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Abstract: Wireless Sensor Network (WSN) refers to a group of locationally dispensed and dedicated sensors for observing and recording 

the physical conditions of the environment and coordinating the aggregated data at a centrical location. To serve such new applications, 

localization is largely used in WSNs to define the current location of the sensor nodes. Time of Arrival (ToA) localization is one of the 

prevalent schemes due to its high estimation accuracy. ToA is a method to estimate the location of a target based on the correlation of the 

signals and calculating the distances from each anchor to the target by multiplying the speed of light and the time at which the signal is 

received. In our recent study, we propose Modified 3N algorithm in 2D space. In the Modified 3N algorithm in 2D, three circles were used 

to localize the target nodes in the network. In this paper; Uniform, Beta, Weibull, Gamma and Generalized Pareto distributed networks are 

used for localization with the Modified 3N algorithm in 2D and the localization performance of the networks are evaluated and compared 

using MATLAB simulations. For these simulations, firstly, constant communication range of 10% of the field dimension is used and then 

dynamic communication ranges that depend on the number of total nodes are used for the same areas. 
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1. Introduction 

In recent years, wireless sensors networks (WSNs) have allured 

considerable interest in numerous fields including disaster alarm, 

health, military, environmental, building, car, and mining 

industries. They also have remarkable potential to ease our daily 

life activities. The deployment of sensors is based on the fact that 

sensors are most practical when they are spread in a multitude of 

numbers, especially for collecting an environmental map of a 

geographical area such as a rain forest, a complete building, or an 

agriculture field.  

Once the sensors are spread in a sensor application, exact position 

information is of vital importance [1]. The position of the nodes 

has a significant role in many fields as routeing, surveillance and 

monitoring, military, environmental and health applications etc. 

Localization of a sensor node is fulfilled with the aid of 

neighboring nodes. The localization can be categorized as known 

location-based localization, proximity-based localization, angle- 

based localization, range-based localization and distance-based 

localization [2]. 

In this study, we used Time of Arrival Localization (ToA) method 

which is one of the range-based and distance-based localization 

techniques. The distance between the two nodes is estimated by 

measuring the duration of propagation of the signal between the 

two nodes. This requires clock synchronized nodes, utilizing well-

known parameters such as the speed of the signal and the carrier 

frequency, which is known as the ToA technique. This technique 

was used in various studies.  In [3], each sensor node exploits at 

least one orthogonal sub-carrier as its assigned marker, to reply the 

Neighbor Discovery (ND) and ToA estimation requests 

transmitted by target nodes. The target node utilises the 

orthogonality throughout sub-carriers to detect the transmitted 

markers and their corresponding delays [3]. A signal-circle 

analogy used by Barbeau et al. [4] is generally used analogous to 

the TOA distance measurement technique. In [5], the authors study 

the localization of multiple signal sources based on sensors 

executing time-of-arrival (TOA) measurement in wireless sensor 

networks. They conceived contemporaneous estimation of source-

measurement associations and the source locations, in addition to 

finding the initiatory signal transmission time. In [6], The authors 

proposed a localization algorithm that needs no prior information 

about path loss exponents for non-line-of sight (NLOS) 

environments. The proposed algorithm evaluates both received-

signal-strength (RSS) measurements and time-of-arrival (TOA) 

measurements. In the proposed localization algorithm the distances 

calculated with TOA measurements are weighted by the believable 

factor (BF) obtained from the difference between the estimated 

distance with TOA measurements and that with RSS ones. 

In literature, statistical analysis related to both localization and 

energy problem in WSNs are available in many studies. 

Kamyabpour et al. [7] use statistical tools to analyse dependency 

between WSN parameters and overall energy consumption. In this 

study, three statistical approaches (linear correlation, non-linear 

correlation and p-value) are implemented to the consequence of 

detecting phase to extract the most efficacious parameters on WSN 

comprehensive energy consumption. The distribution of range 

estimation error was analyzed by Rasool et. al [8] using both 

graphical and computational goodness of-fit techniques, which are 

empirical cumulative distribution function plotting, quantile–

quantile plotting, probability density function plotting, kurtosis (K) 

test, skewness (S) test, linear correlation coefficient (γ) test, 

Anderson–Darling (A2) test and chi-squared (χ2) test. They 

proposed a range infiltration algorithm (RFA), which is based on 

an A2 test and it filters out the range estimates with high errors. In 

[9], equipped with moments, the optimal fusion rule (OFR) 

