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The fractional order operator is the backbone of the fractional order system (FOS). The fractional order 

operator (FOO) is generally represented as 𝑠±𝜇(0 < 𝜇 < 1). Discrete time FOS can be obtained through 

the discretization of the fractional order operator. The FOO is the general form of either fractional order 

differentiator (FOD) or integrator (FOI) depending upon the values of μ. Out of the two discretization 

methods, direct discretization outperforms the method of indirect discretization. The mapping between 

the continuous time and discrete time domain is done with the development of generating function. 

Continuous fraction expansion (CFE) is used expand the generating function for the rational 

approximation of the FOO. There is an inherent problem associated with the discretization of FOO in 

discrete z-domain particularly at very fast sampling rate. In the other hand, discretization using delta 

operator parameterization provides the continuous time and discrete time results in hand to hand, when 

the continuous time systems are sampled at very fast sampling rate and circumventing the problem with 

shift operator parameterization at fast sampling rate. In this work, a new generating function is proposed 

to discretize the FOO using the Gauss-Legendre 3-point quadrature rule and generating function is 

expanded using the CFE to form rational approximation of the FOO in delta domain. The benchmark 

fractional order systems are considered in this work for the simulation purpose and comparison of results 

are made to prove the efficacy of the proposed method using MATLAB. 

 

Cite 

Dolai, S. K., Mondal, A., & Sarkar, P. (2022). Discretization of Fractional Order Operator in Delta Domain.GU J Sci, Part A, 9(4), 

401-420. 

Author ID (ORCID Number) Article Process  

S. K. Dolai, 0000-0003-3719-8287 

A. Mondal, 0000-0003-3210-1685 

P. Sarkar, 0000-0001-5735-457X 

Submission Date 

Revision Date 

Accepted Date 

Published Date 

26.08.2022 

25.10.2022 

09.11.2022 

31.12.2022 

1. INTRODUCTION 

Nowadays, scientists and researchers are paying much more attention to the theory and application of fractional 

calculus (Oldham & Spanier, 1974; Miller & Ross, 1993), though it was invented more than 300 years back. 

The researchers are really overwhelmed to rediscover the untouched and undiscovered part of engineering 

application as well as in the diversified classes of science using fractional calculus (Sun et al., 1984a, 1984b; 

Skaar et al., 1988; Caponetto et al., 2010). Fractional calculus plays the most important role in fractional order 

control study. Analytical design Fractional order PID controller for fractional order or integer order plant has 

been studied in (Yumuk et al., 2019). Robust fractional order controller was designed by (Yumuk et al., 2022) 

using the ideal Bode transfer functions using the fundamental property of fractional order calculus. The 

fractional order calculus extends its horizon even in the field of electromagnetics. In the study of plane wave 

diffraction by two strips, (Tabatadze et al., 2020) have applied fractional boundary conditions on strips having 

different fractional order. For the analysis of complex system, fractional order derivative and partial differential 

equations are widely used in the field of science and technology. Caputo version (Caputo, 1967) as well as 

Atangana-Baleanu derivative (Atangana & Baleanu, 2016) version of fractional order derivatives are used in 

the literature. Garden equation is a kind of nonlinear partial differential equation, commonly used to describe 
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complex systems. To solve this garden equation, (Dokuyucu, 2020) have expanded the garden equation to 

Caputo derivative sense in order to make it fractional order. 

The fundamental part of the fractional order calculus or fractional order differential equation is the fractional 

order operator (FOO), generally represented by 𝑠±𝜇. The operator can be termed as fractional order 

differentiator (FOD) or fractional order integrator (FOI) considering the positive and negative values of 𝜇 

(Nakagawa & Sorimachi, 1992; Podlubny, 1999). The FOO needs to be converted into rational transfer 

function for the realization of the fractional order system (FOS). The rationalization may be done in continuous 

time domain or in discrete time domain. There are bench mark solutions for conversion of FOO into rational 

approximation in continuous time domain (Vinagre et al., 2000; Xue et al., 2006; Khanra et al., 2010). 

