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Abstract

I reconsider the approximation of Bessel functions with finite sums of trigonometric func-
tions, in the light of recent evaluations of Neumann-Bessel series with trigonometric
coefficients. A proper choice of angle allows for an efficient choice of the trigonometric
sum. Based on these series, I also obtain straightforward non-standard evaluations of new
parametric sums with powers of cosine and sine functions.

1. Introduction

The aim of this paper is twofold: to investigate trigonometric approximations of Bessel functions via Bessel-Neumann series
whose sums are finite trigonometric sums, and use the same series to provide new sums of powers of sines with cosines.
Bessel functions are among the most useful and studied special functions. Analytic expansions exist for different regimes [1],
and numerical algorithms for their precise evaluation [2]-[5]. Their simplest approximations are polynomials [6]-[8] and finite
trigonometric sums, that can be advantageous in applications [9].
Let’s consider J0. Several trigonometric sums appeared in the decades, sometimes being rediscovered. These very simple ones

J0(x)' 1
4 [1+ cosx+2cos(

√
2

2 x)] (1.1)

J0(x)' 1
6

[
1+ cosx+2cos( 1

2 x)+2cos(
√

3
2 x)

]
(1.2)

have errors ε = J0− Japprox
0 with power series (the marvel of Mathematica)

ε(x) =− x8

28·20160 (1−
x2

36 + ...), ε(x) =− x12

212·239500800 (1−
x2

52 + ...).

In practice, an error less than 0.001 is achieved for x≤ 3 or x≤ 5.9. These approximations were obtained by Fettis with the
Poisson formula [10]. Rehwald [11] and later Waldron [12], Blachman and Mousavinezhad [13] and [14] used the strategy of
truncating to the first term Neumann-Bessel series like this one

J0(x)+2J8(x)+2J16(x)+ ...= 1
4 cos[1+ cosx+2cos(

√
2

2 x)],

that can be obtained from the Bessel generating function. The examples (1.1), (1.2) correspond to n = 4,6 of eq.19 in [15]:

J0(x)+2∑
∞

k=1(−1)knJ2kn(x) =
1
n∑

n−1
`=0 cos(xcos π

n `) (1.3)
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where only J0 is kept, and the errors reflect the behaviour J2n(x)≈ (x/2)2n

(2n)! of the first neglected term. The truncation yields J0

as a sum of cosines that corresponds to the evaluation of the Bessel integral J0(x) =
∫

π

0
dθ

π
cos(xcosθ) with the trapezoidal

rule with n nodes [16]-[18]. Increasing n increases accuracy: n = 15 is a formula by Fettis [10] with 8 cosines (instead of 15,
symmetries of the roots of unity reduce the number of terms):

J0(x)' 1
15 cosx+ 2

15∑
7
k=1 cos(xcos kπ

15 ). (1.4)

The error now is order x30×10−42 and less than 10−6 for x < 15.
I reconsider the approximations for J0 in the light of new Neumann-Bessel trigonometric series in [19]. They extend the series
(1.3) by including an angular parameter, that is chosen to kill the term with J2n, so that the truncation involves the next-to-next
term J4n of the series. This is presented in Section 2. The same strategy is then used in Section 3 to approximate Bessel
functions Jn of low order by appropriate series. The quality of the approximations is the same as earlier ones with same number
of terms, but the terms are different and the source of error is more clear.
In Section 4, I show that the same Neumann series give in very simple way some parametric sums of powers of sines and
cosines. Some are found in the recent literature [20], while the following ones, to my knowledge, are new:

n

∑
`=0

sinp( θ+2π`
n ){ sin

cos }(q
θ+2π`

n ) (p,q = 0,1, ...).

Many other trigonometric sums are available in the literature. For example, sums like ∑
m−1
k=1 sin 2kqπ

m cotn kπ

m and variants are
studied in [21, 22]. Ratios of powers of sines and cosines are evaluated in [23], and many results are given in the remarkable
paper [24].

