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Abstract. There have been very few analyses on partial differential equations with piecewise constant arguments
and as far as we know, there is no study conducted on heat equation with piecewise constant argument of generalized
type. Motivated by this fact, this study aims to solve and analyse heat equation with piecewise constant argument of
generalized type. We obtain formal solution of heat equation with piecewise constant argument of generalized type
by separation of variables. We apply the Laplace transform method using unit step function and method of steps on
each consecutive intervals. We investigate stability, oscillation, boundedness properties of solutions.
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1. Introduction and Preliminaries

In the literature, there are many mathematical models to examine real life problems using differential equations.
Most of these models include only the current states of the processes, but, in some cases real problems cannot be
expressed by these models with a realistic approach since current and future states can significantly be influenced
by the past states. A systematical study on mathematical models with piecewise constant arguments is established
in [16]. Differential equations with piecewise constant arguments can be stated as hybrid dynamical systems [19],
since they are very closely related to difference and differential equations. Since the early 1980s, differential equations
with piecewise constant arguments have attracted great deal of attention of researchers in science such as mathematics,
physics, biology, engineering, economics, health and other fields [8, 11, 25]. Oscillation, periodicity and convergence
of solutions of ordinary differential equations with piecewise constant arguments have been studied in [1–7, 9, 10, 12–
14, 21–24, 26, 28, 40].
However, there are very few studies for partial differential equations with piecewise constant arguments [15, 17, 18,
27, 29–39]. The first basic work [33] was published in 1991. It has been shown that partial differential equations
with piecewise constant time naturally occur in the approximating process of partial differential equations by using

*Corresponding Author
Email addresses: marat@metu.edu.tr (M. Akhmet), duyguarugaslan@sdu.edu.tr (D. Aruğaslan Çinçin), zekeriyaozkan@gmail.com (Z. Özkan)
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piecewise constant arguments. Heat flow in a rod with both diffusion a2uxx(x, t) along the rod and heat loss/gain across
the lateral sides of the rod is described by the equation

ut = a2uxx − b(u − u0).

Heat loss (for b < 0) or heat gain (for b > 0) is proportional to the difference between the temperature u(x, t) of the rod
and u0 of the surrounding medium. For example, in the chemistry u may stand for concentration, the above equation
says that the rate of change ut of the substance is due both to the diffusion a2uxx (in the x-direction) and to the fact
that the substance is being created (b < 0) or destroyed (b > 0) by a chemical reaction proportional to the difference
between two concentrations u and u0 [20]. One can change u − u0 by u and consider the equation

ut(x, t) = a2uxx(x, t) − bu(x, t).

Thus, lateral heat change (or substance change due to a chemical reaction) measurement at discrete moments of time
leads to a partial differential equation with piecewise constant argument given by

ut(x, t) = a2uxx(x, t) − bu(x, [t/h]h),

for t ∈ [nh, (n + 1)h], n = 0, 1, 2, ..., where h is a positive constant and [·] stands for the greatest integer function [33].
The existence of solutions of partial differential equations with piecewise constant arguments and qualitative prop-

erties of solutions of the problems such as stability, instability, oscillation, convergence, boundedness, unboundness
and periodicity were investigated in [15, 17, 18, 27, 29–39]. One of the useful sources considering both ordinary and
partial differential equations with piecewise constant arguments is Wiener’s book [34].

It is well known that if, in an insulated rod of length L, the temperature flows from x = 0 to x = L provided that the
heat energy is neither created nor destroyed in the interior of the rod, then the temperature satisfies the heat equation.
Such an equation becomes more meaningful but more complicated when the diffusion term depends on the present
time and also on previous times. Moreover, there is not much work conducted on partial differential equations with
piecewise constant arguments.