Nowadays, there is a call for paradigm shift from the continuous time domain to discrete time domain 

realization of every system. This results in a serious attempt to get the FOS to be realized in discrete time 

domain. Therefore, the continuous time (Oustaloup, 1995) rational approximation of the FOO is to be 

converted into the discrete domain to realize FOS in the discrete time domain. This method is known as indirect 

discretization (Chen & Moore, 2002; Krishna, 2011; 2015; Maione, 2011; Keyser & Muresan, 2016) and it is 

having certain flaws. The problems associated with the indirect discretization is overcome with the direct 

discretization method. 

In direct discretization method, generating functions are used to get the relationship between the s  -domain 

and 𝑧 -domain in shift operator parameterization. Euler, Tustin, Al-Alauoi are some of the renowned 

mathematicians to propose the new generating functions for the aforesaid application and finally the generating 

functions are expanded using continued fraction expansion (CFE) method (Chen et al., 2009). 

As the demand is increasing day by day for the digital realization of the fractional order controller or fractional 

order system, the systems to be designed for maximum accuracy. To implement any FOS in discrete time 

domain, the continuous time systems need to be sampled with very high sampling rate. The increased sampling 

rate will make the results ill conditioned when implemented in discrete z  -domain and also there will be issue 

with finite word length effect (Middleton & Goodwin, 1990a, 1990b; Chen & Moore, 2002). Therefore, the 

considerable features of the traditional continuous-time system cannot be produced by shift operator 

parameterization of discrete time systems at high sample rates. In other way around, delta operator 

parameterization (Middleton & Goodwin, 1990a, 1990b) provides meaningful outcome at very high sampling 

frequency and the results are found for both continuous time and discrete time in hand to hand rather than two 

special cases. The problems associated with traditional shift operator parameterization thus can be avoided 

using delta operator parameterization and is used in numerous application (Middleton & Goodwin, 1986; 

Cortés-Romero et al., 2013; Sarkar et al., 2016; Zhao & Zhang, 2017; Swarnakar et al., 2017; Gao et al., 2018; 

Lamrabet et al., 2020; Quezada-Téllez et al., 2020; Ganguli et al., 2021). 

In this paper, the FOO is directly discretized using delta operator parameterization though direct discretization 

of the FOO using shift operator parameterization (Vinagre et al., 2003; Pan & Das, 2013) has been worked out 

in earlier work. The 3-point Gauss-Legendre quadrature rule (Khattri, 2009) is a powerful computational tool 

for numerical computation and this is capitalized in this paper to form the new generating function for direct 

discretization of FOO in delta domain. The developed generating function is expanded using the traditional 

CFE tool to get the rational approximation of the FOO in delta domain. 

The following section discusses the significant contributions of this work. It can be observed from literature 

that the discretization of the fractional order system was made through the discretization of the fractional order 

operator in shift operator parameterization. This paper deals with the direct discretization of FOS using delta 

operator parameterization. At a very high sampling rate, the shift operator parameterized discrete time system 

fails to provide meaningful information whereas, delta operator parameterized discrete time system provides 

the same result as that of the continuous time system making the approach a unified one. A direct relationship 

between the continuous time variable and discrete delta domain variable is developed and that gives rise to a 

new generating function for rational approximation of the fractional order operator. The results obtained are 

compared with the results obtained using the other standard methods, to prove the efficacy of the proposed 

method. 
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The paper is organized as follows: Introduction to fractional order operator and direct discretization of FOO 

in delta domain are illustrated in section 2. In Section 3, three different examples are considered for simulation 

purpose to analyze the results. The section 4 is devoted for conclusion.  

2. MATERIAL AND METHOD  

2.1. Fractional order operator and fractional order system 

A non-integer order system is literally said to be a fractional order system. Like the integer order system, any 

fractional order system can be described by its fractional order differential equation. A fractional order 

differential equation is described below (Pan & Das, 2013). 
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where, ia and jb are the coefficients. D signifies the fractional derivative operator. The generalized operator 

used in (1) is known as integro-diffrerentiator operator and expressed as (Boubaker & Jafary, 2018): 
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Taking the Laplace transform on both sides of (1) considering initial condition zero, the transfer function of 

the fractional order system is taking the form as: 
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where, 𝐿[𝑦(𝑡)] = 𝑌(𝑠), 𝐿[𝑢(𝑡)] = 𝑈(𝑠). L  stands for Laplace trasform. 

