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Abstract. This paper focuses on a numerical approach for the solution of the pollution problem for a system of
lakes. The pollution problem consists of three lakes with interconnecting channels and this model corresponds to
a system of linear differential equations. The main purpose of this study is to present a collocation method based
on the Boubaker polynomials to obtain approximate solutions of this pollution model. Firstly, the approximation
solutions are assumed in the forms of the truncated series of the Boubaker polynomials. The solution forms and
their derivatives are written in the matrix forms. By means of these matrix forms, the matrix operations and the
collocation points, the pollution model is reduced to a system of the algebraic linear equations. In addition, the error
estimation method is presented by using the residual function. The parameters in the pollution model are selected
according to the datas in the literature. For the selected parameters, the applications of the presented method are
made by using a code written in MATLAB. The application results are compared with the results of other methods
in the literature. The effectiveness and reliability of the presented method are observed from the obtained results.
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Keywords: Approximate solutions, Boubaker polynomials, collocation method, error estimation, the pollution model
of lakes.

1. Introduction

Pollution has become a very serious threat to our environment. Monitoring pollution is the first step in planning
to save the environment. The use of differential equations makes it possible to monitoring pollution. In this study, a
system of three lakes, interconnected by channels flowing between them, is introduced using a system of differential
equations.

Recently, many methods related to system of differential equations such as Chebyshev collocation method [8, 24],
high-order collocation methods [26], hybrid collocation method [2], Taylor collocation method [19], hybrid block
method [27], Legendre–Gauss collocation method [12,13], two-step almost collocation method [7], spectral collocation
method [11, 34], rational Chebyshev collocation method [18], Legendre-Gauss-Radau collocation method [23], an
exponential matrix method [30], block hybrid collocation method [29], Taylor collocation and Adomian decomposition
method [6], RKN-type Fourier collocation method [22], Laguerre collocation method [32, 33], exponential Fourier
collocation method [25], Haar wavelet collocation method [1, 21], Jacobi collocation method [9] have been studied.
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Figure 1. System of three lakes with interconnecting channels [4, 10]

In addition, many methods related to the problem of pollution for a system of lakes such as Adomian method [4],
homotopy perturbation method [16], modified differential transformation method [15], variational iteration method [5],
Bessel collocation method [31], modified differential transform method [3], Bernoulli Ritz-collocation method [20],
Laplace transform method [17] have been studied by many researchers.

The model is created with the following some assumptions [4]:
• Each lake is considered a large compartment.
• Channels connected as pipes between compartments are considered.
• The direction of flow in channels or pipes is demonstrated with arrows in the Figure 1.
• A pollutant is introduced into the first lake and p(t) shows the rate at which the pollutant enters the lake per

unit time.
• The function p(t) may be constant or change over time.
• We are interested in knowing the pollution level in each lake at any given time.
• Let yk(t) demonstrate the amount of pollution in lake k at any time t ≥ 0, where k = 1, 2, 3.
• We assume that the pollutant in each lake is evenly distributed throughout the lake by some mixing process.
• The water volume Vk in lake k rests constant for each lake.
• We also assume that the type of pollution is permanent and not reduced to other forms.
• Then, the pollutant concentration in lake k at any given time is shown by

nk(t) =
yk(t)
Vk
.

• Initially each lake is assumed to be free of any pollutants, so yk(0) = µk for each k = 1, 2, 3. Here, µk are
appropriate constants.
• Let Fmk be the flow rate from lake k to lake m. Here, Fmk are appropriate constants.
• The pollutant flow from lake k to lake m at any time t is demonstrated by xmk(t), defined by

xmk(t) = Fmknk(t) = Fmk
yk(t)
Vk
.

Thus, xmk(t) measures the rate at which the pollutant concentration in lake k flows into lake m at time t. We will
observe that

The pollutant change rate = Input rate - Output rate.
This principle is applied to each lake. Thus, the problem of pollution for a system of lakes is modeled with the

system of first-order equations given by [4]
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y
′

1(t) = F13
V3

y3(t) + p(t) − F31
V1

y1(t) − F21
V1

y1(t)
y
′

2(t) = F21
V1

y1(t) − F32
V2

y2(t), 0 ≤ t ≤ b,
y
′

3(t) = F31
V1

y1(t) + F32
V2

y2(t) − F13
V3

y3(t)
(1.1)

and initial conditions

y1(0) = µ1, y2(0) = µ2, and y3(0) = µ3. (1.2)

Since the volume of each lake to remain constant, the flow rate into each lake must balance the flow out of the lake.
Hence, we write

Lake 1:F13 = F21 + F31,
Lake 2:F21 = F32,
Lake 3:F13 = F31 + F33.

