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ABSTRACT: Optimization problems occur in three different structures: continuous, discrete, and

hybrid. Metaheuristic algorithms, which are frequently preferred in the solution of optimization

problems today, are mostly proposed for continuous problems and are discretized with subsequent

modifications. In this study, a novel binary version (Bin_MRFOA) of the manta ray foraging

optimization algorithm, which was frequently used in the solution of continuous optimization problems

before, was proposed to be used in the solution of binary optimization problems. The Bin_MRFOA was

first tested on ten classical benchmark functions, and the effect of the transfer function on performance

was examined by comparing the variants obtained using eight different transfer functions. Then the most

successful Bin_MRFOA variant was run on the eighteen CEC2005 benchmark functions. The results were

compared with the algorithms in the literature and interpreted with Wilcoxon signed-rank and Friedman

tests, which are nonparametric tests. The results revealed that Bin_MRFOA is a successful, competitive,

and preferable algorithm compared to the literature.

Keywords: Binary Optimization, Manta Ray Foraging Optimization, S-shaped and V-shaped Transfer Functions

1. INTRODUCTION

Today, evolutionary computing has become an effective method of choice for solving complex

optimization problems. Evolutionary computation is handled in two groups, evolutionary algorithms

(EA) and swarm intelligence-based algorithms. EAs are nature-inspired algorithms (genetic algorithm,

differential evolution algorithm, etc.), while swarm intelligence-based algorithms (particle swarm

algorithm, bat algorithm, etc.) are inspired by the social behavior of animals to solve problems.

Optimization problems appear in three different structures: continuous, discrete, or hybrid. Continuous

problems can take an infinite number of input values in a given range and produce an infinite number of

output values in response to these inputs. A binary optimization problem is represented as a binary-

based problem space, and it is a type of combinatorial optimization problem. [1]. In continuous

optimization, the search space is continuous and the search agents receive continuous values. In binary

optimization, search agents scattered throughout the search space take the value "0" to represent absence

and "1" to represent presence.

Many studies have been published in the literature to propose binary versions of metaheuristic

algorithms. Korkmaz et al. developed the basic artificial algae algorithm using a new solution update

rule and used it for solving binary optimization problems [2]. Wang et al. proposed the binary version of

the chimpanzee optimization algorithm and used the proposed algorithm for the continuous

optimization task [3]. Al-Tashi et al. proposed a binary algorithm using a hybrid of gray wolf

optimization and particle swarm optimization for use in solving feature selection problems. [4]. Baş and

Ülker proposed and used a binary version of the social spider algorithm for continuous optimization [5].

Aslan et al. proposed a novel optimizer predicated on the Jaya algorithm and the xor logic operator and

tested this algorithm on the CEC 2015 benchmark functions and uncapacitated facility location problems

[6]. Hussein et al. proposed an adaptation of the original whale optimization algorithm to deal with

binary optimization problems [7]. Çınar and Kıran presented a new tree seed algorithm for binary
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optimization problems developed using logic gates and similarity measurement techniques. [8]. Rizk-

Allah et al. proposed a novel binary version of the salp swarm algorithm based on a developed arctan 

transform so that the salp swarm algorithm can be adapted to binary problems [9]. Arora and Anand 

developed a binary variant of the butterfly optimization algorithm and used it to select feature subsets 

for classification [10]. Mafarja et al. proposed a binary dragonfly-based wrapper-feature selection 

algorithm. The algorithm was tested with eighteen benchmark datasets and eight different transfer 

functions mapping the continuous search space to the discrete search space [11]. Akan et al. presented a 

binary variant of the battle royale optimization algorithm [12]. Abdel-Basset et al. introduced a binary 

version of the marine predator optimization algorithm using a wide variety of transfer functions to map 

continuous values to binary [13]. Kaya proposed the binary galactic swarm optimization algorithm, 

which employs the binary artificial algae algorithm as the primary search algorithm [14]. Chauhan and 

Yadav designed a new binary variant of the artificial electric field algorithm to enhance its performance 

in discrete problems [15]. Şahman and Çınar mapped the tree seed algorithm to binary search space with 

the help of transfer functions to solve binary optimization problems. The proposed algorithm was used 

to solve the uncapacitated facility location problems for different sizes [16]. Dehghani et al. proposed the 

Binary Spring Search Algorithm based on the simulation of Hooke's Law (physics) for the conventional 

system of weights and springs to solve binary problems. The performance of the proposed algorithm 

was extensively validated for functions with unimodal and multimodal features [17]. Beheshti proposed 

the x-shaped binary PSO algorithm using a new x-shaped transfer function to enhance the exploration 

and exploitation capabilities of binary PSO in binary search space. The proposed algorithm was run on 

the 0–1 multidimensional knapsack problems, maximization functions, and minimization functions [18]. 