2. The Bessel function J0

Consider the Neumann trigonometric series eq.11 in [19]:

J0(x)+2
∞

∑
k=1

(−1)knJ2kn(x)cos(2knθ) =
1
n

n−1

∑
`=0

cos[xcos(θ + π

n `)]. (2.1)

The approximations (1.1), (1.2) and (1.4) are obtained with θ = 0, n = 4, 6, 15, and neglecting functions J8, J12, J30 and higher
orders. However they are not optimal. The advantage of eq.(2.1) is the possibility to choose the angle θ = π/4n to kill all
terms J2n, J6n, etc. Then:

J0(x)−2J4n(x)+2J8n(x)− ...=
1
n

n−1

∑
`=0

cos(zcos 1+4`
4n π).

An expansion for J0 results, again, by neglecting the other terms.

Some examples:

• n = 2. It is J0(x) = 1
2 [cos(xcos π

8 )+cos(xsin π

8 )]+ε2(x). If we neglect the error, the first zero occurs at π

√
2−
√

2 = 2.4045
( j0,1 = 2.4048).
• n = 3. The approximation has three cosines:

J0(x) = 1
3 [cos(x 1√

2
)+ cos(x

√
3−1

2
√

2
)+ cos(x

√
3+1

2
√

2
)]+ ε3(x) (2.2)

ε3(x) = x12

212·239500800

[
1− x2

52 +
x4

52·112 −
x6

52·112·180 + . . .
]
.

Remarkably, the first powers of the error are opposite of those for the expansion eq.(1.2), that would involve 6 terms if not for
the degeneracy of the roots of unity. The half-sum of (1.2) and (2.2),

J0(x)' 1
12

[
1+ cosx+2cos( 1

2 x)+2cos(
√

3
2 x)+2cos(x 1√

2
)+2cos(x

√
3−1

2
√

2
)+2cos(x

√
3+1

2
√

2
)
]

(2.3)

has error ε(x) =− x24

5.2047 ×10−30[1− x2

100 +
x4

20800 − . . . ].
• n = 6 gives a precision similar to the sum (2.3):

J0(z) = 1
6

[
cos(xcos π

24 )+ cos(xcos 3π

24 )+ cos(xcos 5π

24 )+ cos(xsin π

24 )+ cos(xsin 3π

24 )+ cos(xsin 5π

24 )
]
+ ε6(x). (2.4)

The error has power expansion ε6(x) = x24

5.2047 ×10−30[1− x2

100 + . . .].
• n = 8 is a sum of 8 cosines and compares with the formula (1.4) by Fettis. The two approximations are different but with the
same number of terms (because θ = 0 produces degenerate terms) and similar precision.
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Figure 2.1: The Bessel function J0 (thick) and the trigonometric expansion (2.4). The difference increases with x; it is less than 10−9 for
x < 8 and 10−3 for x < 15.

3. Bessel functions Jn.

• J1 is evaluated via J1 =−J′0. Eq. (2.3) gives:

J1(x)' 1
12

[
sinx+ sin( 1

2 x)+
√

3sin(
√

3
2 x)+

√
2sin(x 1√

2
)+(

√
3−1√

2
)sin(x

√
3−1

2
√

2
)+(

√
3+1√

2
)sin(x

√
3+1

2
√

2
)
]

with error ε(x)' (x/20)23×3.87× [1− 13
1200 x2 + . . . ].

• J2,J4 can be evaluated with the following identity (the real part of eq.(5) in [19]):

Jp(x)+∑
∞

k=1[Jkn+p(x)+(−1)kn+pJkn−p(x)]cos(knθ) = 1
n∑

n−1
`=0 cos[xsin(θ + 2π`

n )+ p(θ + 2π`
n )]. (3.1)

Because of the term Jn−p, we take 2p < n. With y = π

2n :

Jp(x)− (−1)pJ2n−p(x)+ . . .= 1
n∑

n−1
`=0 cos[xsin( 1+4`

2n π)+ p 1+4`
2n π].