Mathematical representations of integro-diffrerentiator operator are usually done with the help of Grünwald-

Letnikov (GL), Riemann-Liouville (RL) and Caputo derivative based approach. R-L definition is utilized in 

this paper to represent any fractional order system. 

The RL definition is mathematically represented as: 
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where, g  and t are the operating limits, n is an integer and )( − n is the gamma function of )( −n . 

Taking the Laplace transform of (4) with initial condition zero, the transfer function of a FOS is obtained. 

( ) =






 tfgL D

t



)(sFs  for 10   (5) 

From (5), it is observed that 𝑠𝜂plays the pivotal role for the realization of a FOS and this is known as fractional 

order operator (FOO), conceptualized using R-L definition. 
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2.2. Discretization of fractional order operator in delta domain 

The delta operator is defined as: 



−
=

1q
  (6) 

q is the forward shift operator and   is termed as sampling time. It is nothing but the scaled and shifted version 

of the forward shift operator. Applying the delta operator (δ) on any differentiable signal 𝜉(𝑡) gives the 

following relationship at high sampling limit (Δ → 0). 
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In complex delta domain,  is used to represent the frequency domain variable similar to z  in shift operator 

parameterization. The relationship between these two variables are represented by (8) (Middleton & Goodwin, 

1990a, 1990b) 
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From (9), the relationship between the frequency domain variable   in delta domain and frequency domain 

variable s in continuous time domain is established at fast sampling rate. It is observed that at fast sampling 

rate two domain results coincide making the approach a unified one and this philosophy is capitalized in this 

work. Equation (10) is established by rearranging (8). 
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For the discretization of fractional order operator in delta domain, (10) acts as the pivotal equation. CFE is 

used to get the rational transfer function using the generating function in delta domain. ( )+1ln has to be 

approximated in its closed form such that CFE can be utilized for expansion. One of the best close form 

approximation of ln(1 )x+ is 3P -GILOG which is done using trapezoidal quadrature rule (Khattri, 2009) 

Applying 3P -GILOG rule, )1ln( x+ is approximated with an error of 0.00002548744. 

32

32

3369060

116060
)1ln(

xxx

xxx
x

+++

++
+  (11) 

Equation (10) is re-established in (12) by using (11)  
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The discrete-time frequency variable (  ) in delta domain coincides with the continuous- time frequency 

variable ( s ) at fast sampling limit ( 0→ ) which is again established from (12).Therefore, the direct 

relasionship between (  ) and ( s ) can be expressed by (12).Equation (12) is used as the generating function 

for rest of the paper. 

Consider the general form of a fractional order differentiator (FOD): 

( )10)( = rssG r
 (13) 

Equation (13) can be used as the fractional order integrator (FOI) if r is replaced by r− .In general rs is the 

representation of a FOO. For the direct discretization of the FOO in delta domain, generating function 

developed in (12) is used. This will be called as CFE3P-GILOG method. The delta domain rational is expressed 

by (14). 
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The CFE approximation is mathematically formulated using (15). 
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To obtain the standard form of CFE as given in (15), p is replaced by 
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the rational approximation of fractional order trasfer function as described by (13).
 

Third and fifth order approximation of the r th order FOO in delta domain are obtained in this study and 

corresponding integer order transfer functions are given by (16) and (17) respectively. 
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The coefficients of fifth order approximation as given in (17) are tabulated in Table 1 and Table 2. Third order 

coefficients can also be generated using same method.  
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Table 1. Numerator coefficients in Delta Domain (Fifth order approximation) 

































140758861401311668715016592564390

188291408800456801094009139066420

002994851600219278504000376420380

002874222700008236971000018153270

000083227800000023404000000411470

000000267800000000938000000001250

00000000070000000000200900000000000

2

345

678

91011

121314

151617

181920

.*r+.+*r.-

*r.-*r.+*r.+

*r.+*r.-*r.-

*r.+*r.+*r.-

*r.-*r.+*r.+

*r.+*r.-*r.-

*r.+*r. +*r.