Kalra et al. presented the binary Emperor Penguin Optimizer algorithm for efficient solution of binary 

nature problems, leveraging the power of the standard Emperor Penguin Optimizer. The performance of 

the algorithm is evaluated over twenty-nine benchmark functions and  binary feature selection problem 

[19]. Chantar et al. proposed an advanced binary grey wolf optimizer within a wrapper feature selection 

approach for solving Arabic text classification problems. The binary grey wolf optimizer was used in 

this algorithm as a wrapper-based method of feature selection [20]. Nadimi-Shahraki et al. presented a 

wrapper feature selection approach based on the Aquila optimizer. The proposed S-shaped binary 

Aquila optimizer and V-shaped binary Aquila optimizer were used for feature selection in medical 

datasets and real COVID-19 datasets [21]. He et al. proposed a new binary differential evolution 

algorithm based on taper-shaped transfer functions. The algorithm was used to solve the knapsack 

problem and the uncapacity facility location problem [22]. Hakli proposed a new binary algorithm based 

on the elephant herding optimization algorithm in order to develop a powerful algorithm that can deal 

with binary problems. The proposed method was applied to the problems of 0-1 knapsack, 

uncapacitated facility location, and wind turbine placement [23]. Pourrajabian et al. investigated the 

robustness and accuracy of the continuous and binary genetic algorithm approaches for the wind 

turbine blade design problem [24]. Mohammadzadeh and Gharehchopogh presented three efficient 

binary methods based on the Symbiotic Organism Search algorithm to solve the feature selection 

problem. In these methods, the S-shaped transfer function, the V-shaped transfer function, and two new 

operators named binary mutualism and binary commensalism were used to make the algorithm binary. 

The proposed methods were tested on the standard UCI dataset and on the spam e-mail dataset [25]. 
Ghosh et al. proposed a new feature selection approach based on the Manta ray foraging optimization 

algorithm, which models the foraging behavior of manta rays [26]. Feng and Wang proposed a self-

learning-based binary moth search algorithm for solving multidimensional knapsack problems [27]. Xi 

et al. proposed the binary African Vulture Optimization Algorithm to solve discrete optimization 

problems. This algorithm uses the X-shaped transfer function. The algorithm was tested on benchmark 

problems, engineering problems, and the uncapacitated facility location problem [28].  

The performances of binary optimization algorithms proposed in the literature are also frequently 

investigated when optimizing continuous functions [29-31]. Evolutionary computing or swarm 

intelligence algorithms can be used to optimize functions with continuous decision variables. However, 
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because the problem can be generalized as desired and the optimum solutions are known, comparing 

binary optimization methods with each other on these problems is simple and informative. Therefore, 

most researchers also test the performance of binary optimization algorithms on such continuous 

functions [32]. With this motivation, in this study, the manta ray search optimization algorithm was 

discretized to be used in the solution of binary problems, and the binary version of the algorithm was 

proposed. The proposed Bin_MRFOA algorithm was tested on continuous problems such as CEC2005 

and classical benchmark functions. The remaining of this paper is organized as follows: The material and 

method are detailed in Section 2. Experimental results obtained from Bin_MRFOA on classical and 

CEC2005 benchmark functions are shown in Section 3. The discussion and conclusions about 

Bin_MRFOA are presented in Section 4. 

2. MATERIAL AND METHOD 

 

2.1. Manta Ray Foraging Optimization Algorithm (MRFOA) 

Manta rays are organisms that feed on plankton, which is a type of aquatic microfauna. They use the 

angular heads of their mouths to absorb water and prey during feeding and have upgraded rabbles to 

filter their prey out of the water. Manta rays are creatures that work in an organized way to find the best 

food. The manta ray foraging optimization algorithm was created based on the manta rays' mentioned 

features. This algorithm, proposed by Zhao et al. in 2020, mimics three different search strategies: chain, 

cyclone, and tumble foraging [33].  

 

MRFOA, like many meta-heuristic algorithms, the initialization step is randomly created as given in 

Equation 1.  

  𝑋𝑖
𝑑 = 𝐿𝑏𝑖

𝑑 + 𝑟𝑎𝑛𝑑 ∗ (𝑈𝑏𝑖
𝑑 − 𝐿𝑏𝑖

𝑑)        𝑖 = 1, … . , 𝑁            𝑑 = 1, … . , 𝐷                                                                (1) 

 

where D is the number of dimensions, N is the population size, and Lb and Ub are the lower and upper 

limits for the dimensions. 

2.1.1. Chain foraging 

In MRFOA, manta rays can detect a plankton's position and swim towards it. The higher the 

plankton density in a location, the better the location, and manta rays are thought to tend to be directed 

towards high-density areas. Manta rays form a foraging chain by aligning themselves from head to tail 

for this reason. With the exception of the first individual, they have a tendency to look both at the food 

and at the individual in front of them. Each individual is updated after each iteration using both the 

solution that came before it and the best solution thus far. The mathematical model of chain foraging is 

expressed as given in Equation 2. 

 

𝑋𝑖,𝑑
𝑡+1 = {

𝑋𝑏𝑒𝑠𝑡,𝑡
𝑡 + 𝑟 ∗ (𝑋𝑏𝑒𝑠𝑡,𝑑

𝑡 − 𝑋𝑖,𝑑
𝑡 ) + 𝛼 ∗ (𝑋𝑏𝑒𝑠𝑡,𝑑

𝑡 − 𝑋𝑖,𝑑
𝑡 )                         𝑖 = 1

𝑋𝑖,𝑑
𝑡 + 𝑟 ∗ (𝑋𝑖−1,d

𝑡 − 𝑋𝑖,𝑑
𝑡 ) + 𝛼 ∗ (𝑋𝑏𝑒𝑠𝑡,𝑑

𝑡 − 𝑋𝑖,𝑑
𝑡 )                   𝑖 = 2, … . , 𝑁

                                                    (2) 

 

𝛼 = 2 ∗ 𝑟 ∗ √|log (𝑟)|                                                                                                                                                (3) 

 

In Equation 2, 𝑟 is a vector consisting of random numbers in the interval [0,1] , 𝛼 is the weight coefficient 

given in Equation 3, 𝑋𝑖,𝑑
𝑡  is the position of the 𝑖𝑡ℎ individual at time t of the 𝑑𝑡ℎ dimension, and 𝑋𝑏𝑒𝑠𝑡,𝑑

𝑡  is 

the high-density best location. 
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2.1.2. Cyclone foraging  

When a swarm of manta rays spots a piece of plankton in deep water, in addition to spiraling 

toward the piece of plankton, each manta ray swims towards the one in front of it. In other words, 

swarms of manta rays move in a spiral and line up. The mathematical model of the aforementioned 

cyclone foraging is as given in Equation 4. 

