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Abstract- Since the Weibull distribution has been accepted reference distribution in wind energy field, topics on its 

parameter estimation methods get much attention. In this context, the literature have generally focused on non-robust 

methods, which may yield questionable results in the cases of unusual and contaminated wind speed data. This paper 

discusses some robust estimation methods of the parameters of Weibull distribution for unusual wind speed data cases. The 

considered robust methods are evaluated by using artificially generated unusual wind speed data cases. It has been found 

that some of the considered robust methods provide reliable results compared the classical ones. The similar results are 

observed for the estimation of the mean power density error. As a result, the analyzes performed show that robust and 

efficient classical methods can be used together to check the results. 
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1. INTRODUCTION 

 

It is clear that the importance of wind energy among 

renewable energy sources has considerable attention over 

the last half-century. Wind is one of clean and inexhaustible 

energy sources. Thus, public and private sector investments 

in wind energy are increasing day by day. It is well-known 

that it is necessary to observe long term wind speed data to 

understand whether there is the potential of wind energy of 

the specified region. Generally, observed empirical wind 

speed data is modeled by different statistical distributions 

such as exponential, Gamma, Beta, Weibull etc. [1-8]. It is 

well-known that the Weibull distribution is widely used 

reference distribution in the literature [1-3, 9]. Moreover, in 

some wind energy software, wind power is estimated based 

on the Weibull distribution [9].  Thus, since estimating wind 

energy potential is depend on the Weibull distribution, 

correctly estimation of its parameters is crucial. Several 

estimation methods have been used and proposed for the 

Weibull distribution such as maximum likelihood method, 

moment method, empirical method, modified maximum 

likelihood method and power method [9-12]. For example, 

Seguro and Lambert [10] claim that when the wind speed 

data is provided in time series format, the maximum 

likelihood (ML) estimation method can be used. [11-12] 

have compared some estimation methods for wind speed 

data.  

As different previous studies, [9] have recently proposed 

power density method for estimating the parameters of 

Weibull distribution.  

 

In literature, these estimation methods are handled from 

different angles. On the other hand, if there are unusual or 

outlier wind observations in data due to mistakes in 

measuring and recording data, the aforementioned 

estimation methods can produce non-reliable results. These 

unusual wind speed observations are sometimes called 

contaminated data. In such cases, robust estimation methods 

can be used to check reliability of the estimated parameters. 

 

In this paper, we research the performance of robust 

estimation methods of the Weibull distribution for clear 

wind speed data and for contaminated (unusual) wind speed 

data. It should be expressed that preliminary study of this 

paper was presented in International Conference on 

Engineering & MIS (ICEMIS2015), Turkey, Istanbul, 24 - 

26 September 2015. 

 

The probability density function (pdf) and cumulative 

distribution function (cdf) of Weibull random variable is 

given as follows: 
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where   is shape parameter and   is scale parameter.  

 

The objective of this study is to evaluate a number of robust 

estimation methods in estimating parameters of the Weibull 

distribution by using real wind speed data and also 

generated unusual wind speed observation. Considering all 

these issues, the remainder of this study is organized as 

follows: In Section 2, the commonly-used estimation 

methods are recalled. In section 3, the considered robust 

estimation methods are introduced briefly. The results of 

analysis based on real wind speed data are provided in 

section 4. Finally section 5 finishes the study by giving the 

conclusions and suggestions. 

 

2. COMMONLY USED ESTIMATION METHODS 

 

In this section, the most commonly used methods for 

parameter estimation of the Weibull distribution in wind 

energy field are recalled.  

 

2.1 Maximum Likelihood Method 

 
Maximum Likelihood (ML) estimates are obtained by 

maximizing the log-likelihood (LL) function of a sample 

from Weibull distribution. LL function for Weibull 

distribution is obtained as follows: 
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ML estimates of parameters are calculated from the solution 

of the following equations obtained from derivatization of 

LL with respect to the parameters   and  : 
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It is reached from the equations (4) and (5) that we have to 

use numerical method to obtain the estimates [13]. 