D=

 

Coefficients Numerator 

0a  

)/(D))/(r+.+

)*r^(.)+*r^(.)+*r^(.-

)*r^(.)-*r^(.*r-.)-*r^(.+

)*r^(.)+*r^(.)-*r^(.+

)*r^(.)-*r^(.)-*r^(.+

)*r^(.)+*r^(.)-*r^(.+

)*r^(.)-*r^(.)+*r^(.-

)*r^(.)+*r^(.)^r*(-/(

114075886130

170000001064010003697919801500000438250

80256920542041426112993027192573290609438551580

16000000173901200026476060900088998110

2034758772302108300000000000335421705270

20000000000205137070773701400000645510

11000642164307018932998701800000001180

13000080887301900000000080311

 

1a  

)/(D)))/(r+*r^(*.-

)*r^(*.)+*r^(*.)-*r^(*.+

)*r^(*.-*.+*r*.)-*r^(*.+

)*r^(*.)+*r^(*.)-*r^(*.+

)*r^(*.)+*r^(*.)-*r^(*.-

)*r^(*.)+*r^(*.-)**r^(.-

)*r^(*.)+*r^(*.-

)**r^(.)+*r^(*.)^r*(/(

1801809716620

3803957537602668964677201400001850120

160000004127056876013240550858603401000373940610

602394564550150000013710020400000000000

18000000002409011894351401300000663390

11000735138001900000000080538789618920

17000000059301200037346500

709186860230416444349760311

















 

2a  

)/(D))/(r+)*Δ**r^(.-)*Δ**r^(.+*ΔΔ.+

)*Δ**r^(.-)*Δ**r^(.-*r*Δr.-

)*Δ**r^(.)+*r^(*ΔΔ.+)*Δ**r^(.-

)*r^(*ΔΔ.-)*Δ**r^(.+)*Δ**r^(.+

)*r^(*ΔΔ.-)*Δ**r^(.-)*Δ**r^(.+

)*Δ**r^(.+)*Δ**r^(.+)*Δ**r^(.+

)*Δ**r^(.-)*Δ**r^(.)^r*(-/(

126061671367021000015145400250832256580

25213725675702271461103140228484549100

21500000051160820051773501021700000000050

9200775953460218000000001502705366559370

1929000000000002120000629870021100063864680

2140000044924023426780713102431306574280

2130000276031021600000013110311

 

3a  

)/(D)))/(r+*r^(^*.-

^)**r^(.+^)**r^(.-

^)**r^(.)-*r^(^*.-^)**r^(.+

)*r^(^*.+^*r*.)-*r^(^*.-

^)**r^(.+^*.)+*r^(^*.-

^)**r^(.)-*r^(^*.-^)**r^(.+

^)**r^(.+^)**r^(.-

)*r^(^*.+^)**r^(.)^r*(/(

16302750566290

38003756116103503846255770

3100002793147023233721126003700967733950

431140054487030509720473017300000000140

318000000000010315779943016300000000560

31300000570870143000000020403307668588800

312000009385303900141317430

1530000001372031100012040500311

















 

4a  

)/(D))/(r+^)**r^(.-

)*r^(^*.-^*.)+*r^(^*.-

^)**r^(.+^)**r^(.+^)**r^(.+

^)**r^(.)-*r^(^*.)-*r^(^*.+

)*r^(^*.)+*r^(^*.+^)**r^(.-

)*r^(^*.-^)**r^(.+^)**r^(.-

^)**r^(.+^*r*.)^r*(-/(

14500217096530

14400000005260402002123590174700000000000

4120000022018047000537190304800054896120

41300000030080640037739418015400000000700

1640000000005044015054124704900007703540

2403009229000430043795008041000004659890

41100000644940400292368900311















 

5a  

)/D)))/(r+*r^(^*.-

^*.)+*r^(^*.)-*r^(^*.+

)*r^(^*.)-*r^(^*.)+*r^(^*.+

)*r^(^*.)+*r^(^*.)^r*(-/(

12500133818080

500089334940105000001970608500002353850

650001641415012500000009190165200000000000

450006633505014500000000210311









 



407 
Sujay DOLAI, Arindam MONDAL, Prasanta SARKAR 

GU J Sci, Part A, 9(4): 401-420 (2022) 
 

 

Table 2. Denominator coefficients in Delta Domain (Fifth order approximation) 
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3. SIMULATION AND RESULT ANALYSIS 

Here, three different fractional order transfer functions are considered as examples for simulation study to 

find the efficacy of the proposed method. 