If only Jp is kept, the approximation depends on the parity of p:

Jp(x)'

{
cos(p 1+4`

2n π)× 1
n ∑

n−1
`=0 cos[xsin( 1+4`

2n π)] p even
−sin(p 1+4`

2n π)× 1
n ∑

n−1
`=0 sin[xsin( 1+4`

2n π)] p odd

p = 2, n = 6, give the short formula

J2(x)' 1
2
√

3

[
cos(xsin π

12 )− cos(xcos π

12 )
]

with error ε(x) = 2.69114× (x/10)−10[1− x2

44 + ...]. The first zero is evaluated 2
3 π
√

6 ' 5.1302 ( j2,1 = 5.13562). A better
approximation is n = 8, y = π

16 :

J2(x)' 1
4 cos(π

8 )[cos(xsin π

16 )− cos(xcos π

16 )]+
1
4 sin(π

8 )[cos(xcos 5π

16 )− cos(xsin 5π

16 )]

with error ε(x) = 7.00119×10−16x14[1− x2

60 + ...]; ε(5) = 3×10−6, ε(8) = 0.0010.
For J4 we select p = 4, n = 8, θ = π

16 . Now the lowest neglected term is J12:

J4(x)'
√

2
8

[
cos(xsin π

16 )+ cos(xcos π

16 )− cos(xsin 5π

16 )− cos(xcos 5π

16 )
]
.

The error is less that 10−3 at x < 6.3.
• J3,J5. A useful sum for odd-order Bessel functions is eq.(17) in [19]:

∞

∑
k=0

(−1)n+kJ(2n+1)(2k+1)(x)cos[(2k+1)θ ] =
2n

∑
`=0

sin[xcos( θ+2π`
2n+1 )]

2(2n+1)
. (3.2)

The angle θ = π

6 cancels J6n+3, J14n+7 etc. and gives the approximation

J2n+1(x)'
(−1)n
√

3

2n

∑
`=0

sin[xcos 1+12`
12n+6 π]

2n+1

that neglects J10n+5 etc. With n = 1 and n = 2 we obtain:

J3(x)'− 1
3
√

3
[sin(xcos π

18 )− sin(xsin 2π

9 )− sin(xsin π

9 )]

J5(x)' 1
5
√

3

[
sin(xcos π

30 )+ sin(xsin π

15 )− sin(
√

3
2 x)− sin(xsin 4π

15 )+ sin(xcos 2π

15 )
]
.

The expansion for J3 has error ε = 2.33373×10−17x15[1− x2

64 + ...]. The second one has error ε = 1.92134x25×10−33× [1−
x2

104 + ...].
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Figure 3.1: The Bessel function J3 (thick) and the approximation (3.3). The difference is ε(6) = 6×10−6, ε(8) = .0003, ε(10) = .0045.

4. Trigonometric identities

The Neumann-Bessel series here used provide sums of powers of sines and cosines. They arise by expanding in powers of x
the Bessel functions in the series,

Jn(x) =
∞

∑
k=0

(−1)k (x/2)n+2k

k!(k+n)!

and the trigonometric functions in the sum of the series.

• Consider the series eq.(2.1). At threshold powers x2n, x4n etc. new Bessel functions (−1)n2J2n cos(2nθ), 2J4n cos(4nθ) etc.
enter a term in the sum of cosines.

1
n∑

n−1
`=0

[
cos θ+`π

n

]2k
=



1
4k

(2k
k

)
0≤ k < n

1
4k

[(2k
k

)
+2
( 2k

k−n

)
cos(2θ)

]
n≤ k < 2n

1
4k

[(2k
k

)
+2
( 2k

k−n

)
cos(2θ)+2

( 2k
k−2n

)
cos(4θ)

]
2n≤ k < 3n

... ...

.

By replacing θ with θ +nπ we obtain:

1
n∑

n−1
`=0

[
sin θ+`π

n

]2k
=



1
4k

(2k
k

)
0≤ k < n

1
4k

[(2k
k

)
+(−1)n2

( 2k
k−n

)
cos(2θ)

]
n≤ k < 2n

1
4k

[(2k
k

)
+(−1)n2

( 2k
k−n

)
cos(2θ)+2

( 2k
k−2n

)
cos(4θ)

]
2n≤ k < 3n

... ...

.

Examples:

1
9 ∑

8
`=0
[
sin θ+`π

9

]20
= 1

410

[(20
10

)
−2
(20

1

)
cos(2θ)

]
.

1
n ∑

n−1
`=0

[
cos( 1+6`

6n π)
]2n

= 1
4n

[(2n
n

)
+1
]
,

1
n ∑

n−1
`=0

[
cos( 1+4`

4n π)
]4n

= 1
16n

[(4n
2n

)
−2
]
.

For θ = 0 and θ = π

2 these identities are eqs. 4.4.2 in [25], 2.1 and 2.2 (together with several other non-parametric sums) in
[26]. The series had also been studied in [27]. Parametric averages on the full circle were recently evaluated by Jelitto [20],
with a different method.

