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ABSTRACT 
 

In the production and development of building materials, fired clays are the center of major interest. They particularly play an 

important role in the building industry. Henceforth, in order to analyze the effect of heat treatment on illite-rich natural clay 

samples from Turkey, they were exposed to heat at various temperatures between 350-650 oC. The results of the heat 

treatment on the structure of the samples were followed by Fourier transform infrared (FT-IR), solid state magic angle 

spinning nuclear magnetic resonance (MAS NMR) thermogravimetric (TG) and differential thermal (DTA) analyses 

techniques and all the findings were explained and discussed in brief.  
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1. INTRODUCTION 

 

Illite is a micaceous clay mineral which was named by Grim et al. [1]. The structure is a 2:1 layer in 

which the interlayers are bonded together with a potassium atom. The largest charge deficiency is in 

the tetrahedral sheet rather than in the octahedral sheet [2]. Thus, potassium bonds the layers in a fixed 

position so that water and other polar compounds cannot readily enter the interlayer position and also 

the potassium ion is not readily exchangeable. For this reason, the illite group has non-expanding 

lattice [2]. Its composition is quite variable and strongly dependent on their origin. 

 

Illite is one of the major component of clays used in the manufacture of extruded and other bricks, 

portland and other cements, concrete blocks and structural concrete, refractories and in traditional 

ceramic industry for the production of cooking pots, plates, tiles and bricks [3]. Highway surfacing, 

ceramic tiles, and ceramics and glass are other important uses. Illite enhances the plasticity of the 

porcelain mass and generates a superior end product by filling the gaps in the kaolin [4]. Use in 

cosmetics requires a light-coloured illite with minimal iron oxide suggested that illite could also serve 

as a less expensive substitute for feldspar in ceramics [5]. For this reason, the understanding of its high 

temperature transformations is of great importance for the knowledge of the structural and properties 

of fired ceramic products [6]. There are numerous studies regarding the properties of thermally treated 

illites [7-17]. However, there has not been enough study in literature about the heat treatment of illite 

type clay minerals from Turkey [18-19]. Therefore, the objective of the present study is to investigate 

the influence of the heating on the structural and spectroscopic properties of the illite-rich clay mineral 

from Tokat region for possible applications in civil engineering and ceramic industry. 
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2. EXPERIMENTAL  

 

2.1. Materials and Methods  

 

Natural illite-rich clay sample was obtained from Tokat region of Turkey. The samples were finely 

powdered before the application and sieved to pass through a < 125 µm sieve. The quantitative XRD 

analysis demonstrated that the C0 sample is mainly constituted by illite (50-55 %) with minor contents 

of opal-CT (15-20 %), feldspar (5-10 %), zeolite (5-10 %), calcite (10-15 %). Samples were labeled as 

C0 (untreated), C1 (350 oC), C2 (450 oC), C3 (550 oC) and C4 (650 oC) were put in a kiln for 2 h 

before the measurements. The temperature of the oven was set at 350-650 oC before the insertion of 

the samples. 

 

2.2. Instrumentation 

 

Bruker Avance 300 spectrometer operating at 59.59 MHz for 29Si was used for to obtain the solid state 

spectra. Finely powdered samples were pack into Zirconium oxide rotor with a 4 mm diameter and it 

was used to acquire the NMR spectra of 29Si. Spinning rate was kept at 7 kHz during the NMR 

measurements and data collection was carried out under MAS technique and spectra gathered with 

3000 scans for 29Si MAS NMR. External references TMS (for 29Si) was used for chemical shift 

assignment. Infrared spectra of the illite-rich samples were recorded (4000–400 cm−1) with Bruker 

Tensor 27 spectrometer at a resolution of 4 cm−1 using KBr pellet technique. Simultaneous TG/DTA 

experiments were carried out using a Setsys Evolution Setaram thermal analyzer employing ca. 45 mg 

of sample material in each run. The powdered samples were loaded into an alumina pan and all 

experiments were performed at a heating rate of 10 °C/min over the temperature range 30–1000 °C. 