Example 1: 

A half order differentiator (1/2nd) is considered in this example (Swarnakar et al., 2017) with transfer function 

as shown below: 

5.0)( ssG =  (18) 

In delta domain, the mathematical formulation of the 1/2nd order differentiator is expressed by (19) where, 

the sampling rate is considered as sec01.0= . 
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For a sampling rate of 01.0=  sec, The third and fifth order approximation of 5.0s  in delta domain after 

continued fraction expansion of 
5.0

3322

322

3369060

116060














+++

++




 results in Eq. (20) and Eq. (21) respectively.  
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(21) 

For )(53 P-GILOGdelCFE-G , Table 1 and Table 2 are used to compute the coefficients for the numerator and 

denominator taking 5.0=r and 01.0=  sec. The frequency responses of delta domain transfer functions for 

both 3rd order and 5th order approximations are demonstrated in Figure 1. The magnitude and phase error in 

frequency responses for )(33 P-GILOGdelCFE-G  and )(53 P-GILOGdelCFE-G are shown in Figure 2. The error in magnitude 

and phase are calculated with respect to the frequency response characteristics of the continuous time half 

order differentiator. It can be observed that the higher order approximation gives more closer result to the 

original half order differentiator. 
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Figure 1. Fifth order and third order approximation of s0.5 in delta domain using proposed method (Frequency 

Response) 

 

 

Figure 2. Error comparison between fifth order and third order approximation of s0.5 in delta domain using proposed 

method (magniude error and phase error) 
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The magnitude response is more closer to the original half order diffrentiator than the phase response 

characteristics for a wide range of frequency. The error in frequency response characteristics between original 

system and rational approximation is compared on the basis of the maximum absolute values of magnitude 

and phase error and these values are tabulated in Table 3. 

Table 3. Absolute maximum phase error and magnitude error for discretization of 0.5th- order differentiator using 

CFE-3P-GILOGDel 

Approximation order Maximum magnitude error (dB) Maximum phase error (Degree) 

Fifth 0.862 4.563 

Third 1.02 27.5 

The fifth order CFE approximation has been employed to develop the frequency responses for the various 

systems taken into consideration in this study since the approximation findings for the fifth order are more 

evident than those for the third order. At a sampling time of 0.01s = , the fifth order rational approximation 

of 1/2nd order differentiator is considered to be realized in discrete time domain based upon the four methods 

described in this paper namely CFE of Euler (CFEEuler), CFE of Tustin (CFETust), CFEDO and CFE of 3P-

GILOG in Delta domain (CFE-3P-GILOGdel) and following rational transfer functions are obtained. 
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Figure 3. Frequency response comparison after discretization of (s)G  using four methods for r=0.5 and Δ=0.01 
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Example 2: A fractional order system is considered (Baranowski et al., 2015). 

12318.0
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)(
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+

=
s

sG  (26) 

 

For the discretization of the above system, sampling time considered is 0001.0=  sec. The discretization of this 

fractional order transfer function results in four rational approximation T.F. as given by (27), (28), (29) and 

(30) by using four methods as mentioned in earlier section. 
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Figure 4. Frequency response comparison after discretization of 1 (s)G  using four methods for r=0.958 and Δ=0.0001 

Example 3: 

The FO system (Kothari et al., 2019) is chosen and the transfer function is given as: 

9.0997.0

979.0
)(

716.02
+

=
s

sG  (31) 

A higher sampling rate is considered in this case to discretize the system function represented by (31).The 

sampling rate is considered as 0.00001s= . CFEEuler, CFE Tust, CFEDO and CFE-3P-GILOGdel are the 
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four methods used to discretize this continuous time transfer function results in four rational approximation 