 

𝑋𝑖,𝑑
𝑡+1 = {

𝑋𝑏𝑒𝑠𝑡,𝑑
𝑡 + 𝑟 ∗ (𝑋𝑏𝑒𝑠𝑡,𝑑

𝑡 − 𝑋𝑖,𝑑
𝑡 ) + 𝛽 ∗ (𝑋𝑏𝑒𝑠𝑡,𝑑

𝑡 − 𝑋𝑖,𝑑
𝑡 )                      𝑖 = 1

𝑋𝑏𝑒𝑠𝑡
𝑑 (𝑡) + 𝑟 ∗ (𝑋𝑖−1,d

𝑡 − 𝑋𝑖,𝑑
𝑡 ) + 𝛽 ∗ (𝑋𝑏𝑒𝑠𝑡,𝑑

𝑡 − 𝑋𝑖,𝑑
𝑡 )          𝑖 = 2, … . , 𝑁

                                                    (4) 

 

𝛽 = 2𝑒𝑟1 
𝑇−𝑡+1

𝑇 ∗ sin (2𝜋𝑟1)                                                                                                                                       (5) 

 

where 𝛽 is the weight coefficient given in Equation 5, T denotes the maximum number of iterations, and 

r1 is a random number between 0 and 1. 

Furthermore, to improve population search and exploration capabilities, MRFOA generates a new 

location at random during the optimization process and then makes a spiral search at that location. As a 

result, MRFOA conducts a comprehensive global search, and its mathematical model is shown in 

Equation 7. 

 

𝑋𝑟,𝑑
𝑡 = 𝐿𝑏𝑑 + 𝑟 ∗ (𝑈𝑏𝑑 − 𝐿𝑏𝑑)                                                                                                                                  (6) 

 

𝑋𝑖,𝑑
𝑡+1 = {

𝑋𝑟,𝑑
𝑡 + 𝑟 ∗ (𝑋𝑟,𝑑

𝑡 − 𝑋𝑖,𝑑
𝑡 ) + 𝛽 ∗ (𝑋𝑟,𝑑

𝑡 − 𝑋𝑖,𝑑
𝑡 )                             𝑖 = 1

𝑋𝑟,𝑑
𝑡 + 𝑟 ∗ (𝑋𝑖−1,d

𝑡 − 𝑋𝑖,𝑑
𝑡 ) + 𝛽 ∗ (𝑋𝑟,𝑑

𝑡 − 𝑋𝑖,𝑑
𝑡 )             𝑖 = 2, … . , 𝑁

                                                            (7)  

 

where 𝑋𝑟,𝑑
𝑡  represents a random location in the search space(Equation 6), 𝐿𝑏𝑑 and 𝑈𝑏𝑑  are the lower and 

upper limit values for the 𝑑𝑡ℎ dimension, respectively. 

2.1.3. Somersault foraging 

Each individual swims back and forth around a food location viewed as a pivot and somersaults to a 

new position in this strategy. As a result, individuals update their location based on the best location 

found thus far. Equation 8 is used to create a mathematical model of this behavior. 

 

𝑋𝑖,𝑑
𝑡+1 = 𝑋𝑖,𝑑

𝑡 + 𝑆 ∗ (𝑟2 ∗ 𝑋𝑏𝑒𝑠𝑡,𝑑
𝑡 − 𝑟3 ∗ 𝑋𝑖,𝑑

𝑡 ),              𝑖 = 1, … , 𝑁                                                                              (8) 

 

In the Equation, 𝑟2 and 𝑟3 are two random numbers in the interval [0, 1]. S is a somersault factor, which 

determines the somersault distance. 

The pseudocode of MRFOA is given in Figure 1. 
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Figure 1. Pseudocode of MRFOA 

 

2.2. Binary Manta Ray Foraging Optimization Algorithm (Bin_MRFOA) 

The manta ray search optimization algorithm is a swarm intelligence-based algorithm proposed for 

continuous optimization, with advantages such as strong global search capability, few parameters to 

adjust, and robustness [34]. The objective of this study is to present a binary MRFOA for solving 

continuous optimization tasks. MRFOA was chosen for this study because it is a new heuristic algorithm 

and binary MRFOA studies are rare in the literature. Initially, a manta ray population of N individuals is 

created. Each manta ray has n dimensions created with binary values generated using Equation 9. It 

randomly generates 0 or 1 for each 𝑖𝑡ℎ position of each manta ray (𝑋𝑖). The 𝑑𝑡ℎ dimension is given a 

value of 1 if a random number in the range of (0,1) is greater than 0.5, otherwise a value of 0.  

 

𝑋𝑖
𝑑 = {  

1              𝑖𝑓 𝑟𝑎𝑛𝑑(0,1) > 0.5
0                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                                                       (9) 

 

The decision variables of the comparison functions used in this study take continuous values. For 

this reason, in the proposed Bin_MRFOA, binary values are converted to continuous values to solve 

these problems and calculate the fitness values of each individual. This conversion is done according to 

the equation given in Equation 10. 