Here, yk(t)(k = 1, 2, 3) are the function representing the amount of pollution in k-th lake. F13, F21, F31, F32,V1,V2,V3
are the appropriate constants. p(t) is a function defined in interval 0 ≤ t ≤ b, which represents the rate at which the
pollutant enters the lake per unit time. In this study, the approximate solutions of (1.1) are investigated in form of the
truncated Boubaker polynomial series given by

yk(t) =
N∑

i=0

ak,iBi(t), (k = 1, 2, 3), 0 ≤ t ≤ b. (1.3)

Here, N ≥ 1 is chosen to be any positive integer. ak,i are the unknown Boubaker coefficients. Bi(t) are the Boubaker
polynomials defined by [14]

Bi(t) =
⟦i/2⟧∑
j=0

(−1) j (i − 4 j)
i − j

(
i − j

j

)
ti−2 j. (1.4)

The recurrence relation of the Boubaker polynomials is [14]

Bi(t) = tBi−1(t) − Bi−2(t), i ≥ 3,

where B0(t) = 1, B1(t) = t, B2(t) = t2 + 2.
Let’s summarize rest of this paper as follows: The collocation method is presented in Section 2. For this, the

collocation points are defined and the assumed solutions are written in matrix forms. The error estimation method is
given in Section 3. In Section 4, the application of the method is made and the results are interpreted. The results of
the paper are summarized in Section 5.

2. Boubaker CollocationMethod

Let’s start this section by defining the collocation points by

ti =
b
N

i, i = 0, 1, ...,N. (2.1)

Secondly, let’s write the Boubaker polynomial solutions yk(t), (k = 1, 2, 3) in (1.3) in matrix forms as

yk(t) = B(t)Ak; Ak = [ ak,0 ak,1 · · · ak,N ]T , B(t) = [ B0(t) B1(t) · · · BN(t) ]. (2.2)

On the other hand, the Boubaker polynomials in (1.4) can be expressed in matrix form

B(t) = Y(t)M. (2.3)

Here, Y(t) = [ 1 t · · · tN ] and if N is odd [28],
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MT =



ϕ0,0 0 0 · · · 0 0
0 ϕ1,0 0 · · · 0 0
ϕ2,1 0 ϕ2,0 · · · 0 0
...

...
...

. . .
...

...
ϕN−1, N−1

2
0 ϕN−1, N−3

2
· · · ϕN−1,0 0

0 ϕN, N−1
2

0 · · · 0 ϕN,0


,

and if N is even [28],

MT =



ϕ0,0 0 0 · · · 0 0
0 ϕ1,0 0 · · · 0 0
ϕ2,1 0 ϕ2,0 · · · 0 0
...

...
...

. . .
...

...
0 ϕN−1, N−1

2
0 · · · ϕN−1,0 0

ϕN, N2
0 ϕN, N−2

2
· · · 0 ϕN,0


,

ϕ(m, n) =
[
m − 4n
m − n

(
m − n

n

)]
(−1)n, m, n = 0, 1, . . . ,N.

Using (2.3), the Boubaker polynomial solutions in matrix form (2.2) can be expressed as

yk(t) = Y(t)MAk, (k = 1, 2, 3). (2.4)

As a next step, let’s write the terms y
′

k(t), (k = 1, 2, 3) in model (1.1) in matrix forms. In that case, the derivative of
(2.4) is taken and the first derivatives of the Boubaker polynomial solutions become in the next matrix forms

y
′

k(t) = Y(t)DMAk, (k = 1, 2, 3), (2.5)

where [31]

D =



0 1 0 0 · · · 0
0 0 2 0 · · · 0
0 0 0 3 · · · 0
...
...
...
...
. . .

...
0 0 0 0 · · · N
0 0 0 0 · · · 0


.