distribution is approximated by Gaussian and Gamma distributions 

via the moment mapping method. They showed that the Gamma 

distribution fits the OFR distribution to high extent when 

compared with Gaussian distribution. Tae Hong et al. [10] 

proposed a new data filtering schema based on statistical data 

analysis. Through performance analysis, they show that the 
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proposed schema does better than the Kalman filtering schema in 

terms of the number of messages transmitted. In [11], the authors 

present the SA-TC algorithm for detecting and thus defending 

against this serious threat. It is based on the on-demand multi-path 

routings and uses statistical analysis and time constraint to identify 

the suspected links. Tsai et al. [12] reported different aspects of a 

statistical analysis of four representative in-car wireless channels 

based on the received power data collected from a Binary Phase 

Shift Keying (BPSK) transmission experiment. They used 

Rayleigh, Log normal, Nakagami, Rice, and Weibull distributions 

in their study. 

In our previous study, we used a uniformly distributed network to 

localize the target nodes while a Modified 3N algorithm is being 

run. But in this paper, we used Uniform, Beta, Weibull, Gamma 

and Generalized Pareto distributed networks for localization and 

the localization performance of the networks were evaluated and 

compared using MATLAB simulations. 

2. Time of Arrival Based Localization 

Time of Arrival (ToA) is a method used to estimate the location of 

a target node based on the correlation of the signals. This method 

calculates the distances from each anchor to the target by 

multiplying the speed of the signal and the time at which the signal 

is received. This method requires the knowledge of the precise 

starting time of the transmitted signal and the precise maintenance 

and synchronization of the clocks at the target and all the anchor 

nodes is involved.  

In general, the field of sensor nodes is sparse in the sense that 

some nodes may have fewer nodes than neighboring anchors to 

fully localize. In fact, they may have less than 3 neighbors. A well-

known 3 Neighbor algorithm is as follows: Each node that is not 

equipped with a position-awareness device sends a position request 

message, a node that knows or can compute its position sends it to 

all its neighbors, and a node that receives position messages from 

three different nodes, say A1, A2, and A3, can calculate its position 

as shown in Fig. 1 (a). However, this algorithm exhibits a 

deficiency: when a target node receives only two anchor nodes (A1, 

A2), locations, and two distance measurements, the target node 

fails to find its own location, due to the obvious ambiguity as 

shown in Fig. 1(b) [4].  

 

 

Figure 1. (a) three anchors, (b) two anchors 

2.1. Modified 3N Algorithm in 2D 

While the algorithm is being run, the target nodes that are localized 

are now position-aware and possess the capability to share their 

positions. This newly found position-aware node is introduced into 

the pseudo anchor list and the neighboring network is intimated of 

this change. The gradual increase of the position-aware nodes in 

the network enable an enhanced localization performance.  

 

 

 

 

Algorithm 1:  Modified 3N Algorithm in 2D 

1. While there are target nodes 

a. if maximum number of iterations is exceeded, 

stop (some targets are not located) 

b. if less than three anchor nodes are in range, skip 

this node and goto step 1 to consider another 

target node 

c. if there are three or more anchor nodes in range, 

find the closest three anchor nodes and use them to 

locate the target node 

d. Add the localized target node into the pseudo-

anchor list and remove it from target list 

2. goto step 1, consider the next in target list.  

 

 

3. Fields in Different Distributions 

3.1. Uniform Distribution 

One of the simplest continuous distributions in all of statistics 

science is the continuous uniform distribution. This distribution 

was used for various applications. In [13], A method to obtain 

a uniform flux distribution with a multi-faceted point focus 

concentrator for laboratory tests is proposed. The method can be 

implemented to different types of receiver - photovoltaic or 

thermal - and no additional device is necessary to homogenise the 

flux. In [14], a method for evaluating the efficiency level of a 

Decision Making Units (DMU) when it is in a negatory situation 

as well as estimating the efficiency using uniform distribution is 

demonstrated.  

This distribution is characterized by a density function that is 

“flat,” and thus the probability is uniform in a closed interval say 

[A, B]. The density function of the continuous uniform random 

variable x on the interval [A, B] is  

𝑓(𝑥) = {

1

𝐵−𝐴
   , 𝐴 ≤ 𝑥 ≤ 𝐵

0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

                                                  (1) 

The density function creates a rectangle with base B−A and height 

1/B-A. As a result, the uniform distribution is generally called the 

rectangular distribution [15]-[16]. Note, however, that the interval 

may not always be closed: [A, B]. It can be (A, B) as well. The 

density function for a uniform random variable on the interval [1, 

3] is shown in Fig. 2. 