 

𝐶𝑗 = 𝐿𝑜𝑤𝑗 +
(𝐻𝑖𝑔ℎ𝑗−𝐿𝑜𝑤𝑗)𝐷𝑒𝑐𝑉𝑎𝑙𝑢𝑒𝑗

𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒
                                                                                                                     (10) 

 

In Equation 10, while Cj denotes the continuous value of the jth dimension of the individual, and 

𝐻𝑖𝑔ℎ𝑗 and 𝐿𝑜𝑤𝑗 denote the upper and lower bound values of the jth dimension. 𝐷𝑒𝑐𝑉𝑎𝑙𝑢𝑒𝑗  indicates the 

integer value in the decimal number system of the binary number in the jth dimension. 𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒  
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represents the maximum decimal integer value that the binary number can take, according to the bit 

length determined for each dimension [32]. For example, assuming that the binary values are 

represented by 4 bits, the binary value in the jth dimension is "1110" and the continuous value of the 

dimension is in the range of [-2, +2], the continuous value conversion is calculated as follows: 

 

𝐶𝑗 = −2 +
(2 − (−2)) × 14

24 − 1
= −2 +

56

15
= 1.73 

 

The transfer function is the most important aspect of binary optimization. Eight different transfer 

functions are used in this study to map MRFOA's continuous search space to the binary search space. 

Transfer functions use a real value as input and normalize it to a value between 0 and 1 using one of the 

equations in Table 1 [35-37]. Equation 11 is used to convert this number between 0 and 1 to a binary 

value. 

 

𝐹(𝑎) = {
 1              𝑖𝑓 𝐹(𝑎)  >  𝑟𝑎𝑛𝑑(0,1)
0                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                                              (11) 

 

Table 1. Transfer functions 
V-Shaped  S-Shaped 

V1 𝐹(𝑎) = | 
2

𝜋
𝑎𝑟𝑐𝑇𝑎𝑛 (

𝜋

2
𝑎)| S1 𝐹(𝑎) =

1

1 + 𝑒−𝑎
 

V2 𝐹(𝑎) = |tanh(𝑎)| S2 𝐹(𝑎) =
1

1 + 𝑒−2∗𝑎
 

V3 𝐹(𝑎) = | 
𝑎

√1 + 𝑎2
 | S3 𝐹(𝑎) =

1

1 + 𝑒−
𝑎
2

 

V4 𝐹(𝑎) = |erf  (
√𝜋

2
 𝑎) | S4 𝐹(𝑎) =

1

1 + 𝑒−
𝑎
3

 

 

Binary solution space is well suited for logic gates with binary input and output values. Exclusive-or 

(Xor) gate is often used in logic circuits. According to the truth table given in Table 2, the probability of 

the output being 0 or 1 in the Xor gate (⊕) is equal. Because of this feature, it supports diversity and is 

frequently used in the literature[6, 8]. In this study, the Xor gate was employed according to the formula 

given in Equation 12 for candidate solution(𝐶𝑋𝑖) generation.  

 

𝐶𝑋𝑖
𝑑 = 𝑋𝑖

𝑑 ⊕ 𝑋𝑏𝑒𝑠𝑡
𝑑                                                                                                                                                    (12) 

 

Table 2. Xor truth table 

𝑋𝑖
𝑑 𝑋𝑘

𝑑 𝑋𝑖
𝑑 ⊕ 𝑋𝑘

𝑑 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

50%=0    50%=1 

 

The pseudo-code of Bin_MRFOA is shown in Figure 2. 
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Figure 2. Pseudocode of Bin_MRFOA 

 

3. EXPERIMENTAL RESULTS  

In this section, the performance of the proposed Bin_MRFOA on the classical and CEC2005 

benchmark functions is examined. Classical functions have been used to determine the ideal population 

size and the best performing transfer function for the algorithm, and these functions and their properties 

are given in Table 3. The classical functions used in the testing process consist of a total of ten functions, 

three of which are multimodal and seven of which are unimodal. For classical functions, the maximum 

iteration is 500, and the dimension is 10. Each function was run independently 30 times and the mean 

and standard deviation values of the obtained results were found. 
Firstly, the proposed algorithm was run for five different population size (N) values to determine 

the effect of population size selection on performance. During this test, sigmoid (S1) was used as the 

transfer function, and the results are given in Table 4. The best mean value obtained for each function 

was shown in bold in the table. When the results were examined, it was seen that the best mean values 

for the functions could not be obtained from a single population size value and varied for each function. 

Therefore, the results obtained for different population values were evaluated statistically, and the 

Friedman test was applied, which enables sorting between the groups by comparing the mean in cases 

where the assumption of normality between the dependent groups is not provided [38-40]. The mean 

rank values obtained as a result of this test, which was applied separately for mean and standard 

deviation values, are presented comparatively in the graphic in Figure 3. According to the graphic, the 
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smallest mean rank values in both comparisons were obtained when the population size was 50. Based 

on this result, the population size was taken as 50 in the tests that will be mentioned in the following 

sections. 
 

