝑠 − 𝑟 − 𝑣1)

(𝛼2 − 𝛽2)𝑁1+𝑁2−𝑠−𝑟−𝑣1+1

𝑁1−𝑠

𝑣1=0

∫
𝑗𝑙(𝑝𝑅)𝑝2𝐿+𝑙+2𝑑𝑝

𝑝2(𝛼2 + 𝑝2)𝑣1+1

∞

0

  

+ ∑
(−1)𝑁1−𝑠+1𝐹𝑁1−𝑠(𝑁1 + 𝑁2 − 𝑠 − 𝑟 − 𝑣2)

(𝛽2 − 𝛼2)𝑁1+𝑁2−𝑠−𝑟−𝑣2+1

𝑁2−𝑟

𝑣2=0

∫
𝑗𝑙(𝑝𝑅)𝑝2𝐿+𝑙+2𝑑𝑝

𝑝2(𝛽2 + 𝑝2)𝑣2+1

∞

0

} (29) 

 

The radial integrals obtained in Equation (29) are the same with the integrals given by 

Equation (20) derived for the two-center Coulomb integrals with the same screening 

parameters. Accordingly, applying the same steps used to solve the radial integral in 

Equation (20) for these integrals, two-center Coulomb integrals with the different 

screening parameters can be obtained in terms of irregular solid harmonics and linear 

summation of STOs [59]: 

 

𝐶𝑁1𝐿1𝑀1

𝑁2𝐿2𝑀2(𝛼, 𝛽; 𝐑) =
(−1)𝑁2+𝐿1−1𝜋222𝑁1+2𝑁2+5𝛼2𝑁1−𝐿1+1 2⁄ 𝛽2𝑁2−𝐿2+1 2⁄

𝐹𝐿1
(𝑁1)𝐹𝐿2

(𝑁2)√𝐹𝑁1
(2𝑁1)𝐹𝑁2

(2𝑁2)

 
 

∑ ∑
(−1)𝑠𝑎𝑠(𝐿1 + 1, 𝑁1 − 𝐿1)𝑎𝑟(𝐿2 + 1, 𝑁2 − 𝐿2)

(2𝛼)2𝑠(2𝛽)2𝑟(𝛼2 − 𝛽2)𝑁1+𝑁2−𝑠−𝑟+1

[
𝑁2−𝐿2

2
]

𝑟=0

[
𝑁1−𝐿1

2
]

𝑠=0

  

∑ ∑ ⟨𝐿1𝑀1|𝐿2𝑀2|𝑙𝑚⟩𝐴𝑀1𝑀2

𝑚

𝑙

𝑚=−𝑙

∑(−1)𝑡𝐹𝑡(𝐿)

𝐿

𝑡=0

    𝐿1+𝐿2
(2)

𝑙=|𝐿1−𝐿2|

  

{𝛼𝐿1+𝐿2−1 ∑ 𝐹𝑁2−𝑟(𝑁1 + 𝑁2 − 𝑠 − 𝑟 − 𝑣1)(1 − 𝛽2 𝛼2⁄ )𝑣1

𝑁1−𝑠

𝑣1=0

  

{(2𝑙 − 1)‼ £𝑙
𝑚(𝛼𝐑) − ∑

𝛼−3 2⁄

22𝑧1+1 2⁄

𝑣1−𝑡

𝑧1=0

∑ 𝑔𝑧1,𝑞1 
𝑙 𝜒𝑧1−𝑞1 𝑙

𝑚 (𝛼, 𝐑)

𝑙−𝑧1

𝑞1=0

}  

−𝛽𝐿1+𝐿2−1 ∑ 𝐹𝑁1−𝑠(𝑁1 + 𝑁2 − 𝑠 − 𝑟 − 𝑣2)(1 − 𝛼2 𝛽2⁄ )𝑣2

𝑁2−𝑟

𝑣2=0
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{(2𝑙 − 1)‼ £𝑙
𝑚(𝛽𝐑) −  ∑

𝛽−3 2⁄

22𝑧2+1 2⁄

𝑣2−𝑡

𝑧2=0

∑ 𝑔𝑧2,𝑞2 
𝑙 𝜒𝑧2−𝑞2  𝑙

𝑚 (𝛽, 𝐑)

𝑙−𝑧2

𝑞2=0

}} (30) 

 

3. Results 

To order to calculate two-electron Coulomb integrals over real STOs efficiently and 

accurately an algorithm has been described by using the obtained analytical formulas. The 

algorithm has been implemented in a computer program written in MATHEMATICA 

10.0 programming language. The program has been run for physically significant values 

of atomic orbital parameters by using Intel(R) Core (TM) i7-6500U CPU @ 2.50 Ghz 

computer. Numerical results that we obtained for line-up coordinate system have been 

reported in Table 1 and Table 2 for atomic Coulomb integrals given with 15 decimal 

digits and two-center molecular Coulomb integrals with 35 decimal digits, respectively. 