Substituting matrix relations (2.4)-(2.5) in (1.1), we get

Y(t)DMA1 =
F13
V3

Y(t)MA3 + p(t) − F31
V1

Y(t)MA1 −
F21
V1

Y(t)MA1

Y(t)DMA2 =
F21
V1

Y(t)MA1 −
F32
V2

Y(t)MA2

Y(t)DMA3 =
F31
V1

Y(t)MA1 +
F32
V2

Y(t)MA2 −
F13
V3

Y(t)MA3.

(2.6)

By using the collocation points (2.1) in (2.6), the system (2.6) is expressed as
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Y(t0)DMA1 =
F13
V3

Y(t0)MA3 + p(t0) − F31
V1

Y(t0)MA1 −
F21
V1

Y(t0)MA1

Y(t0)DMA2 =
F21
V1

Y(t0)MA1 −
F32
V2

Y(t0)MA2

Y(t0)DMA3 =
F31
V1

Y(t0)MA1 +
F32
V2

Y(t0)MA2 −
F13
V3

Y(t0)MA3

Y(t1)DMA1 =
F13
V3

Y(t1)MA3 + p(t1) − F31
V1

Y(t1)MA1 −
F21
V1

Y(t1)MA1

Y(t1)DMA2 =
F21
V1

Y(t1)MA1 −
F32
V2

Y(t1)MA2

Y(t1)DMA3 =
F31
V1

Y(t1)MA1 +
F32
V2

Y(t1)MA2 −
F13
V3

Y(t1)MA3
...

Y(tN)DMA1 =
F13
V3

Y(tN)MA3 + p(tN) − F31
V1

Y(tN)MA1 −
F21
V1

Y(tN)MA1

Y(tN)DMA2 =
F21
V1

Y(tN)MA1 −
F32
V2

Y(tN)MA2

Y(tN)DMA3 =
F31
V1

Y(tN)MA1 +
F32
V2

Y(tN)MA2 −
F13
V3

Y(tN)MA3.

(2.7)

On the other hand, the matrix relations for the initial conditions (1.2) are written as

Y(0)MA1 = µ1
Y(0)MA2 = µ2
Y(0)MA3 = µ3.

(2.8)

The system (2.7) and the system (2.8) are combined as a single system. The obtained new system is solved by
using a program created in MATLAB. The solution of this system gives the coefficients matrices A1, A2, A3. By substi-
tuting these Boubaker coefficient matrices A1, A2, A3 in (2.4), the Boubaker polynomial solutions y1(t), y2(t), y3(t) are
obtained.

3. Error EstimationMethod

In this section, an error problem based on the approximate solution is presented. This error problem is solved
according to the method in Section 2 and thus the estimated errors are obtained.

Let yk(t) (k = 1, 2, 3) and yk,N(t) (k = 1, 2, 3) be, respectively, the exact solutions and the Boubaker polynomial
solutions of the problem (1.1).

Since the approximate solutions y1,N(t), y2,N(t), y3,N(t) provide the problem (1.1), the residual functions Rk,N(t)(k =
1, 2, 3) are represented by

R1,N(t) = y
′

1,N(t) − F13
V3

y3,N(t) − p(t) + F31
V1

y1,N(t) + F21
V1

y1,N(t)
R2,N(t) = y

′

2,N(t) − F21
V1

y1,N(t) + F32
V2

y2,N(t)
R3,N(t) = y

′

3,N(t) − F31
V1

y1,N(t) − F32
V2

y2,N(t) + F13
V3

y3,N(t).
(3.1)

Similarly, since the approximate solutions y1,N(t), y2,N(t), y3,N(t) provide the conditions (1.2), we have

y1,N(0) = µ1, y2,N(0) = µ2, y3,N(0) = µ3. (3.2)

Hence, it can be easily checked the accuracy of the Boubaker polynomial solutions by means of Eq. (3.1).
On the other hand, by subtracting the problem (3.1)-(3.2) from the problem (1.1)-(1.2), the error problem is obtained

as

e
′

1,N(t) − F13
V3

e3,N(t) + F31
V1

e1,N(t) + F21
V1

e1,N(t) = −R1,N(t)
e
′

2,N(t) − F21
V1

e1,N(t) + F32
V2

e2,N(t) = −R2,N(t)
e
′

3,N(t) − F31
V1

e1,N(t) − F32
V2

e2,N(t) + F13
V3

e3,N(t) = −R3,N(t)
e1,N(0) = 0, e2,N(0) = 0, and e3,N(0) = 0,

(3.3)