Table 3. Classic benchmark functions 
Function Range 𝒇𝒎𝒊𝒏 Characteristic 

𝐹1(𝑥) = ∑ 𝑥𝑖
2

𝑑

𝑖=1

 [−100,100] 0 T 

𝐹2(𝑥) = ∑ 𝑥𝑖
2 + ∏|𝑥𝑖|

𝑑

𝑖=1

𝑑

𝑖=1

 [−10,10] 0 T 

𝐹3(𝑥) = ∑(∑ 𝑥𝑗

𝑖

𝑗=1

)2

𝑑

𝑖=1

 [−100,100] 0 T 

 
𝐹4(𝑥) = 𝑚𝑎𝑥𝑖{|𝑥𝑖  |, 1 ≤ 𝑖 ≤ 𝑑} 

 

 

[−100,100] 0 T 

𝐹5(𝑥) = ∑[100 (𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2]

𝑑−1

𝑖=1

 [−30,30] 0 T 

𝐹6(𝑥) = ∑([𝑥𝑖 + 0.5])2

𝑑

𝑖=1

 [−100,100] 0 T 

𝐹7(𝑥) = ∑ 𝑖 ∗ 𝑥𝑖
4 + 𝑟𝑎𝑛𝑑[0,1)

𝑑

𝑖=1

 [−1.28,1.28] 0 T 

𝐹8 = ∑ −𝑥𝑖sin (√|𝑥𝑖|)

𝑑

𝑖=1

 [−500,500] −418.9829 ×d Ç 

𝐹9 = ∑[𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10]

𝑑

𝑖=1

 [−5.12,5.12] 0 Ç 

𝐹10(𝑥) = ∑ −20 exp (−0.2√
1

𝑑
∑ 𝑥𝑖

2

𝑑

𝑖=1

)

𝑑

𝑖=1

− exp (
1

𝑑
∑ cos(2𝜋𝑥𝑖)

𝑑

𝑖=1

) + 20 + 𝑒 [−32,32] 0 Ç 

 
 

Table 4. Comparative results for various population sizes (N) 

Function 
N=10 N=20 N=30 N=40 N=50 

Mean Std Mean Std Mean Std Mean Std Mean Std 

F1 
4,401E+03 1,348E+03 4,021E+03 1,280E+03 4,024E+03 1,140E+03 4,452E+03 9,856E+02 4,444E+03 8,892E+02 

F2 
1,549E+01 2,941E+00 1,665E+01 2,314E+00 1,702E+01 1,912E+00 1,739E+01 2,540E+00 1,697E+01 2,742E+00 

F3 
4,383E+03 1,285E+03 4,283E+03 1,229E+03 4,422E+03 8,495E+02 4,681E+03 7,793E+02 4,349E+03 9,205E+02 

F4 
3,580E+01 4,858E+00 3,629E+01 3,860E+00 3,540E+01 4,774E+00 3,495E+01 3,680E+00 3,461E+01 4,408E+00 

F5 
1,460E+06 8,290E+05 1,838E+06 9,119E+05 1,980E+06 1,034E+06 1,984E+06 9,700E+05 1,746E+06 6,008E+05 

F6 
3,486E+03 1,131E+03 4,211E+03 9,086E+02 3,823E+03 1,094E+03 4,113E+03 9,859E+02 4,181E+03 9,194E+02 

F7 
8,553E-01 2,245E-01 7,979E-01 2,417E-01 9,486E-01 2,829E-01 9,494E-01 3,419E-01 8,522E-01 3,202E-01 

F8 
-2,396E+03 1,552E+02 -2,400E+03 1,459E+02 -2,447E+03 1,580E+02 -2,452E+03 1,832E+02 -2,441E+03 1,532E+02 

F9 
6,819E+01 5,556E+00 6,860E+01 6,843E+00 6,580E+01 6,651E+00 6,622E+01 8,105E+00 6,290E+01 9,100E+00 

F10 
1,628E+01 7,251E-01 1,625E+01 6,321E-01 1,652E+01 6,671E-01 1,576E+01 1,199E+00 1,649E+01 6,230E-01 
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Figure 3. Comparison of Friedman test mean rank values 

 

After determining the ideal population size, variants of the proposed algorithm were created using 

eight different transfer functions to determine the effect of the selected transfer function on performance 

and to determine the most successful transfer function. Comparison results of Bin_MRFOA variants are 

given in Table 5. When the results in the table were examined, it was found that the variant obtained 

with the V2 transfer function in four of the functions and the variant obtained with the V4 transfer 

function in the remaining six functions achieved a more successful mean value. It was determined that 

the best values were found by the variants created with the V2 and V4 transfer functions, except for the 

F9 function. The sums of the mean and standard deviation values acquired by Bin_MRFOA variants for 

all functions are compared in the graphics given in Figure 4 and Figure 5, respectively. According to the 

graphics, it was seen that the smallest sum values were generally obtained by variants created using V-

shaped transfer functions, and the lowest sum values were found from the V4 variant in both graphics.  

 

Table 5. Bin_MRFOA variants' statistical results on classical benchmark functions 