•With the Neumann series (3.2) we obtain:

1
2n+1∑

2n
`=0

[
cos θ+2π`

2n+1

]2k+1
=


0 1≤ 2k+1 < 2n+1
1
4k

(2k+1
k−n

)
cosθ 2n+1≤ 2k+1 < 3(2n+1)

1
4k

[(2k+1
k−n

)
cosθ +

( 2k+1
k−3n−1

)
cos(3θ)

]
3(2n+1)≤ 2k+1 < 5(2n+1)

... ...

.

The sums of even powers of cosines are obtained from the series eq.16 in [19]:

J0(x)+2
∞

∑
k=1

(−1)kJ(4n+2)k(x)cos(2kθ) =
2n

∑
`=0

cos[xcos θ+2π`
2n+1 ]

2n+1
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1
2n+1 ∑

2n
`=0
[
cos θ+2π`

2n+1

]2k
=



1
4k

(2k
k

)
0≤ k < 2n+1

1
4k

[(2k
k

)
+2
( 2k

k−2n−1

)
cos(2θ)

]
2n+1≤ k < 4n+2

1
4k

[(2k
k

)
+2
( 2k

k−2n−1

)
cos(2θ)+2

( 2k
k−4n−2

)
cos(4θ)

]
4n+2≤ k < 6n+3

... ...

.

Example: (cos θ

3 )
12 +(cos θ+π

3 )12 +(cos θ+2π

3 )12 = 3
46 [
(12

6

)
+2
(12

3

)
cos(2θ)+2cos(4θ)].

The formulae with sines are obtained by shifting the parameter θ .

• Now let’s consider the sum eq.(3.1) with p < n− p.
The equations are new and are easier to state if we distinguish the parity of n and of p.

Case n = 2m and p = 2q. Eq.(3.1) now is:

1
2m∑

2m−1
`=0 cos[xsin( θ+π`

m )]cos[2q θ+π`
m ] = J2q(x)+ [J2m−2q(x)+ J2m+2q(x)]cos(2θ)

+[J4m−2q(x)+ J4m+2q(x)]cos(4θ)+ ...

Separation of even and odd parts in x, and expansion in x give:

1
2m∑

2m−1
`=0 [sin θ+π`

m ]2k+1 sin(2q θ+π`
m ) = 0, k = 0,1,2, ...

This result is obvious as the sum from 0 to m−1 is opposite of the rest of the sum. The symmetry is used also in the other
result:

1
m ∑

m−1
`=0 [sin θ+π`

m ]2k cos(2q θ+π`
m ) =

= (−1)q

4k



0 k < q( 2k
k−q

)
q≤ k < m−q( 2k

k−q

)
+(−1)m

( 2k
k−m+q

)
cos(2θ) m−q≤ k < m+q( 2k

k−q

)
+(−1)m

[( 2k
k−m+q

)
+
( 2k

k−m−q

)]
cos(2θ) m+q≤ k < 2m−q

... ...

Case n = 2m, p = 2q+1. Eq.(3.1) becomes:

− 1
2m ∑

2m−1
`=0 sin[xsin( θ+π`

m )]sin[(2q+1) θ+π`
m ] = J2q+1(x)+

+[−J2m−2q−1(x)+ J2m+2q+1(x)]cos(2θ)+ [J4m−2q−1(x)+ J4m+2q+1(x)]cos(4θ)+ ...

The non trivial result is:
1
m ∑

m−1
`=0 [sin θ+π`

m ]2k+1 sin[(2q+1) θ+π`
m ] =

= (−1)q

22k+1



0 k < q(2k+1
k−q

)
q≤ k < m−q−1(2k+1

k−q

)
+(−1)m

( 2k+1
k+m−q

)
cos(2θ) m−q−1≤ k < m+q(2k+1

k−q

)
+(−1)m

[( 2k+1
k+m−q

)
+
( 2k+1

k−m−q

)]
cos(2θ) m+q≤ k < 2m−q−1

... ...

Example: 1
5 ∑

4
`=0 sin13(π`

5 )sin( 3π`
5 ) =− 1

213

[(13
5

)
−
(13

10

)
−
(13

0

)]
=− 125

1024 .