T.F. as given by (32), (33), (34) and (35) respectively. 
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Figure 5. Frequency response comparison after discretization of G2(s) using four methods for r=0.716 and Δ=0.00001 

Four different methods including the proposed method are used in this work to discretize the fractional order 

operator contained in three different continuous time fractional order systems. All systems' frequency 

responses (in fractional order), as well as the related discrete-time systems' frequency responses in shift as well 

as delta operator paramerterized domain are shown in Figure 3, Figure 4 and Figure 5 respectively. The 

magnitude approximation turns out to be superior over the phase approximation as can be shown from the 

above results.CFE-3P-GILOGDel produces the excellent frequency responses in the frequency range of (0.001 

rad/s to 1000 rad/sec) for all the three cases mentioned above. The proposed method is thus more promising 

than the other three approaches for discretization of fractional order system or operator in discrete time domain. 

Additionally, the superiority of the suggested approach is demonstrated by a comparison of the results with 

another method created in the delta domain. From Figure 5, it can be observed that at high sampling time (

0.00001 = sec), the frequency responses using The CFE-3P-GILOGDel method is very much closer to the 

frequency responses of the corresponding continuous time system. Therefore, the continuous time findings 

and the discrete time results with high sampling rate in delta domain are obtained in hand to hand, leading to 

the development of a unified framework for direct discretization o FOO in complex delta domain.  
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Figure 6. Magnitude and phase error after discretization of (s)G  using four methods, at r=0.5 and Δ=0.01 

 

 

Figure 7. Magnitude and phase error after discretization of 1 (s)G  using four methods at r=0.958 and Δ=0.0001 
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Figure 8. Magnitude and phase error after discretization of 2 (s)G  using four methods at r=0.716 and Δ=0.00001 

The error in approximation of the fractional order operators using four methods are shown in Figure 6, Figure 

7 and Figure 8. In each system, magnitude and phase errors are calculated through the absolute value of 

maximum magnitude and phase error using each of the four methods and they are tabulated in Table 4. 

Table 4. Absolute maximum magnitude error and phase error for four discretization methods for different systems 

FOS 

Maximum magnitude error (dB) Maximum phase error (degree) 

CFE-3P 

GILOG

Del 

CFEDO Euler Tustin 

CFE-3P 

GLOGD

el 

CFEDO Euler Tustin 

𝑮(𝒔) = 𝒔𝟎.𝟓 13.1065 24.3833 53.0980 56.1083 44.0834 44.9375 45 45 

𝑮𝟏(𝒔) =
𝟎. 𝟓𝟖𝟔𝟑

𝟎. 𝟐𝟑𝟏𝟖𝒔𝟎.𝟗𝟓𝟖 + 𝟏
 9.5916 9.4648 17.0709 22.2271 47.0785 47.8811 10.7379 70.7052 

𝑮𝟐(𝒔) =
𝟎. 𝟗𝟕𝟗

𝟎. 𝟗𝟗𝟕𝒔𝟎.𝟕𝟏𝟔 + 𝟎.𝟗𝟖𝟓
 16.2447 16.2449 31.2399 35.4573 54.7988 54.8412 62.1541 62.1493 

For the systems described in example 1, example 2 and example 3, the errors in magnitude and phase are less 

when the system is discretized using CFE3PGILOGDel method of discretization in delta domain than the other 

methods. At a very high limiting value of sampling rate, 0.00001s= , the maximum absolute magnitude error 

and phase error is much higher in case of discretization using Tustin and Euler method in z -domain in 

comparison to the discretization using delta operator parameterization. The results is visualized be visualized 

from Figure 8. The proposed method is proved to be superior as compared to the other methods in the literature 

for all three examples as stated in this paper. 