As far as we know, there is no study concerning a heat equation with piecewise constant arguments of generalized
type through the Laplace transform. With this motivation, in this study, we consider the following initial boundary
value problem

∂u(x, t)
∂t

= a2 ∂
2u(x, t)
∂x2 − bu(x, β(t)), 0 ≤ x ≤ 1, θ0 ≤ t < ∞, (1.2)

with boundary conditions
u(0, t) = 0, u(1, t) = 0, θ0 ≤ t < ∞, (1.3)

and initial condition
u(x, θ0) = u0(x), 0 ≤ x ≤ 1. (1.4)

Here, a and b are nonzero real parameters, u : G = [0, 1] × [θ0,∞) → (−∞,∞), β(t) represents the generalized type
piecewise constant function such that for θi ≤ t < θi+1, i = 0, 1, 2, · · · , β(t) = θi, |θi| → ∞ as i → ∞ and u0(x) is a
continuous function on [0, 1].
From now on without loss of generality we will assume that θ0 = 0 and there are two positive numbers θ and θ such
that θ ≤ θi+1 − θi ≤ θ, i = 0, 1, 2, · · · .

This study is organized as follows. In Section 2, solution of the initial boundary value problem (1.2)-(1.4) is
obtained, and also, the oscillatory and nonoscillatory conditions of the problem are investigated. In Section 3, we
give 3 graphs of the solutions of the problem (1.2)-(1.4) with respect to various coefficients. In Section 4, concluding
remarks and some open problems are given for further study.

2. Heat Equation with Piecewise Constant Argument of Generalized Type

Before starting to solve the problem (1.2)-(1.4), let us define the properties of the solution u(x, t) in G [37].

Definition 2.1. A function u(x, t) is said to be a solution of the initial boundary value problem (1.2)-(1.4) in G if it
satisfies the following three conditions:

(i) u(x, t) is continuous in G,
(ii) ut and uxx exist and are continuous in G, there may be exceptional points (x, θi), i = 0, 1, 2, · · · , where one-sided

derivatives exist with respect to second argument,
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(iii) u(x, t) satisfies Eq. (1.2) in G, with the possible exception of points (x, θi), i = 0, 1, 2, · · · , and conditions (1.3),
(1.4).

We can write x(β(t)) as a piecewise-defined function as follows

x(β(t)) =



x(0) = x0 if θ0 = 0 ≤ t < θ1,
x(θ1) if θ1 ≤ t < θ2,
...

x(θn) if θn ≤ t < θn+1,
...

.

Using this piecewise-defined function, we can write the following equality

x(β(t)) = x0u0(t) +
(
x(θ1) − x0

)
uθ1 (t) +

(
x(θ2) − x(θ1)

)
uθ2 (t) + · · · +

(
x(θn+1) − x(θn)

)
uθn+1 (t) + · · · ,

where the unit step function un(t) is defined in the following way

un(t) =
{

0 if t < n,
1 if t ≥ n.

Now, we can rewrite x(β(t)), using series, as follows

x(β(t)) = x(0) +
∞∑

n=0

(
x(θn+1) − x(θn)

)
uθn+1 (t). (2.1)

Let us start to seek the solution of problem (1.2)-(1.4) in the form

u(x, t) = X(x)T (t). (2.2)

Now taking partial derivatives of (2.2), we have
∂u(x, t)
∂t

= X(x)T ′(t)

and
∂2u(x, t)
∂x2 = X′′(x)T (t).

Substituting these into Eq. (1.2), we have

X(x)T ′(t) = a2X′′(x)T (t) − bX(x)T (β(t)).

Rearranging the last equation, we get
T ′(t) + bT (β(t))

a2T (t)
=

X′′(x)
X(x)

= −λ2,

where λ is a real constant. Then, evaluating (2.2) at the boundary conditions, we have

X(0) = 0, X(1) = 0.