As can be seen from Table 1 and Table 2, all the calculations have been made in range of 

1 ≤ 𝑛 ≤ 25, 0 ≤ 𝑙 ≤ 9 and −2 ≤ 𝑚 ≤ 9 and for the arbitrary values of screening 

parameters and internuclear distances. In the tables the first row of the numeric results 

column shows the numeric values obtained in this study. For the calculations of the atomic 

Coulomb integral, in Table 1, in the case of same screening Equation (15) and in the case 

of different screening Equation (18) have been used. In Table 2, where the numerical 

results of the two-center Coulomb integrals are given, for the same and different screening 

parameters the expressions of Equation (27) and Equation (30) in terms of the modified 

Bessel function of second kind have been used. 

 

In the computer program, the modified Bessel function of second kind has been computed 

with the series expansion given below [57] taking into account the case n is negative and 

positive integer 

 

𝐾𝑛+1 2⁄ (𝑥) = √
𝜋

2𝑥
𝑒−𝑥 ∑

(𝑛 + 𝑗)!

𝑗! (𝑛 − 𝑗)! (2𝑥)𝑗
 

𝑛

𝑗=0

 (31) 

 
Table 1. The values of one-center Coulomb integrals over STOs using by Equations (15) and (18). 

𝑛1 𝑛2⁄  𝑙1 𝑙2⁄  𝑚1 𝑚2⁄  𝜀𝑎 𝜀𝑎′⁄  𝑛3 𝑛4⁄  𝑙3 𝑙4⁄  𝑚3 𝑚4⁄  𝜀𝑏 𝜀𝑏′⁄  Numerical results 

1/1 0/0 0/0 8.7/8.7 1/1 0/0 0/0 8.7/8.7 
5.437500000000000 

5.43750 a 

2/1 0/0 0/0 2.6/8.7 2/1 0/0 0/0 2.6/8.7 
1.46328 21330 50426 x 10-1 

1.4633 x 10-1 a 

2/2 0/0 0/0 2.6/2.6 2/1 0/0 0/0 2.6/8.7 
2.95642 80233 14304 x 10-1 

2.9564 x 10-1 a 

2/2 1/0 0/0 2.6/2.6 2/2 1/0 0/0 2.6/2.6 
2.08767 36111 11111 x 10-1 

2.0877 x 10-1 a 

2/2 1/1 -1/0 2.6/2.6 2/2 1/1 -1/0 2.6/2.6 
5.48437 50000 00000 x 10-2 

5.484 x 10-2 a 

4/3 3/2 3/-2 3.2/1.7 4/3 3/2 -2/1 1.7/0.7 
-1.82643 75834 06783 x 10-2 

-1.82643 75824 422 x 10-2 b 

10/10 9/9 9/9 1.5/1.22 10/10 9/9 9/9 0.5/0.65 
4.50007 13886 75689 x 10-2 

4.50007 13886 7520 x 10-2 b 

a Reference [60]; b Reference [61]. 



 

 

Table 2. Comparative values of two-center Coulomb integrals over STOs in line-up coordinate systems. 

𝑛1 𝑛2⁄  𝑙1 𝑙2⁄  𝑚1 𝑚2⁄  𝜀𝑎 𝜀𝑎′⁄  𝑛3 𝑛4⁄  𝑙3 𝑙4⁄  𝑚3 𝑚4⁄  𝜀𝑏 𝜀𝑏′⁄  R Numerical results 