 

2.2 Least Squares Method 

 
Least squares (LS) estimators of the Weibull distribution are 

based on the linear form of  F x given in (6). 
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For sample size n, let      1 2
, ,...,

n
x x x  be order statistics and 

then, the linear regression model can be written as follows: 
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To estimate  F x , we use Bernard’s median rank estimator 

given as following: 
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The equation (7) can be converted to linear regression 

model as follows: 
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Finally the classical linear regression model can be written 

as following: 
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After estimating the parameters of linear regression model, 

the shape parameter  and the scale parameter   can be 

obtained as follows: 
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It is known that LS estimate can be calculated by 

minimizing the sum of squares of the errors in the equation 

(10). Thus, LS estimates are, 
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3. ROBUST ESTIMATION METHODS  
 

In this section, some robust estimation methods that could 

be used in wind energy field for the parameters of Weibull 

distribution, are introduced. In this estimation procedure, 

the linear form (7) of (x)F will be used.   

 

3.1 M-Estimators 

 

This estimator proposed by Huber [15] minimizes the sum 

of a less rapidly increasing function of residuals. The 

general form of M-estimator is, 
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where   is objective function of residuals ( 0 1
ˆ ˆ

i i ie y x   

) and ̂  is robust scale estimate to make ̂ scale equivariant 

[16, 17].  One of the popular choice for scale estimate is 

mean absolute deviation (MAD) calculated as, 
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While n is large and the error distribution is normal, the 

tuning constant 0.6745 provides nearly unbiased estimator 

for scale [17]. In the literature, Sn and Qn are alternative for 

robust scale estimate, that are more efficient or higher 

breakdown point than MAD [18]. In this study, we use 

MAD for initial scale estimate due to the widely usage and 

ease of use. 

 

Let    be the derivative of  . System of two 

equations are produced after differentiating the objective 

function with respect to the coefficients
 

and setting the 

partial derivatives to 0. Solution of following equations 

gives regression coefficients: 
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An iterative solution method, called iteratively reweighted 

least squares (IRWL), is used to solve equation (16) [17]. 

In robust literature, there are several objective functions 

which have been proposed for M-estimations. According to 

the behavior of   function, these estimators are classified 

as hard redescending, soft redescending and monotone. In 

this study we use Turkeys’ Bisquare (soft redescending), 

Huber (monotone) and Cauchy (soft redescending)   

objective functions whose formulations are given 

respectively: 
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where c is a tuning constant that plays a vital role to 

determine robustness and efficiency of an estimator [16]. 

 

3.2 Least Trimmed Squares 

 

The estimates based on least trimmed squares (LTS) method 

proposed by Rousseeuw [21] are calculated by minimizing 

the sum of the trimmed squared residuals 0 1
ˆ ˆ( x )i i ie Y      

The LTS estimator is, 
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where ( )ie  is ith ordered squared residual  (1 ) 1h n     is 

the number of observations that incorporated in the 

calculation of the estimator and proportion of trimming is 

provided as  .  

 

3.3 Least Median of Squares 

 

Similar to LTS, the least median of squares (LMS) method 

proposed by Rousseeuw [20] is operated by minimizing the 

median of the squared residuals. The LMS estimator is, 

 

   2min imedian e   (21) 

 

It is seen that while LS uses sum, LMS uses median. Thus, 

since median is more robust than sum, resulting estimates 

are resistant to outliers.  

3.4 Least Absolute Deviation  

 

The least absolute deviation (LAD) estimators are obtained 

via minimizing the absolute values of residuals, as follows: 
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Although this estimator is more robust then LS against to 

the y-outliers, it is non-robust against to the x- outliers. 

 

3.5 Quantile Estimator 

 
The quantile function of Weibull distribution is, 
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For the percentiles P1 and P2, the quantile values are given 

as follows: 
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The estimators can be obtain via equations (24) and (25). It 

is clear that the number of equations must be equal to the 

number of unknown parameters [25]. 
 

3.6 Repeated Median (RM) 

 

The repeated median (RM) estimate of 
1  is calculated as 

follows [19], 
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and the estimator of the coefficient 0  is, 

  0 1
ˆ ˆ .i i imedian Y X     (27) 

 

4. ANALYSIS AND RESULTS 

 

To evaluate the considered robust estimation methods, 

hourly mean wind speed data measured at 10 m above 

ground level in Izmir, Turkey is used. Evaluation criteria 

are taken as chi square ( 2 ), the coefficient of 

determination ( 2R ) and root mean square error (RMSE). 