The pole and zero positions of the rational transfer functions obtained using four different methods are 

calculated and plotted in Figure 9, Figure 10, Figure 11 and Figure 12. 
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Figure 9. The pole zero plot of third-order and fifth order approximation of s0.716using CFE-3P-GILOGDel 

Another delta domain based discretization method (CFEDO) is adopted in this paper to discretize the fractional 

order operator. From Table 4, the superiority of the proposed method over CFEDO in terms of magnitude and 

phase error of approximation is explained. The pole–zero plot for the rational approximation of 716.0s using 

CFE3GILOGDEl method and CFEDO method are shown in Figure 9 and Figure 10 respectively. It can be 

observed from Figure 10 that the system's rational transfer function is unstable because the system's poles are 

located in an unstable area, as opposed to how the poles were produced using third-order and fifth-order 

approximations using CFE3GILOGDEl are lying in the stable region as can be observed in Figure 9. Therefore, 

it is evident that the proposed method delivers preferable approximation amidst all the four discretization 

methods and is a viable alternative in the literature of direct discretization of fractional order operator in delta 

domain. 

 

Figure 10. The pole zero plot of third-order and fifth order approximation of s0.716using CFE-DO method 
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Figure 11. The pole zero plot of third-order and fifth order approximation of s0.716 using Tustin method 

 

 

Figure 12. The pole zero plot of third-order and fifth order approximation of s0.716 using Euler method 
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An anlaysis is made in this section to show that direct discretization of the fractional order operator is preferable 

(𝑠±𝜇 , 0 < 𝜇 < 1) over the indirect discretization in complex delta domain. For the illustration purpose a 1/2nd 

order differentiator is considered for the discretization purpose. This operator is discretized using indirect 

discretization approach proposed by Oustaloup approximation (Baranowski et al., 2015) method as an 

intermediate step. 

Rational approximation of 5.0s is obtained using (Azarmi et al., 2016) as given in (36). 
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 + se. +  se. +  se.+ 

 se. +  se. +  s. +  s

s
Ous

=  (36) 

Equation. (36) is discretized in delta domain to get the rational approximation of 5.0s  w i t h  0001.0=  s e c .  

1039500555910053664005125300447742947
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ind 


=  (37) 

The rational approximation of 5.0s in delta domain using proposed direct discretization method 

(CFE3GILOGDEl) is illustrated in (38) w i t h  0001.0=  s e c .  
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Figure 13. Frequency response of transfer function obtained using indirect discretization of s0.5 at Δ=0.0001 sec 
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Figure 14. Frequency response transfer function obtained using direct discretization of s0.5 at Δ=0.0001 sec 

From the Figure 13 and Figure 14, it is clearly seen that the magnitude and phase plot obtained using the direct 

discretization in delta domain resembles to that of the 1/2nd order differentiator continuous time domain. In 

otherway, there is a notable deviation in the magnitude and phase plots of the rational transfer function obtained 

using indirect discretization via Oustaloup approximation technique with respect to the frequency reponse 

characterstics of 1/2nd order differentiator continuous time domain. Thus, direct discretization of the fractional 

operator in delta domain proves to be superior over indirect discretization of fractional order operator. 

4. CONCLUSION 

In this paper, a new direct discretization method for fractional order operator is proposed. The discretization 

of the fractional order operator or system using tradional discrete z -domain can not provide meaningful 

information when sampled at a very fast sampling frequency. The corrsponding delta operator parameterized 

systems provides the continuous time results at high sampling frequency. For obtaining rational transfer 

function, mapping between the continuous time and delta domain variables are required. In this work, an 

approximation mapping between the s -domain and  -domain is established through trapezoidal quadrature 

rule and traditional CFE method is used to obtain the rational transfer function corresponding to the fractional 

order operator in discrete delta domain. 

From the simulation results, it is observed that the the proposed discretization method using delta operator is 

producing gratifying frequency response for the approximated transfer functions in delta domain. At fast 

sampling rate (Δ=0.00001 sec), the delta operator parameterized system produces almost same result as that 

of the response obtained with original fractional order systems (Figure 5). The Table 4 illustrates the minimum 

errors in magnitude and phase for delta operator parameterized approximation of FOO. The superiority of the 

proposed method over the indirect discretization method is also verified as can be observed from Figure 13 

and Figure 14. Therefore, the method proposed is said to be a viable alternate method of the direct discretization 

in discrete delta domain for discretizing the fractional order operator or systems available in the literature. 
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