 
Figure 2. The density function for a random variable on the interval   

[1, 3]  

The mean and variance of the uniform distribution [16] are 

𝜇 =
𝐴+𝐵

2
  𝑎𝑛𝑑 𝜎2 =

(𝐵−𝐴)2

12
                                                          (2) 

Fig. 3 shows the Uniform distribution of 100 nodes. A 

heterogeneous node network containing a mix of anchor nodes that 

have the capabilities of ascertaining their own locations and the 
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target nodes that are non-position-aware is generated as shown in 

Fig. 3. Blue circle nodes and red square nodes represent position-

aware and non-position-aware nodes, respectively.  

 

Figure 3. Uniform distribution of 100 nodes 

3.2. Beta Distribution 

A beta function is defined by 

𝐵(𝛼, 𝛽) = ∫ 𝑥𝛼−1(1 − 𝑥)𝛽−1𝑑𝑥
1

0
                                              (3)                                  

               =
Γ(𝛼)Γ(𝛽)

Γ(𝛼+𝛽)
,     𝑓𝑜𝑟 𝛼, 𝛽 > 0                                                   

where Γ(𝛼) is the gamma function. 

The continuous random variable x has a beta distribution with 

parameters 𝛼 > 0 and β > 0 if its density function is given by            

𝑓(𝑥) = {

1

𝐵(𝛼,𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1   , 0 ≤ 𝑥 ≤ 1

0 , 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

                       (4) 

Note that the uniform distribution on (0, 1) is a beta distribution 

with parameters 𝛼 = 1 and β = 1.  

The mean and variance of a beta distribution with parameters 𝛼 

and 𝛽 are 

𝜇 =
𝛼

𝛼+𝛽
   and    𝜎2 =

𝛼𝛽

(𝛼+𝛽)2(𝛼+𝛽+1)
                                          (5) 

respectively [15]. 

The beta distribution is a probability distribution described in an 

interval [0 1], parameterized by two shape parameters α and β. The 

beta distribution has an advance over other probability 

distributions in that its domain is bounded and it procures various 

shapes depending on its parameters: flat, convex, concave and 

slanted. When α=β, the distribution is symmetric about x = ½ [16]. 

Fig. 4. shows Beta distribution of 100 nodes. Two parameters of 

Beta function, α and β, are choosen as 4 and 2 respectively. 

Asymmetric distributions are obtained by choosing alpha and beta 

to be different.  

 

Figure 4. Beta distribution of 100 nodes 

3.3. Weibull distribution 

Modern technology has enabled engineers to design many 

sophisticated systems whose process and safety depend on the 

reliability of the several components making up the systems. For 

example, a steel column may buckle, a fuse may burn out, or a 

heat-sensing device may fail. Alike components subjected to alike 

environmental situations will fail at different and imponderable 

times [17]. The Weibull distribution which was proposed by 

Waloddi Weibull in 1939 is a very important time of life 

distribution and is extensively used in many fields [18]. For 

example,Weibull Statistical Distribution is a prevalent method for 

examining wind speed measurements and specifying wind energy 

potential. Weibull probability density function can be used to 

predict wind density, wind energy potential and wind speed [19]-

[20].  

The continuous random variable x has a Weibull distribution, with 

parameters α and β, if its density function is given by 

𝑓(𝑥) = {
𝛼𝛽𝑥𝛽−1𝑒−𝛼𝑥𝛽

   , 𝑥 > 0

0 , 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

                                    (6) 

where 𝛼 > 0 and β > 0. 
The graphs of the Weibull distribution for α = 1 and various values 

of the parameter β are illustrated in Fig.  5. It can be seen from the 

figure that the curves change highly in shape for different values 

of the parameter β. If β = 1 taken, the Weibull distribution changes 

to the exponential distribution. For values of β > 1, the curves 

become somewhat bell shaped and look like the normal curve but 

display some curvature. 

 

 

Figure 5. Weibull distributions (α = 1)  
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 The mean and variance of the Weibull distribution are  

μ = 𝛼
−

1

𝛽Γ(1 +
1

𝛽
)                                                                        (7) 

σ2 = 𝛼
−

2

𝛽 {Γ (1 +
2

𝛽
) − [Γ(1 +

1

𝛽
)]

2
}                                    

Fig. 6 shows Weibull distribution of 100 nodes. This distribution 

has two parameters which k > 0 is the shape parameter and λ > 0 

is the scale parameter of the distribution. k and λ are chosen as 1 

and 0.12 respectively for this  simulation. 