where e1,N(t) = y1(t) − y1,N(t), e2,N(t) = y2(t) − y2,N(t) and e3,N(t) = y3(t) − y3,N(t).
Finally, the error problem (3.3) is solved according to the method in Section 2. Here, the estimated error functions

are calculated for the M cut-off limit for M > N. In other words, the estimated error functions e1,N,M(t), e2,N,M(t) and
e3,N,M(t) are expresssed in the form
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ek,N,M(t) =
M∑

i=0

a∗k,iBi(t), (k = 1, 2, 3).

Here, a∗k,i are the new Boubaker coefficients for M = 0, 1, ...,N.

4. Application

In this section, the numerical methods in Sections 2 and 3 are applied to some numerical values of the parameters
in problem (1.1)-(1.2) and also the obtained results are discussed in tables and graphs. All the computations are made
using a program created for the method in MATLAB. In problem (1.1)-(1.2), p(t) = 1+sin(t), F13 = 38mi3/year, F21 =

18mi3/year, F31 = 20mi3/year, F32 = 18mi3/year, V1 = 2900mi3, V2 = 850mi3, V3 = 1180mi3, y1(0) = 0, y2(0) =
0, y3(0) = 0 are chosen. According to the selected parameters, the model becomes

y
′

1(t) = 38
1180 y3(t) + (1 + sin(t)) − 20

2900 y1(t) − 18
2900 y1(t)

y
′

2(t) = 18
2900 y1(t) − 18

850 y2(t), 0 ≤ t ≤ 1,
y
′

3(t) = 20
2900 y1(t) + 18

850 y2(t) − 38
1180 y3(t)

y1(0) = 0, y2(0) = 0, y3(0) = 0.

(4.1)

Using (2.4) for N = 3, the approximate solutions yk,3(t) (k = 1, 2, 3) of the problem (4.1) are sought in the form

yk,3(t) = Y(t)MAk, (k = 1, 2, 3), (4.2)

where

Y(t) = [ 1 t t2 t3 ], Ak = [ ak,0 ak,1 ak,2 ak,3 ]T , M =


1 0 2 0
0 1 0 1
0 0 1 0
0 0 0 1

 .
From (2.1) for N = 3, the collocation points are computed as

t0 = 0, t1 =
1
3
, t2 =

2
3
, t3 = 1. (4.3)

By utilizing the collocation points (4.3) in (2.7) and (2.8) for the selected parameters, we have

Y(0)DMA1 =
F13
V3

Y(0)MA3 + p(0) − F31
V1

Y(0)MA1 −
F21
V1

Y(0)MA1

Y(0)DMA2 =
F21
V1

Y(0)MA1 −
F32
V2

Y(0)MA2

Y(0)DMA3 =
F31
V1

Y(0)MA1 +
F32
V2

Y(0)MA2 −
F13
V3

Y(0)MA3

Y( 1
3 )DMA1 =

F13
V3

Y( 1
3 )MA3 + p( 1

3 ) − F31
V1

Y( 1
3 )MA1 −

F21
V1

Y( 1
3 )MA1

Y( 1
3 )DMA2 =

F21
V1

Y( 1
3 )MA1 −

F32
V2

Y( 1
3 )MA2

Y( 1
3 )DMA3 =

F31
V1

Y( 1
3 )MA1 +

F32
V2

Y( 1
3 )MA2 −

F13
V3

Y( 1
3 )MA3

Y( 2
3 )DMA1 =

F13
V3

Y( 2
3 )MA3 + p( 2

3 ) − F31
V1

Y( 2
3 )MA1 −

F21
V1

Y( 2
3 )MA1

Y( 2
3 )DMA2 =

F21
V1

Y( 2
3 )MA1 −

F32
V2

Y( 2
3 )MA2

Y( 2
3 )DMA3 =

F31
V1

Y( 2
3 )MA1 +

F32
V2

Y( 2
3 )MA2 −

F13
V3

Y( 2
3 )MA3

Y(1)DMA1 =
F13
V3

Y(1)MA3 + p(1) − F31
V1

Y(1)MA1 −
F21
V1

Y(1)MA1

Y(1)DMA2 =
F21
V1

Y(1)MA1 −
F32
V2

Y(1)MA2

Y(1)DMA3 =
F31
V1

Y(1)MA1 +
F32
V2

Y(1)MA2 −
F13
V3

Y(1)MA3

(4.4)

and

Y(0)MA1 = 0
Y(0)MA2 = 0
Y(0)MA3 = 0,

(4.5)

where
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Figure 2. Graphics of the Boubaker polynomial solutions of model (4.1) obtained using N = 3, 6, 10
corresponding to y1,N(t)