Then, separation of variables gives a boundary value problem{
X′′(x) + λ2X(x) = 0,
X(0) = X(1) = 0,

whose orthonormal set of solutions is given by

X j(x) =
√

2 sin(π jx), j = 1, 2, · · · ,

on [0, 1], and moreover, it gives the following differential equation with piecewise constant argument of generalized
type

T ′j(t) + a2π2 j2T j(t) = −bT j(β(t)). (2.3)
Now, using the series definition given in (2.1) for T j(β(t)), we can rewrite Eq. (2.3) as

T ′j(t) + a2π2 j2T j(t) = −bT j(0) − b
∞∑

n=0

(
T j(θn+1) − T j(θn)

)
uθn+1 (t). (2.4)
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Then, after applying Laplace transform to Eq. (2.4), we get for s > 0,

sL{T j(t)} − T j(0) + a2π2 j2L{T j(t)} =
−bT j(0)

s
− b

∞∑
n=0

(
T j(θn+1) − T j(θn)

) e−(θn+1)s

s
.

If we solve this equation for L{T j(t)}, we get

L{T j(t)} =
1 − b/s

s + a2π2 j2
T j(0) − b

∞∑
n=0

(
T j(θn+1) − T j(θn)

) e−(θn+1)s

s(s + a2π2 j2)
.

Applying the inverse Laplace transform to the last equation, we obtain the solution of Eq. (2.3) in the following way

T j(t) =
(
e−a2π2 j2t −

b
a2π2 j2

(
1 − e−a2π2 j2t

))
T j(0) −

b
a2π2 j2

∞∑
n=0

(
T j(θn+1) − T j(θn)

) (
1 − e−a2π2 j2(t−θn+1)

)
uθn+1 (t). (2.5)

Next, we aim to obtain a non-recursive relation for T j(θn+1)−T j(θn). For this reason, we give the following proposition.

Proposition 2.2. The solution of Eq. (2.3) on the interval [0,∞) is given by

T j(t) =
(
e−a2π2 j2(t−β(t)) −

b
a2π2 j2

(
1 − e−a2π2 j2(t−β(t))

)) δ(t)∏
i=1

(
e−a2π2 j2(θi−θi−1) −

b
a2π2 j2

(
1 − e−a2π2 j2(θi−θi−1)

))
T j(0).

Here, δ(t) denotes the number of discontinuity moments θi on the interval (0, t] and it is assumed that
0∏

i=1
(·) = 1.

Proof. To prove the proposition, let us start on an arbitrary interval [θn, θn+1). Then,

T ′n j(t) + a2π2 j2Tn j(t) = −bTn j(θn), (2.6)

where Tn j(t) denotes the solution of Eq. (2.3) on this interval. If we solve this equation, we obtain the general solution
of (2.6) as follows

Tn j(t) =
(
e−a2π2 j2(t−θn) −

b
a2π2 j2

(
1 − e−a2π2 j2(t−θn)

))
Tn j(θn).

Since solution T j(t) is continuous on the interval [0,∞), we have

Tn j(θn+1) = Tn+1, j(θn+1).

In an explicit way, it is true that

Tn+1, j(θn+1) =
(
e−a2π2 j2(θn+1−θn) −

b
a2π2 j2

(
1 − e−a2π2 j2(θn+1−θn)

))
Tn j(θn).

Then, using the last equality, we obtain

Tn j(θn) =
n∏

k=1

(
e−a2π2 j2(θk−θk−1) −

b
a2π2 j2

(
1 − e−a2π2 j2(θk−θk−1)

))
T0 j(0).

Hence,

Tn j(t) =
(
e−a2π2 j2(t−θn) −

b
a2π2 j2

(
1 − e−a2π2 j2(t−θn)

)) n∏
k=1

(
e−a2π2 j2(θk−θk−1) −

b
a2π2 j2

(
1 − e−a2π2 j2(θk−θk−1)

))
T0 j(0).