1/1 0/0 0/0 0.99/0.99 1/1 0/0 0/0 1.01/1.01 0.01 

  6.24916 67058 30088 14983 45518 38351 29937 x 10-1 

  6.24916 67058 30088 14983 45518 38351 29936 x 10-1 a 

  6.24916 67058 30088 14983 46 x 10-1  b 

1/1 0/0 0/0 5.2/5.2 2/2 0/0 0/0 4.1/4.1 0.2 

  1.82289 25537 50662 68097 06249 99472 18106 

  1.82289 25537 50662 68097 06249 99472 18105 a 

  1.82289 2554 c 

1/2 0/1 0/1 5.2/4.0 2/2 1/0 -1/0 3.1/4.1 0.2 

 -2.03568 85382 24252 94658 39569 97218 82383 x 10-1 

 -2.03568 85382 24252 94658 39569 97218 82382 x 10-1 a 

 -2.03568 8538 x 10-1 c 

2/2 0/0 0/0 0.8/0.9 2/2 0/0 0/0 1.1/1.2 0.2 

  3.45983 64791 66103 67505 07075 35552 00665 x 10-1 

  3.45983 64791 66103 67505 07075 3555 x 10-1  d 

  3.45983 64791 66104x 10-1  b 

2/2 1/1 0/0 0.8/0.9 2/2 0/0 0/0 1.1/1.2 2.0 

  3.24756 44802 54982 28658 37023 34107 50971 x 10-1 

  3.24756 44802 54982 28658 37023 34 x 10-1  d 

  3.24756 44802 54982 3 x 10-1  b 

1/10 0/2 0/0 5.2/0.2 5/7 1/0 0/0 0.6/0.5 2.5 
 -1.20705 70535 94375 77816 23149 97854 51448 x 10-18   

 -1.20705 7054 x 10-18  c 

2/4 1/3 0/-2 3.1/0.2 4/2 2/0 2/0 0.5/4.1 2.5 
  1. 36325 84822 52802 36788 07621 24881 76923 x 10-8 

  1. 36325 8482 x 10-8  c 

4/2 3/1 0/0 5.2/4.0 4/4 2/3 2/2 0.5/3.0 2.5 

 -7. 36773 13766 53888 45151 51235 09992 20224 x 10-5 

 -7. 36773 13766 53888 45151 51235 09992 20224 x 10-5  a 

 -7. 36773 1377 x 10-5  c 

5/3 0/2 0/0 1.0/3.0 4/4 2/1 1/1 2.0/4.0 8.0 

  4.88358 08140 37952 76018 31732 66635 47903 x 10-5 

  4.88358 08140 37952 76018 3173 x 10-5  d 

  4.88358 0814 x 10-5  e 

10/10 2/2 0/0 0.2/0.2 5/7 1/0 0/0 0.6/0.5 8.5 

 -2.25291 88936 55436 05537 04573 40032 86720 x 10-4 

 -2.25291 88936 55436 05537 04573 x 10-4  d 

 -2.25291 8896 x 10-4  c 

4/1 3/0 0/0 0.8/0.9 3/1 2/0 0/0 1.1/1.2 100 

  1.32578 24709 36295 45612 88059 75651 53923 x 10-10 

  1.32578 24709 36295 45612 88059 75651 53922 x 10-10  a 

  1.32578 24709 36295 46 x 10-10  b 

25/3 0/0 0/0 1.2/1.2 2/2 0/0 0/0 1.0/1.0 0.22 
  5.58454 19476 26061 00861 36798 18078 45075 x 10-6 

  5.58454 19476 260 x 10-6  f 

    a Reference [49]; b Reference [21]; c Reference [25]; d Reference [44]; e Reference [62]; f Reference [13].



 

 

4. Conclusion and Comment 

For evaluating two-electron one- and two-center Coulomb integrals over real STOs 

analytical formulas have been obtained using Fourier transform method. First, in case 

R=0, the atomic Coulomb integrals have been derived easily in terms of binomial 

coefficients as given by Equations (15) and (18). In the calculation of two-center 

molecular Coulomb integrals, we have used some Taylor expansions given by the group 

of Steinborn in reference [33] to simplify the denominator of the integral structures 

encountered. The resulting integrals have been expressed in terms of irregular solid 

spherical harmonics and modified Bessel functions of second kind as given by Equations 

(23) and (24). Eventually two-center molecular Coulomb integrals have been expressed 

as finite linear combinations of Gegenbauer coefficients, Gaunt coefficients, irregular 

solid harmonics and real STOs using the series expansion of modified Bessel functions 

of second kind. 

It has been seen that the program written in the present study gives rise to a highly 

accurate computation of one- and two-center molecular Coulomb integrals over real 

STOs. The comparative results given in tables have shown an exact match with the 

benchmark values of the literature for one- and two-center Coulomb integrals.  
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