Y(0) = [ 1 0 0 0 ], Y
(

1
3

)
=

[
1 1

3
1
9

1
27

]
, Y

(
2
3

)
=

[
1 2

3
4
9

8
27

]
, Y(1) = [ 1 1 1 1 ],

A1 = [ a1,0 a1,1 a1,2 a1,3 ]T , A2 = [ a2,0 a2,1 a2,2 a2,3 ]T , A3 = [ a3,0 a3,1 a3,2 a3,3 ]T ,

D1 =


0 1 0 0
0 0 2 0
0 0 3 0
0 0 0 0

 .
The system (4.4) and the system (4.5) are combined as a single system. The obtained new system is solved and the

coefficients matrices are found as below

A1 = [ −1.0223 1.056 0.51117 −0.055969 ]T ,
A2 = [ −0.0062884 −0.00091315 0.0031442 0.00091315 ]T ,
A3 = [ −0.0069854 −0.0010266 0.0034927 0.0010266 ]T .

By substituting these Boubaker coefficient matrices A1, A2, A3 in (4.2), the Boubaker polynomial solutions are cal-
culated as

y1,3(t) = −0.0559691071449t3 + 0.511169853145t2 + t
y2,3(t) = 0.000913154523724t3 + 0.00314419625898t2 + 2.64697796017e − 23
y3,3(t) = 0.00102656683731t3 + 0.00349268868257t2 − 2.64697796017e − 23.

In Figure 2, the Boubaker polynomial solutions y1,N(t) of model (4.1) are shown for N = 3,N = 6,N = 10. In
Figure 3, the Boubaker polynomial solutions y2,N(t) of model (4.1) are given for N = 3,N = 6,N = 10. In Figure 4,
the Boubaker polynomial solutions y3,N(t) of model (4.1) are presented for N = 3,N = 6,N = 10.
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Figure 3. Graphics of the Boubaker polynomial solutions of model (4.1) obtained using N = 3, 6, 10
corresponding to y2,N(t)
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Figure 4. Graphics of the Boubaker polynomial solutions of model (4.1) obtained using N = 3, 6, 10
corresponding to y3,N(t)
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Figure 5. Comparison of the residual error functions R1,N(t) with Bessel collocation method [31] for
N = 3, N = 6, N = 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

10
-20

10
-15

10
-10

10
-5

10
0

10
5

R
e
s
id

u
a
l 
E

rr
o
rs

R
2,3

(t) for Present Method

R
2,6

(t) for Present Method

R
2,10

(t) for Present Method

R
2,3

(t) for Bessel Method

R
2,6

(t) for Bessel Method

R
2,10

(t) for Bessel Method
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Figure 7. Comparison of the residual error functions R3,N(t) with Bessel collocation method [31] for
N = 3, N = 6, N = 10

Table 1. Comparison of the residual absolute errors |R1,N(t)|, |R2,N(t)|, |R3,N(t)| corresponding to N =
3, N = 6, N = 10 in model (4.1)

|R1,N(t)| |R2,N(t)| |R3,N(t)|

ti N = 3 N = 6 N = 10 N = 3 N = 6 N = 10 N = 3 N = 6 N = 10

0.2 1.9603e-03 4.2273e-08 1.2676e-13 4.5638e-06 6.0769e-010 6.6115e-16 4.9742e-06 6.7800e-010 7.4546e-16
0.4 1.1016e-03 4.1197e-008 1.2107e-13 2.6079e-06 5.5439e-010 8.0919e-16 2.8424e-006 6.1853e-010 9.1416e-16
0.6 1.6179e-03 6.5658e-008 9.8588e-14 3.9118e-06 8.3158e-010 9.3706e-16 4.2636e-006 9.2779e-010 1.0639e-15
0.8 7.3601e-03 2.0293e-007 5.0737e-14 1.8255e-05 2.4308e-009 1.0197e-15 1.9897e-005 2.7120e-009 1.1667e-15
1 3.1884e-02 1.0456e-005 4.8928e-11 8.1496e-05 1.1899e-007 5.4596e-13 8.8826e-005 1.3275e-007 6.0929e-13