Since Tn j(t) represents the solution on an arbitrary interval θn ≤ t < θn+1 and T j(t) is continuous on the interval [0,∞),
the solution of (2.3) on the interval t ∈ [0,∞) can be expressed in the following way

T j(t) =
(
e−a2π2 j2(t−β(t)) −

b
a2π2 j2

(
1 − e−a2π2 j2(t−β(t))

)) δ(t)∏
k=1

(
e−a2π2 j2(θk−θk−1) −

b
a2π2 j2

(
1 − e−a2π2 j2(θk−θk−1)

))
T j(0). (2.7)

Hence, proposition is proved. □
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Now, we are ready to obtain a non-recursive relation instead of recursive relation in Eq. (2.5). To do this, if we write
t = θn+1 and t = θn in Eq. (2.7), respectively, we obtain the following two equalities

T j(θn+1) =
(
e−a2π2 j2(θn+1−θn) −

b
a2π2 j2

(
1 − e−a2π2 j2(θn+1−θn)

) )
×

n∏
k=1

(
e−a2π2 j2(θk−θk−1) −

b
a2π2 j2

(
1 − e−a2π2 j2(θk−θk−1)

))
T j(0)

(2.8a)

and

T j(θn) =
n∏

k=1

(
e−a2π2 j2(θk−θk−1) −

b
a2π2 j2

(1 − e−a2π2 j2(θk−θk−1))
)

T j(0). (2.8b)

Then, after subtracting (2.8b) from (2.8a), we have

T j(θn+1) − T j(θn) =
(
e−a2π2 j2(θn+1−θn) −

b
a2π2 j2

(
1 − e−a2π2 j2(θn+1−θn)

)
− 1

)
×

n∏
k=1

(
e−a2π2 j2(θk−θk−1) −

b
a2π2 j2

(
1 − e−a2π2 j2(θk−θk−1)

))
T j(0).

(2.9)

Introducing (2.9) into (2.5), we can rewrite the solution of Eq. (2.3) with the non-recursive relation as follows

T j(t) =
{

e−a2π2 j2t −
b

a2π2 j2
(
1 − e−a2π2 j2t

)
−

b
a2π2 j2

∞∑
n=0

(
e−a2π2 j2(θn+1−θn) −

b
a2π2 j2

(
1 − e−a2π2 j2(θn+1−θn)

)
− 1

)

×

n∏
k=1

(
e−a2π2 j2(θk−θk−1) −

b
a2π2 j2

(
1 − e−a2π2 j2(θk−θk−1)

)) (
1 − e−a2π2 j2(t−θn+1)

)
uθn+1 (t)

}
T j(0).

(2.10)

So, the solutions of the heat equation (1.2) satisfying the boundary conditions (1.3) are obtained as follows

u j(x, t) = X j(x)T j(t), j = 1, 2, · · · .

Since the equation (1.2) is linear, with the superposition principle the solution of boundary value problem (1.2)-(1.3)
on the region [0, 1] × [0,∞) is given by

u(x, t) =
∞∑
j=1

T j(t)X j(x)

=

∞∑
j=1

{
e−a2π2 j2t −

b
a2π2 j2

(
1 − e−a2π2 j2t

)
−

b
a2π2 j2

∞∑
n=0

(
e−a2π2 j2(θn+1−θn) −

b
a2π2 j2

(
1 − e−a2π2 j2(θn+1−θn)

)
− 1

)

×

n∏
k=1

(
e−a2π2 j2(θk−θk−1) −

b
a2π2 j2

(
1 − e−a2π2 j2(θk−θk−1)

)) (
1 − e−a2π2 j2(t−θn+1)

)
uθn+1 (t)

}
C jT j(0)

√
2 sin(π jx).

(2.11)

Now, it is time to check the initial condition. To do this, putting t = 0 in (2.11) gives

u(x, 0) = u0(x) =
∞∑
j=1

√
2T j(0) sin(π jx),

where

T j(0) =
√

2

1∫
0

u0(x) sin(π jx)dx. (2.12)

Hence, equality (2.11) with equality (2.12) is the solution of problem (1.2), (1.3), (1.4) in [0, 1] × [0,∞).

Theorem 2.3. If

−a2π2 < b < a2π2 ea2π2θ + 1

ea2π2θ − 1
, (2.13)

then the solution (2.11) of the initial value problem (1.2)-(1.4) tends to zero as t → ∞ uniformly with respect to x.
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Proof. From (2.13), we get

−a2π2 j2 < b < a2π2 j2
1 + e−a2π2 j2(θi−θi−1)

1 − e−a2π2 j2(θi−θi−1)
, j = 1, 2, · · · .