 
Transfer 

Func 
Best Median Worst Mean Std 

𝐹1 

𝑆1 2.969E+03 4.533E+03 5.794E+03 4.562E+03 7.734E+02 

𝑆2 2.354E+03 3.597E+03 6.206E+03 3.928E+03 1.035E+03 

𝑆3 2.617E+03 4.399E+03 6.477E+03 4.447E+03 8.707E+02 

𝑆4 2.093E+03 4.677E+03 5.843E+03 4.431E+03 1.130E+03 

𝑉1 9.775E+00 1.399E+02 1.806E+03 2.427E+02 4.058E+02 

𝑉2 7.270E-26 6.828E+01 6.513E+02 1.334E+02 1.681E+02 

𝑉3 1.852E+03 3.540E+03 5.073E+03 3.376E+03 9.564E+02 

𝑉4 9.241E-01 2.215E+01 1.657E+03 2.179E+02 4.473E+02 

𝐹2 

𝑆1 6.752E+00 1.611E+01 2.096E+01 1.608E+01 3.000E+00 

𝑆2 1.344E+01 1.632E+01 1.916E+01 1.629E+01 1.735E+00 

𝑆3 1.382E+01 1.711E+01 2.146E+01 1.751E+01 1.903E+00 

𝑆4 1.067E+01 1.635E+01 2.023E+01 1.664E+01 2.310E+00 

𝑉1 8.882E-14 1.206E+00 5.054E+00 1.426E+00 1.336E+00 

𝑉2 8.457E-11 3.340E-01 6.987E+00 7.399E-01 1.512E+00 

𝑉3 5.727E+00 1.144E+01 1.572E+01 1.168E+01 2.577E+00 

𝑉4 8.882E-14 1.675E-01 4.445E+00 5.390E-01 1.110E+00 

𝐹3 

𝑆1 1.008E+03 4.385E+03 5.538E+03 4.083E+03 1.253E+03 

𝑆2 3.046E+03 4.907E+03 5.974E+03 4.698E+03 7.693E+02 

𝑆3 1.987E+03 4.903E+03 6.813E+03 4.676E+03 1.031E+03 

𝑆4 2.013E+03 4.287E+03 5.970E+03 4.250E+03 1.067E+03 

𝑉1 1.639E+02 1.464E+03 5.440E+03 1.739E+03 1.313E+03 
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𝑉2 2.911E-07 1.115E+03 3.749E+03 1.325E+03 1.151E+03 