 

3. RESULTS AND DISCUSSION 

 

3.1. FT-IR Studies 

 

FT-IR spectra, vibrational wavenumbers and identifications of these wavenumbers for C0-C4 samples 

are shown in Figure 1. The absorption bands at around 3638, 3636, 3635 cm-1 and broad adsorption 

bands between 3459-3441 cm-1 and as well as the bands marked with asterisks (Figure 1, C4) are 

because of stretching vibrations of structural OH groups and overlapping of both antisymmetric and 

symmetric stretching vibrations of water molecules. In Figure 1, for sample C4 the mentioned bands 

can not be assigned to a specific wavenumber since they were much broadened upon the heat 

treatment. Vibrational bending modes of water molecules appeared at 1644, 1636 and 1634 cm-1 as 

expected. Because of Si-O stretching vibrations, FT-IR spectra of C0-C4 samples indicate an intense 

and broad band at around 1038-1045 cm-1. The bands at 922, 920, 882, 881, 880 cm-1 are in the 

hydroxyl bending region. 922 and 920 cm-1 are due to Al-Al-OH bending vibrations. Al-Mg-OH 

bending vibrations appear around 840 cm-1 [20] but it is not present instead the bands at 880-882 cm-1 

exist as a result of Al-Fe-OH bendings which is an indication of low Mg content in the octahedral 

sheets. Si-O stretching vibrations of SiO2 impurities appeared around 795-793 cm-1 as expected. The 

bands around 617-623 cm-1 are due to Al-O and Si-O out of plane vibrations. Bands at 527-525 cm-1 

are contributed to Al-O-Si bending vibrations, while bands at 465-478 cm-1 contributed Si-O-Si 

bending vibrations. 
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Figure 1. FT-IR spectra of C0–C4 
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3.2. 29Si MAS NMR Studies  

 

The 29Si MAS NMR spectra of the untreated and heat treated illite-rich samples were measured to 

investigate the structural changes by which temperature activation leaded with examining the local 

structure around the Si atoms. 29Si MAS NMR spectra of C0 and C4 are given for comparison in 

Figure 2. The peaks appeared at about −101 ppm is due to SiO4 groups crosslinked in the tetrahedral 

sheets with no aluminum in the neighboring tetrahedral [21] and the smaller peak at about −118 ppm 

correspond to three-dimensional silica generally shown as Q4(OAl) [22-23]. 

 

   

 

Figure 2. 29Si MAS NMR spectra of C0–C4 

 

3.3. Thermal Analysis 

 

Illite is one of the most widely used clay component in ceramic industry. For this reason, changes of 

the illite-rich clay mineral by dehydration and dehydroxylation arising from increasing of temperature 

were investigated using TG and DTA analysis for the temperature range of 30–1000 ºC (Figure 3). In 

the DTA curves of C0-C4 samples, the first and dominant endothermic peaks temperature ranging 

from 98 to 114 °C were associated with the dehydration of physically adsorbed water and the water 

molecules bound to exchangeable cations. The second endothermic peaks at about 690 oC were due to 

the loss of the hydroxyl groups. Presence of other mineral components in the illite-rich sample is 

clearly reflected by endotermic peaks at about 765 oC associated with the decomposition of calcite 

[24]. From TG/DTA curves, the peak temperatures are mainly influenced with the number and types 

of mixed components [25]. Finally, low intense endothermic peaks at temperature ranging from 897 to 

903 °C and exothermic peaks at around 940 ºC appeared to be related to the phase transformations and 

collapse of the clay structure [26]. The TG curves of C0-C4 samples, the first mass losses (< 200 oC) 

were in the range of 0.75-1.28 %. The second mass losses (2.62-4.66 %) started at around 650 °C and 

decreased gradually up to 900 °C. TG data shows that C0 has the greatest mass loss (7.89 %) in the 

temperature interval 30–1000 °C compared to those of the thermally treated forms. 
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Figure 3. TG-DTA curves of C0–C4 
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The relative mass losses of heat treated forms decrease with the increasing treatment of temperature, 

as expected. The DTA curve of C4 show the presence of a small endothermic shoulder at about 650 ºC 

indicating the almost complete dehydroxylation of illite rich sample and the endothermic peak at about 

750 °C was associated with the decomposition of calcite. Experimental results of thermal analysis 

before and after heat treatment of illite are in agreement with literature [6, 7, 27]. 

 

4. CONCLUSIONS 

 

In this study, the effect of heat treatment on the structural properties of illite-rich samples with 

different temperatures were examined using FT-IR, 29Si MAS NMR, TG and DTA techniques. Heat 

treatment at 650 °C for 2 h is almost enough to complete the dehydroxylation process but still a certain 

amount residue is present indicated with asterisks and vibrational bending modes of water molecules 

(Figure 1). As the samples heated the peak at -101 ppm in 29Si MAS NMR stilt present at 650 °C 

indicating that tetrahedral Si structure is not fully collapsed but line shape of 29Si signal severely 

distorted evidence of local changes in the investigated illite samples. Even after 650 ◦C heat treatment, 

as can be seen from FT-IR spectra and DTA results dehydroxylation of illite-rich clay mineral was not 

fully completed.  
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