After rearranging this inequality, we obtain

−1 < e−a2π2 j2(θi−θi−1) −
b

a2π2 j2
(
1 − e−a2π2 j2(θi−θi−1)

)
< 1.

With the help of the last inequality, the solution T j(t) given by (2.10) tends to zero. Since in the solution (2.11), X j(x)
is bounded and T j(t) tends to zero, the solution (2.11) tends to zero as t → ∞ uniformly with respect to x. Hence,
theorem is proved. □

Theorem 2.4. Each solution given by (2.10) has a zero on the interval (θn, θn+1) if

b >
a2π2

ea2π2θ − 1
. (2.14)

Proof. Using the inequality (2.14), we can write the following inequality

b >
a2π2 j2

ea2π2 j2(θi−θi−1) − 1
.

From this equality, we have

e−a2π2 j2(θi−θi−1) −
b

a2π2 j2
(1 − e−a2π2 j2(θi−θi−1)) < 0.

Then, using (2.7), we have

Tn j(θn+1) =
(
e−a2π2 j2(θn+1−θn) −

b
a2π2 j2

(
1 − e−a2π2 j2(θn+1−θn)

)) n∏
i=1

(
e−a2π2 j2(θi−θi−1) −

b
a2π2 j2

(
1 − e−a2π2 j2(θi−θi−1)

))
T j(0)

and

Tn j(θn) =
n∏

i=1

(
e−a2π2 j2(θi−θi−1) −

b
a2π2 j2

(
1 − e−a2π2 j2(θi−θi−1)

))
T j(0).

Multiplying both of these two equalities, we get

Tn j(θn+1)Tn j(θn) =
(
e−a2π2 j2(θn+1−θn)−

b
a2π2 j2

(1−e−a2π2 j2(θn+1−θn))
)  n∏

i=1

(
e−a2π2 j2(θi−θi−1) −

b
a2π2 j2

(1 − e−a2π2 j2(θi−θi−1))
)
T j(0)

2

.

Hence,
Tn j(θn+1)Tn j(θn) < 0.

This inequality shows that each solution given by (2.10) has a zero on the interval (θn, θn+1). □

A solution is said to be oscillatory if it has arbitrarily large zeros. It follows immediately from Theorem 2.4 that (2.14)
is sufficient for oscillation of the solutions of Eq. (2.3) as stated by the following statement.

Corollary 2.5. If the inequality (2.14) holds true, then each solution of Eq. (2.3) is oscillatory for all values of j.

Theorem 2.6. If b < 0, then for each j = 1, 2, · · · , any solution of Eq. (2.3) is nonoscillatory. If b > 0 and j is large
enough, then functions T j are oscillatory.

Proof. Let b < 0. Hence, the inequality

e−a2π2 j2(θi−θi−1) −
b

a2π2 j2
(
1 − e−a2π2 j2(θi−θi−1)

)
> 0

is valid, which implies in turn that any solution of Eq. (2.3) is nonoscillatory. Solving the last inequality, we obtain

b <
a2π2 j2

ea2π2 j2θ − 1
,
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for each j = 1, 2, · · · . Since

lim
j→∞

a2π2 j2

ea2π2 j2θ − 1
= 0,

the last inequality fails for b > 0 and large enough j. So, in this case, functions T j(t) oscillate. □

3. Examples

Example 3.1. In the problem (1.2)-(1.4), if we take a = 1/2, b = −3/2, and θi = i/4, i = 0, 1, 2, · · · , u0(x) = −2x3+2x,
we obtain the following problem

∂u(x, t)
∂t

=
1
4
∂2u(x, t)
∂x2 +

3
2

u(x, β(t)), 0 ≤ x ≤ 1, 0 ≤ t < ∞,

u(0, t) = 0, u(1, t) = 0, 0 ≤ t < ∞,

u0(x) = −2x3 + 2x, 0 ≤ x ≤ 1.