Case n = 2m+1 and p = 2q:
1

2m+1 ∑
2m
`=0 cos[xsin( θ+2π`

2m+1 )]cos(2q θ+2π`
2m+1 ) = J2q(x)+ [J4m+2−2q(x)+ J4m+2+2q(x)]cos(2θ)+ ...

1
2m+1 ∑

2m
`=0 sin[xsin( θ+2π`

2m+1 )]sin(2q θ+2π`
2m+1 ) = [J2m+1−2q(x)− J2m+1+2q(x)]cosθ + ...

1
2m+1 ∑

2m
`=0[sin θ+2π`

2m+1 ]
2k cos(2q θ+2π`

2m+1 ) =

= (−1)q

4k



0 k < q( 2k
k−q

)
q≤ k < 2m+1−q( 2k

k−q

)
−
( 2k

k+q−1−2m

)
cos(2θ) 2m+1−q≤ k < 2m+1+q( 2k

k−q

)
−
[( 2k

k+q−1−2m

)
+
( 2k

k−q−1−2m

)]
cos(2θ) 2m+1+q≤ k < 4m+2−q

... ...
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1
2m+1∑

2m
`=0[sin θ+2π`

2m+1 ]
2k+1 sin(2q θ+2π`

2m+1 ) =
(−1)q+m+1

22k+1


0 k < m−q( 2k+1

k−m+q

)
cosθ m−q≤ k < m+q[( 2k+1

k−m+q

)
−
( 2k+1

k−m−q

)]
cosθ m+q≤ k < 3m+1−q

... ...

Case n = 2m+1 and p = 2q+1:

1
2m+1∑

2m
`=0 cos[xsin θ+2π`

2m+1 ]cos[(2q+1) θ+2π`
2m+1 ] = [J2m−2q(x)+ J2m+2q+2(x)]cosθ + ...

− 1
2m+1∑

2m
`=0 sin[xsin θ+2π`

2m+1 ]sin[(2q+1) θ+2π`
2m+1 ] = J2q+1(x)+ [−J4m−2q+1(x)+ J4m+2q+3(x)]cos(2θ)+ ...

1
2m+1 ∑

2m
`=0 sin[ θ+2π`

2m+1 ]
2k cos[(2q+1) θ+2π`

2m+1 ] =

= (−1)m+q

4k


0 k < m−q( 2k

k−m+q

)
cosθ m−q≤ k < m+q+1[( 2k

k−m+q

)
−
( 2k

k−m−q−1

)]
cosθ m+q+1≤ k < 3m+q+2

... ...

1
2m+1 ∑

2m
`=0 sin[ θ+2π`

2m+1 ]
2k+1 sin[(2q+1) θ+2π`

2m+1 ] =

= (−1)q

22k+1



0 k < q(2k+1
k−q

)
q≤ k < 2m−q(2k+1

k−q

)
−
( 2k+1

k+q−2m

)
cos(2θ) 2m−q≤ k < 2m+q+1(2k+1

k−q

)
−
[( 2k+1

k+q−2m

)
+
( 2k+1

k−q−1−2m

)]
cos(2θ) 2m+q+1≤ k < 4m−q+1

... ...

.

Examples:

1
13 ∑

12
`=0 sin9( θ+2π`

13 )sin(5 θ+2π`
13 ) = 1

29

(9
2

)
= 9

128 for all θ ,
1

13 ∑
12
`=0 sin31( θ+2π`

13 )sin(5 θ+2π`
13 ) = 1

231

[(31
13

)
−
((31

5

)
+1
)

cos(2θ)
]
.

Conclusion

Bessel functions of the first kind may be well approximated on an interval containing the origin, by the trapezoidal rule applied
the Bessel integral. The result is a finite trigonometric sum. Here I show that comparable accuracy is obtained by exploiting
some exact results for Neumann series of Bessel functions and cosines, as finite trigonometric sums. At appropriate angles,
the second term of the Neumann series cancels and, by the rapid decay of third and next terms, the trigonometric sum well
represents the first Bessel term in the Neumann series.
The same Neumann series allow for the evaluation of new trigonometric sums of powers of sine and cosine functions. They
extend recent results by Jelitto [20], and are not included in the extensive paper by Al Jarrah et al. [15].
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