𝑉3 2.377E+03 4.697E+03 5.376E+03 4.386E+03 8.376E+02 

𝑉4 1.424E+02 9.446E+02 3.131E+03 1.166E+03 8.025E+02 

𝐹4 

𝑆1 3.014E+01 3.604E+01 4.276E+01 3.605E+01 2.932E+00 

𝑆2 2.754E+01 3.705E+01 4.528E+01 3.647E+01 4.456E+00 

𝑆3 2.145E+01 3.519E+01 4.335E+01 3.537E+01 4.344E+00 

𝑆4 2.761E+01 3.258E+01 4.320E+01 3.358E+01 4.561E+00 

𝑉1 6.941E+00 1.866E+01 3.542E+01 2.005E+01 7.507E+00 

𝑉2 3.308E+00 1.689E+01 3.056E+01 1.617E+01 8.693E+00 

𝑉3 2.283E+01 3.393E+01 4.037E+01 3.368E+01 4.874E+00 

𝑉4 2.700E-13 7.975E+00 2.334E+01 9.261E+00 6.448E+00 

𝐹5 

𝑆1 5.922E+05 1.712E+06 3.646E+06 1.888E+06 1.008E+06 

𝑆2 3.061E+05 1.535E+06 4.363E+06 1.781E+06 9.780E+05 

𝑆3 3.065E+05 1.775E+06 3.322E+06 1.692E+06 8.229E+05 

𝑆4 6.667E+05 2.071E+06 4.906E+06 2.050E+06 1.079E+06 

𝑉1 2.234E+03 5.772E+04 2.308E+06 2.275E+05 5.277E+05 

𝑉2 4.984E+02 5.693E+03 2.375E+06 1.325E+05 5.283E+05 

𝑉3 3.888E+05 1.158E+06 2.423E+06 1.281E+06 6.055E+05 

𝑉4 2.501E+01 1.028E+03 7.733E+04 5.041E+03 1.709E+04 

𝐹6 

𝑆1 1.678E+03 4.209E+03 6.106E+03 4.292E+03 1.165E+03 

𝑆2 2.797E+03 4.369E+03 6.474E+03 4.372E+03 1.006E+03 

𝑆3 2.229E+03 4.513E+03 5.339E+03 4.234E+03 8.727E+02 

𝑆4 2.903E+03 4.097E+03 5.547E+03 4.194E+03 7.752E+02 

𝑉1 4.218E+00 1.413E+02 1.718E+03 2.693E+02 4.013E+02 

𝑉2 1.827E+00 1.960E+01 9.749E+02 1.095E+02 2.338E+02 

𝑉3 8.050E+02 3.311E+03 5.322E+03 3.428E+03 1.132E+03 

𝑉4 1.304E+00 5.812E+01 1.722E+03 1.780E+02 3.852E+02 

𝐹7 

𝑆1 3.066E-01 9.120E-01 1.445E+00 9.333E-01 3.088E-01 

𝑆2 3.964E-01 8.927E-01 1.351E+00 8.764E-01 2.748E-01 

𝑆3 4.031E-01 7.404E-01 1.283E+00 8.074E-01 2.573E-01 

𝑆4 3.377E-01 9.161E-01 1.299E+00 8.687E-01 2.453E-01 

𝑉1 2.571E-02 8.980E-02 5.158E-01 1.391E-01 1.431E-01 

𝑉2 3.431E-04 6.138E-02 2.537E-01 8.173E-02 6.613E-02 

𝑉3 3.054E-01 6.883E-01 1.016E+00 6.939E-01 1.998E-01 

𝑉4 1.113E-02 3.975E-02 4.447E-01 6.540E-02 9.410E-02 

𝐹8 

𝑆1 -2.682E+03 -2.412E+03 -2.186E+03 -2.408E+03 1.330E+02 

𝑆2 -2.896E+03 -2.551E+03 -2.276E+03 -2.559E+03 1.737E+02 

𝑆3 -2.741E+03 -2.396E+03 -2.143E+03 -2.424E+03 1.732E+02 

𝑆4 -2.928E+03 -2.424E+03 -2.189E+03 -2.430E+03 1.957E+02 

𝑉1 -4.027E+03 -3.856E+03 -3.392E+03 -3.825E+03 1.616E+02 

𝑉2 -4.123E+03 -4.058E+03 -3.566E+03 -3.982E+03 1.566E+02 

𝑉3 -3.722E+03 -3.347E+03 -2.721E+03 -3.317E+03 2.612E+02 

𝑉4 -4.160E+03 -3.973E+03 -3.393E+03 -3.949E+03 1.968E+02 

𝐹9 

𝑆1 3.318E+01 6.580E+01 7.638E+01 6.370E+01 9.759E+00 

𝑆2 4.597E+01 6.758E+01 7.579E+01 6.347E+01 8.716E+00 

𝑆3 4.286E+01 6.738E+01 8.201E+01 6.502E+01 1.029E+01 

𝑆4 5.693E+01 6.790E+01 7.685E+01 6.767E+01 5.344E+00 



Bin_MRFOA: A Novel Manta Ray Foraging Optimization Algorithm for Binary Optimization 459 

𝑉1 4.690E-12 2.245E+01 5.457E+01 2.484E+01 1.403E+01 

𝑉2 2.472E+00 7.367E+00 2.246E+01 1.010E+01 6.485E+00 

𝑉3 3.841E+01 5.726E+01 7.189E+01 5.738E+01 8.095E+00 

𝑉4 4.079E-01 8.802E+00 4.062E+01 1.112E+01 9.420E+00 

𝐹10 

𝑆1 1.352E+01 1.657E+01 1.729E+01 1.624E+01 9.814E-01 

𝑆2 1.180E+01 1.606E+01 1.711E+01 1.588E+01 1.198E+00 

𝑆3 1.306E+01 1.630E+01 1.722E+01 1.591E+01 1.309E+00 

𝑆4 1.388E+01 1.651E+01 1.753E+01 1.636E+01 8.847E-01 

𝑉1 3.265E+00 5.826E+00 1.170E+01 6.343E+00 2.544E+00 

𝑉2 1.429E+00 3.956E+00 9.940E+00 4.210E+00 2.015E+00 

𝑉3 1.102E+01 1.474E+01 1.650E+01 1.428E+01 1.551E+00 

𝑉4 2.080E-01 3.177E+00 9.385E+00 3.864E+00 2.468E+00 

 

 
Figure 4. Comparision of the sum of the mean results 

 

 
Figure 5. Comparision of the sum of the standard deviation results 

 
In addition, the convergence graphics obtained from the variants for each function and plotted 

according to the best value are presented in Figure 6. When the graphics are examined, the V2 variant in 

the F1, F3, and F7 functions, the V4 variant in the F4, F5, F6, F8, and F10 functions, and the V1 variant in 

the remaining F2 and F9 functions converged faster and found the best value. In light of these results, it 

can be said that the variants using the transfer function with a V-shaped converge faster than the other 

variants. 
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Figure 6. Convergence graphics for the variants on classic benchmark functions 

 

After the performance evaluation of Bin_MRFOA on the classical benchmark functions, the 

algorithm was run on the CEC2005 benchmark functions. The findings were compared with the 

algorithms in the literature. The properties of the CEC2005 benchmark functions used are given in Table 

6. To make a fair comparison, the algorithms were run under the same conditions as the compared 

algorithms. According to this, parameter settings are as follows: the population size (N) is set to 40, and 

the maximum iteration number as the stopping criterion is set to 500. All of binary algorithms are 

independently run 50 times. The dimensions of functions F1-F14 are 5, while hybrid composition 

functions F15-F18 are 10. In addition, the Bin_MRFOA variant obtained by using the V4 transfer 

function, which was found to be more successful in the previous section, was used for literature 

comparison. 
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Table 6. CEC2005 benchmark functions 

 
 

In the literature comparison, the Bin_MRFOA was compared to the findings of the algorithms 

mentioned in the studies of Beheshti [41] and Baş [42]. Comparison results are showed in Table 7. 

According to Table 7, Bin_MRFOA found a more successful mean value in 10 of the 18 functions. 

Similarly, 12 of the 18 functions obtained a better standard deviation value. Pairwise comparisons of the 

algorithms were made using the Wilcoxon signed-rank test. The Wilcoxon signed-rank test gets to 

decide the difference between two samples and offers an alternate position test influenced by the 

amplitude and sign of these differences. This test is also used to decide whether one algorithm 

outperforms another [40, 43]. The symbols +, -, and ≈ show the number of test functions in which the 

Bin_MRFOA  is better, worse, and equal than the other algorithm, respectively. The significance level of 

the Wilcoxon signed-rank test was set at 0.05. Accordingly, since the obtained p value was less than 0.05, 

it was determined that there was a significant difference between the Bin_MRFOA and BPSO 

algorithms. In other words, the Bin_MRFOA algorithm outperformed BPSO. Since the p value of the 

remaining algorithms was greater than 0.05, there was no significant difference between them and 

Bin_MRFOA. The algorithms had similar performances. In addition, in the ranking among algorithms 

based on the Friedman test, the Bin_MRFOA algorithm took second place with a mean rank of 2,61. 