 

Figure 6. Weibull distribution of 100 nodes 

3.4. Gamma Distribution 

The gamma distribution derives its name from the well-known 

gamma function, studied in many areas of mathematics. The 

gamma function is defined by 

Γ(α) = ∫ 𝑥𝛼−1∞

0
𝑒−𝑥𝑑𝑥,      for  𝛼 > 0                                       (8) 

The continuous random variable x has a gamma distribution, with 

parameters α and β, if its density function is given by  

𝑓(𝑥) = {

1

𝛽𝛼Γ(𝛼)
𝑥𝛼−1𝑒−𝑥/𝛽    , 𝑥 > 0

0 , elsewhere

                               (9) 

where α>0 and β>0 [17], [21]. 

Graphs of several gamma distributions are shown in Fig. 7 for 

certain determined values of the parameters α and β. The special 

gamma distribution for which α = 1 is called the exponential 

distribution [17]. 

 

 

Figure 7. Gamma distributions 

Fig. 8 shows Gamma distribution of 100 nodes. This distribution 

has two parameters α and β, they are chosen as 0.15 and 0.4 

respectively for this simulation. 

Figure 8. Gamma distribution of 100 nodes 

3.5. Generalized Pareto Distribution 

The Generalized Pareto distribution introduced by 

𝐹(𝑞) = 1 − 𝑒−
𝑞−𝑞0

𝛼 ,     κ = 0                                                     (10) 

𝐹(𝑞) = 1 − (1 − κ
𝑞−𝑞0

𝛼
)

1/𝜅
,     κ ≠ 0                                     (11) 

where  is the scale parameter,  is the shape parameter, and  q0 is 

the threshold [22]. 

Fig. 9. shows Pareto distribution of 100 nodes. Three parameters 

of Pareto function, tail index (shape, 𝜅), scale parameter 𝛼 and 

threshold (location) parameter 𝑞0, are chosen as 0.1, 0.1 and 1 

respectively. When 𝜅>0 and theta is equal to 𝛼/𝜅 the Generalized 

Pareto is equivalent to the Pareto distribution. 

 

Figure 9. Pareto distribution of 100 nodes 

4. Analysis of Time of Arrival Simulations 

4.1. Design of Simulation Environment 

The simulation environment is designed for the quantitative 

performance study of the proposed modified 3N algorithm in 2D. 

For simplicity and ease of presentation, we limit the environment 

to 2 dimensions, but the Modified 3N algorithm is capable of 

operating in 3D. A pseudo-anchor list is created that serves as a 

dynamic anchor list while the simulation is being run. As the new 

target nodes are localized, they are added to the list of pseudo-

anchors, and the whole network is made aware of these newly 

localized nodes for the purpose of enhancing the performance of 
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localizing other target nodes with the help of this new knowledge. 

The simulation creates a distance matrix that is generated using the 

Euclidean method of calculation of the distance between the 

anchor nodes. The connectivity of the nodes in the network (i.e., 

the average number of neighbors) is an important parameter that 

has a strong impact on the accuracy of most localization 

algorithms. This forms the basis for the generation of other 

modules needed, such as adjacency lists. This list of the nodes is 

in the communication range of that particular target node. From 

this adjacency list, each target node determines its neighbors. An 

approximated circle is constructed, using the distance from the 

anchor node to the target node as the radius and the absolute 

position of the anchor as the center. The intersection of circles 

gives a location estimate of the target node.  

4.2. Simulation Results for 2D 

In this section, the localization capability of the ToA based 

localization algorithm is presented with exhaustive Monte-Carlo 

simulations, and the effect of the input parameters determining the 

self-localization environment for Modified 3N algorithm in 2D is 

also presented. The simulation environment to test the 

performance of the algorithm on all combinations of the context 

parameters is formulated. Each Monte-Carlo simulation is 

generated for a particular set of input parameters and run 100 times 

with different fields and with randomly located nodes. The results 

are then averaged. The input parameters are the percentage of 

anchor nodes (position-aware and initially synchronized nodes), 

the number of target nodes, and the range of communication. The 

number of nodes varying from 50 to 400 and they are deployed in 

a square field dimension of 100x100 units. In some application 

scenarios, nodes may be mobile. In this paper, however, we focus 

on static networks, where nodes do not move, since this is already 

a challenging condition for distributed localization 
Fig. 10 is produced by varying the percentage of anchor nodes 

from 10% to 35% for a constant communication range of 10% of 

the field dimension for uniform distribution. X-axis is the number 

of nodes and y-axis is the percentage of target nodes localized. 