Table 2. Comparison of the estimated absolute errors |e1,N,M(t)|, |e2,N,M(t)|, |e3,N,M(t)| corresponding
to (N,M) = (3, 4), (N,M) = (6, 7), (N,M) = (10, 11)

|e1,N,M(t)| |e2,N,M(t)| |e3,N,M(t)|

ti (N,M) = (3, 4) (N,M) = (6, 7) (N,M) = (10, 11) (N,M) = (3, 4) (N,M) = (6, 7) (N,M) = (10, 11) (N,M) = (3, 4) (N,M) = (6, 7) (N,M) = (10, 11)

0.2 3.3675e-04 1.9604e-08 4.9923e-14 1.1043e-06 2.4969e-10 3.7808e-16 1.2115e-06 2.7906e-10 4.2427e-16
0.4 4.4368e-04 1.5631e-08 7.5458e-14 1.8459e-06 1.7380e-10 4.5382e-16 2.0331e-06 1.9481e-10 5.1173e-16
0.6 6.7597e-05 1.4350e-08 9.7390e-14 1.2837e-06 1.4038e-10 5.1669e-16 1.4304e-06 1.5793e-10 5.8611e-16
0.8 4.2440e-04 3.0324e-08 1.0911e-13 2.3650e-06 3.1902e-10 5.3819e-16 2.6157e-06 3.5757e-10 6.1630e-16
1 4.1991e-03 4.6473e-07 1.1463e-12 1.1925e-05 5.9402e-09 1.4433e-14 1.3047e-05 6.6249e-09 1.6083e-14

Figure 5 compares the residual error functions R1,N(t) of the model (4.1) with Bessel collocation method [31] for
N = 3,N = 6,N = 10. Figure 6 shows the comparison of the residual error functions R2,N(t) of model (4.1) with the
Bessel collocation method [31] for N = 3,N = 6,N = 10. Figure 7 compares the residual error functions R3,N(t) of
model (4.1) with the Bessel collocation method [31] for N = 3,N = 6,N = 10.
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Figure 8. Comparison of the estimated error functions e1,N,M(t) for (N,M) = (3, 4), (N,M) = (6, 7),
(N,M) = (10, 11)
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Figure 9. Comparison of the estimated error functions e2,N,M(t) for (N,M) = (3, 4), (N,M) = (6, 7),
(N,M) = (10, 11)
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Figure 10. Comparison of the estimated error functions e3,N,M(t) for (N,M) = (3, 4), (N,M) = (6, 7),
(N,M) = (10, 11)
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Figure 11. Comparison of the estimated error functions e1,N,M(t) with the residual error functions
R1,N(t) for (N,M) = (3, 4), (N,M) = (6, 7), (N,M) = (10, 11)
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Figure 12. Comparison of the estimated error functions e2,N,M(t) with the residual error functions
R2,N(t) for (N,M) = (3, 4), (N,M) = (6, 7), (N,M) = (10, 11)
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Figure 13. Comparison of the estimated error functions e3,N,M(t) with the residual error functions
R3,N(t) for (N,M) = (3, 4), (N,M) = (6, 7), (N,M) = (10, 11)
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In Table 1, some values of |R1,N(t)|, |R2,N(t)|, |R3,N(t)| of the model (4.1) are given for N = 3,N = 6,N = 10. In
Table 2, some values of |e1,N,M(t)|, |e2,N,M(t)|, |e3,N,M(t)| of the model (4.1) are given for (N,M) = (3, 4), (N,M) = (6, 7),
(N,M) = (10, 11).

The estimated error functions e1,N,M(t), e2,N,M(t) and e3,N,M(t) of the model (4.1) are, respectively, visualized for
(N,M) = (3, 4), (N,M) = (6, 7), (N,M) = (10, 11) in Figures 8,9 and 10.