According to this result, it can be said that the proposed algorithm is a successful and competitive 

algorithm compared to the literature. 
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Table 7. The comparison results of Bin_MRFOA and algorithms in the literature on CEC2005 benchmark 

functions 
Function  TVMS-BPSO 

[41] 

MS-BPSO 

[41] 

TV-BPSO 

[41] 

BPSO 

[41] 

BinSSA4 

[42] 

Bin_MRFOA 

F1 Mean -446.97 -420.73 -446.1 -432.56 -431.45 -450.00 

 Std 5.4981 60.906 5.9235 16.237 8.412 0.00 

F2 Mean -438.98 -395.92 -436.31 -421.95 -435.47 -450.00 

 Std 17.377 181.1 22.081 24.169 21.452 0.00 

F3 Mean 98.287 3.47E+05 1.05E+05 2.98E+05 98.265 1.95E+05 

 Std 1.13E+05 3.68E+05 1.11E+05 2.59E+05 1.02E+05 3.35E+05 

F4 Mean -441.74 -406.59 -433.73 -409.16 -445.45 -450.00 

 Std 12.37 56.808 25.236 31.834 13.42 0.00 

F5 Mean -241.97 -225.78 -127.65 -4.5091 -125.41 -310.00 

 Std 106.14 694.32 270.05 106.95 220.41 0.00 

F6 Mean 503.45 10.293 1625 4926.8 2412.4 390.00 

 Std 146.36 22.647 7752.8 9628.2 4124.5 0.00 

F7 Mean 266.25 266.66 266.43 269.87 266.55 220.20 

 Std 265.9 265.95 266.04 267.37 274.14 182.71 

F8 Mean -120.05 -120.01 -120.24 -120.05 -120.05 -120.06 

 Std 0.74112 0.31108 1.7162 0.62672 0.7452 0.50 

F9 Mean -328.55 -328.03 -328.54 -323.75 -328.45 -329.99 

 Std 1.3196 1.3623 1.1191 2.2942 1.4285 0.03 

F10 Mean -325.6 -322.63 -325.14 -320 -321.41 -322.10 

 Std 1.9871 4.0479 2.6135 3.6903 3.4152 3.37 

F11 Mean 91.167 91.698 91.293 92.447 91.165 91.91 

 Std 0.65567 0.70823 0.67296 0.44508 0.64855 0.63 

F12 Mean -238.13 -64.804 -224.79 -98.765 -121.41 -460.00 

 Std 222.15 457.07 277.22 237.39 250.411 0.00 

F13 Mean -129.77 -129.66 -129.78 -129.3 -129.65 -130.00 

 Std 0.095197 0.21671 0.10462 0.22568 0.4122 0.00 

F14 Mean -298.87 -298.75 -298.86 -298.57 -298.77 -297.78 

 Std 0.28931 0.35812 0.31671 0.17735 0.3214 0.25 

F15 Mean 379.16 388.99 406.85 639.77 390.41 120.00 

 Std 154.18 146.18 157.16 101.61 185.411 0.00 

F16 Mean 261.86 280.98 267 373.48 260.41 312.76 

 Std 17.854 33.481 18.718 23.068 18.12 13.90 

F17 Mean 276.62 278.69 270.22 399.26 352.41 311.48 

 Std 24.911 27.625 22.168 23.941 22.412 25.83 

F18 Mean 795.26 911.25 776.61 976.16 845.74 988.43 

 Std 208.3 136.76 207.36 92.887 205.11 53.06 

Wilcoxon signed-rank test 

(+ /-/≈) (11/7/0) (11/7/0) (10/8/0) (16/2/0)  (13/5/0)  

p value (≈) 0,472 (≈) 0,215 (≈) 0,420 (+) 0,001 (≈) 0,145  

Friedman test 

Mean Rank Value 2,17 4.39 2.78 5.44 3.61 2.61 

Rank 1 5 3 6 4 2 

 

4. CONCLUSIONS AND DISCUSSION 

The manta ray foraging optimization algorithm has advantages such as strong global search 

capability, few parameters to adjust, and robustness. In this study, a new binary version of the manta ray 

foraging optimization algorithm was proposed to benefit from the mentioned advantages. At the same 

time, thanks to the proposed Bin_MRFOA, since the problem can be generalized as desired and the 

optimum solutions are known, a simple and informative algorithm was obtained to compare with other 

algorithms on binary optimization problems. The proposed algorithm was first tested for ten classical 

benchmark functions. Firstly, with this test process, the ideal population size was found. Then, the 

results of the variants obtained using eight different transfer functions were compared, and it was 

decided that the most effective transfer function was V4. Furthermore, as a consequence of these 
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comparisons, it was concluded that the transfer functions of V-shaped are more effective than the 

transfer functions of S-shaped in general. Then, the most successful variant was run on eighteen 

CEC2005 benchmark test functions. The obtained results were compared with the algorithms in the 

literature. The algorithms’ performance was interpreted by the Wilcoxon signed-rank and Friedman 

tests. According to Wilcoxon signed-rank test results, the Bin_MRFOA algorithm outperformed one of 

the compared algorithms. It performed similarly with the remaining four algorithms and no significant 

difference was found between them. In addition, among the compared algorithms, the proposed 

Bin_MRFOA algorithm took second place, revealing that it is a successful and competitive algorithm. 

Despite successful results, the optimal value could not be reached for functions except for F1, F2, F4, F5, 

F6, F12, F13, and F15 in all compared algorithms. It would be useful to consider the reason for this 

situation as a separate research topic. To comment, though, these functions are expensive functions 

created through rotation, shifting, and hybridization. Most metaheuristic algorithms experience 

performance decreases in such expensive functions when compared to classical functions. In light of 

these results, it can be said that the binary algorithms in the study should be strengthened with 

approaches such as mutation, crossover, similarity measurement technology, etc. that will contribute to 

the ability to create candidate individuals. In a future study, the performance of Bin_MRFOA on 

different binary problems can be examined. 
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