Modified 3N algorithm is run on Pareto, Weibull and Beta 

distributed environments as shown in Fig 11, Fig. 12 and Fig 13 

respectively. The results show that uniform distributed 

environment is quite sensitive to the change of node numbers. 

Increasing number of anchor nodes does not change significantly 

on Weibull, Pareto and Beta distributed environments. Among all 

distributions, Pareto distribution shows the best results. 

Figure 10.Percentage of target nodes localization for uniform distribution 

  

Figure 11. Percentage of target nodes localization for Pareto distribution 

Figure 12.Percentage of target nodes localization for Weibull distribution 

Figure 13. Percentage of target nodes localization for beta distribution 

Fig. 14, Fig.15 and Fig. 16 show the comparison of four distributed 

environments with different number of anchor nodes. Among all 

distributions, localization of Pareto distributed nodes shows the 

best result for all simulations.  
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Figure 14. The number of anchor nodes = 15 % 

Figure 15. The number of Anchor nodes = 25 % 

Figure 16. The number of Anchor nodes = 35 % 

 
For other simulations, dynamic ranges is used to localize the 

unknown nodes. Extensive simulations are conducted in an 

environment similar to the one created by Barbeau and Kranakis 

[4]. The sensors are spread in a unit square independently with 

uniform, beta, gamma, weibull and generalized pareto distributions 

respectively. The reachability range of each node is as, given by 

the Eq. (12).  

 

𝑟 = √
log 𝑛+𝑘log log𝑛+log(𝑘!)+𝑐

𝑛𝜋
                                     (12) 

 

The constants k and c are given a value of 1 and n is the number of 

deployed nodes in the network. 

Fig. 17 is produced by varying the number of total nodes from 50 

to 400 for a dynamic communication range that depends on the 

number of total nodes for these distributions. X-axis is the number 

of nodes and y-axis is the percentage of target nodes localized. 

Modified 3N algorithm is run on Uniform, Beta, Weibull, Gamma 

and Pareto distributed environments as shown in Fig. 17, Fig. 18, 

Fig. 19, Fig. 20, Fig. 21 and Fig. 22 for different percentage of 

anchor nodes. Generally, for all of the distributions, Modified 3N 

algorithm has better results in the Generalized Pareto distributed 

fields than in the other four distributed fields. With the increasing 

number of nodes, the localization performance of Modified 3N 

algorithm generally increases for uniform distribution. And with 

the increasing number of nodes, the localization performance of 

Modified 3N algorithm initially increases and then changes around 

nearly a fixed value for other distributions. The reason for this 

result is when the number of nodes increases, the range get smaller 

according to Eq. (12). 

 

Figure 17. The number of anchor nodes = 10 % for dynamic range 

 

Figure 18. The number of anchor nodes = 15 % for dynamic range  
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Figure 19. The number of anchor nodes = 20 % for dynamic range  

 

Figure 20. The number of anchor nodes = 25 % for dynamic range  

 

Figure 21. The number of anchor nodes = 30 % for dynamic range  

 

Figure 22. The number of anchor nodes = 35 % for dynamic range  

5. Conclusion 

Two-dimensional localization in wireless sensor networks have 

been widely studied in literature. In this paper, the Modified 3N 

algorithm in 2D is introduced and this algorithm was tested on an 

environment created with Uniform, Weibull, Generalized Pareto, 

Gamma and Beta distributions. With the increasing number of 

nodes, the localization performance of Modified 3N algorithm 

generally increases for uniform distribution. The localization 

performance of Modified 3N algorithm initially increases and then 

changes around nearly a fixed value for other distributions with the 

increasing number of nodes. 

For all environments, the simulations conducted have shown that 

the introduction of the knowledge of newly localized nodes into 

the network enhances its localization capability. If the nodes 

cannot be located by the 3N algorithm because of the limitations 

on range and sparsity of the anchors, then those nodes will also not 

be localized by the modified algorithm. The sensors that detect the 

movements of the objects are not considered in this paper. They 

will be addressed in our future work.  
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