In Figures 11,12 and 13 the residual error functions R1,N(t),R2,N(t) and R3,N(t) and the estimated error functions
e1,N,M(t), e2,N,M(t) and e3,N,M(t) of the model (4.1) are, respectively, compared for (N,M) = (3, 4), (N,M) = (6, 7),
(N,M) = (10, 11).

According to Figures 2, 3, 4, it can be said that the Boubaker polynomial solutions y1,N(t), y2,N(t), y3,N(t) of model
(4.1) give similar results for N = 3,N = 6,N = 10. It is said that the pollution in the lakes increases when the Boubaker
polynomial solutions y1,N(t), y2,N(t), y3,N(t) are examined. Also, while Lake 3 gets the most pollution, the least pollution
happens in Lake 1.

According to the comparison made for R1,N(t) in Figure 5, similar results are obtained with the Bessel collocation
method [31] for N = 3 and N = 6 but it can be said that the Bessel collocation method [31] for N = 10 is more
successful at some points. However, for N = 3,N = 6 and N = 10 in Figure 6 and Figure 7, the present method is
more accurate than the Bessel collocation method [31]. Thus, in general, it is said that our method is more successful.

According to Table 1, it is observed that the residual absolute errors |R1,N(t)|, |R2,N(t)|, |R3,N(t)| decrease as the value
of N increases. According to Table 2, it is commented that the estimated absolute errors |e1,N,M(t)|, |e2,N,M(t)|, |e3,N,M(t)|
decrease as the values of (N,M) increases. This result is also seen from Figures 8, 9, 10.

According to Figures 11, 12, 13, it is observed that the estimated errors e1,N,M(t), e2,N,M(t), e3,N,M(t) of model (4.1)
give better results than the residual errors for (N,M) = (3, 4), (N,M) = (6, 7), (N,M) = (10, 11).

5. Conclusion

In this paper, a collocation method based on the Boubaker polynomials is presented for the approximate solu-
tions of problem of pollutions of three lakes with interconnecting channels. Parameter values and known function
p(t) in the method are chosen as p(t) = 1 + sin(t), F13 = 38mi3/year, F21 = 18mi3/year, F31 = 20mi3/year, F32 =

18mi3/year,V1 = 2900mi3,V2 = 850mi3,V3 = 1180mi3, y1(0) = 0, y2(0) = 0, y3(0) = 0. The application of the
method is made by using a program written in MATLAB. The comparisons are also made with the Bessel collocation
method [31] in the literature. Application results are shown in tables and graphs. According to the results, it can be
said that the present method is more successful than the Bessel collocation method [31]. In addition, according to the
method, it is seen that fewer errors are obtained as the values of (N,M) increase. According to Figures 11, 12, 13,
it is seen that the error estimation method is successful. According to Figures Figures 2, 3, 4, it is observed that the
pollution in the lakes is increased. Besides, while Lake 3 gets the most pollution, the least pollution happens in Lake
1. It can also be extended to nonlinear problems of similar type in a future work.
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[8] Dolapçi, İ. T., Chebyshev collocation method for solving linear differential equations, Mathematical and Computational Applications, 9(2004),
107–115.

[9] Faghih, A., Mokhtary, P., A new fractional collocation method for a system of multi-order fractional differential equations with variable
coefficients, Journal of Computational and Applied Mathematics, 383(2021), 113139.

[10] Giordano, F.R., Weir, M.D., Differential Equations: A Modern Approach, Addison Wesley Publishing Company, 1991.
[11] Guo, B.Y., Wang, Z.Q., A spectral collocation method for solving initial value problems of first order ordinary differential equations, Discrete

& Continuous Dynamical Systems-B, 14(2010), 1029–1054.
[12] Guo, B.Y., Wang, Z.Q., Legendre–Gauss collocation methods for ordinary differential equations, Advances in Computational Mathematics,

30(2009), 249–280.
[13] Guo, B.Y., Yan, J.P., Legendre–Gauss collocation method for initial value problems of second order ordinary differential equations, Applied

Numerical Mathematics, 59(2009), 1386–1408.
[14] Labiadh, H., Boubaker K., A Sturm-Liouville shaped characteristic differential equation as a guide to establish a quasi-polynomial expression

to the Boubaker polynomials, Differential Equations and Control Processes, 2(2007), 117–133.
[15] Merdan, M., A new application of modified differential transformation method for modelling the pollution of a system of lakes, Selçuk Journal
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