(3.1)

Since the condition (2.13) is satisfied for a = 1/2, b = −3/2, and θ = 1/4, the solution u(x, t) of the problem (3.1) tends
to zero as t → ∞ based on Theorem 2.3 as shown in Figure 1 obtained by using Mathematica.

Figure 1. For a = 0.5, b = −1.5, θi = i/4 and u0(x) = −2x3 + 2x, the graph of the solution of (3.1).

Example 3.2. In the problem (1.2)-(1.4), if we take a = 1/4, b = −5.1, and θi = i/4, i = 0, 1, 2, · · · , u0(x) = x4 − x2,
we obtain the following problem

∂u(x, t)
∂t

=
1

16
∂2u(x, t)
∂x2 +

51
10

u(x, β(t)), 0 ≤ x ≤ 1, 0 ≤ t < ∞,

u(0, t) = 0, u(1, t) = 0, 0 ≤ t < ∞,

u0(x) = x4 − x2, 0 ≤ x ≤ 1.

(3.2)

Since the condition of the Theorem (2.6) is satisfied for a = 1/4, b = −5.1 < 0, and θ = 1/4, the solution u(x, t) of the
problem (3.2) does not oscillate as shown in Figure 2.

Figure 2. For a = 0.25, b = −5.1, θi = i/4 and u0(x) = x4 − x2, the graph of the solution of (3.2).
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Example 3.3. In the problem (1.2)-(1.4), if we take a = 1/2, b = 6.1, and θi = i/4, i = 0, 1, 2, · · · , u0(x) = x4 − x2, we
obtain the following problem

∂u(x, t)
∂t

=
1
4
∂2u(x, t)
∂x2 −

61
10

u(x, β(t)), 0 ≤ x ≤ 1, 0 ≤ t < ∞,

u(0, t) = 0, u(1, t) = 0, 0 ≤ t < ∞,

u0(x) = x4 − x2, 0 ≤ x ≤ 1.

(3.3)

Since the condition of the Theorem (2.6) is satisfied for a = 1/2, b = 6.1 > 0, and θ = 1/4, the solution u(x, t) of the
problem (3.3) is oscillatory as shown in Figure 3.

Figure 3. For a = 0.5, b = 6.1, θi = i/4 and u0(x) = x4 − x2, the graph of the solution of (3.3).

4. Conclusion

In this paper, we investigated solutions of the initial boundary value problem (1.2)-(1.4), where a and b are nonzero
real parameters, u0(x) is a continuous function on the interval [0, 1].

The oscillatory and nonoscillatory conditions, as well as an explicit formula for the solutions of (2.3), are obtained.
Besides, the criteria for solutions to converge to zero are discovered for the issue problem. Moreover, conditions for
the solutions of (2.3) to possess zeros on each interval [θi, θi+1], i = 0, 1, 2, · · · , are discussed.

In the future studies, similar analysis for the following initial boundary problem

∂2u(x, t)
∂t

= a2 ∂
2u(x, t)
∂x2 − bu(x, β(t)), 0 ≤ x ≤ 1, θ0 ≤ t < ∞,

u(0, t) = 0, u(1, t) = 0, θ0 ≤ t < ∞,

u(x, θ0) = u0(x), ut(x, θ0) = u1(x), 0 ≤ x ≤ 1.

can be handled.
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[13] Aruğaslan, D., Cengiz, N., Existence of periodic solutions for a mechanical system with piecewise constant forces, Hacet. J. Math. Stat.,

47(3)(2018), 521–538.
[14] Bainov, D.D., Simeonov, P.S., Impulsive Differential Equations: Asymptotic Properties of the Solutions, World Scientific: Singapore, New

Jersey, London, 1995.
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[21] Győri, I., On approximation of the solutions of delay differential equations by using piecewise constant arguments, Internat. J. Math. Math.

Sci., 14(1)(1991), 111–126.
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