Their formulation are provided as follows: 
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where n is the number of observations, iy  is the observed 

relative frequency of wind speed data, ix  is the relative 

frequency based on Weibull distribution and y  is the 

average of iy  values [22].  

 

The corresponding wind power density based on estimated 

parameters is calculated to evaluate the methods in terms of 

estimating wind energy potential. To make comparison, 

firstly reference mean wind power density is calculated 

based on the real wind speed values by using the formula 

given below: 
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2
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where   is air density (kg/m3),   is wind speed and A is 

wind turbine blade sweep area (m2). After calculating 

reference mean wind power density, the mean wind power 

density based on Weibull distribution can be calculated by 

the formula given following [23]: 
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where    is the gamma function. The wind power density 

values calculated by the equations (31) and (32) are given in 

the Table 6. 

 

ML, LS, LTS, LMS, LAD, Tukey, Huber, Cauc., Quan.,  

RM estimates are given Table 1-5. All computations are 

performed in MATLAB and LIBRA library is used for LTS 

and LMS estimators. 

 

Results of criteria are also provided in Table 1-5. The 

following conclusions can be derived from these tables. 

Most of M-estimators provide good performance for most 

of the considered months in terms of 2 criterion. 

According to R2 criterion, all considered robust methods 

show comparable performance relative to ML and LS.  M-

estimation is generally better than ML and LS methods in 

terms of the considered criteria. Besides M-estimation 

methods, good performance of LAD is seen in almost all 

Tables.  Thus, M-estimators and LAD can be alternatively 

used for modelling wind speed data. Additionally, among 

the robust methods with the property of high breakdown, 

LTS, LMS and RM provides comparable performance 

according to ML and LS which are non-robust methods.   

 

 

 

 

 

 

 

 

 



BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 9, SAYI: 2, MAYIS 2016   

 

 

85 

Table 1. Estimates of parameters of Weibull distribution 

and the model selection criteria for monthly wind speed 

data (January-March). 

 

Est.     2  2R  RMSE 

January 

ML 2.5590 1.8044 0.0008 0.9546 0.0238 

LS 2.5183 2.0284 0.0011 0.9471 0.0277 

LTS 2.4793 1.6127 0.0013 0.9257 0.0306 

LMS 2.4797 1.5972 0.0014 0.9205 0.0317 

LAD 2.4910 1.7260 0.0008 0.9520 0.0244 

Tukey 2.5125 1.7854 0.0007 0.9573 0.0230 

Huber 2.5163 1.8567 0.0007 0.9587 0.0227 

Cauc. 2.5179 1.8877 0.0007 0.9578 0.0231 

Quan. 2.6824 1.8601 0.0012 0.9331 0.0291 

RM 2.4966 1.6621 0.0011 0.9403 0.0275 

February 

ML 2.3740 1.8607 0.0006 0.9770 0.0204 

LS 2.3381 2.1037 0.0003 0.9881 0.0150 

LTS 2.3048 1.7652 0.0010 0.9576 0.0268 

LMS 2.2954 1.7832 0.0009 0.9609 0.0256 

LAD 2.3163 1.8940 0.0004 0.9804 0.0179 

Tukey 2.3333 1.8911 0.0005 0.9803 0.0181 

Huber 2.3311 1.9595 0.0003 0.9859 0.0151 

Cauc. 2.3303 2.0006 0.0003 0.9879 0.0141 

Quan. 2.4454 2.0140 0.0005 0.9765 0.0198 

RM 2.3155 1.8283 0.0007 0.9712 0.0220 

March 

ML 2.6892 1.8441 0.0010 0.9464 0.0288 

LS 2.6451 2.1554 0.0008 0.9560 0.0250 

LTS 2.5975 1.8279 0.0010 0.9471 0.0279 

LMS 2.5425 1.9464 0.0007 0.9611 0.0234 

LAD 2.5771 1.9893 0.0007 0.9628 0.0229 

Tukey 2.6192 1.9152 0.0008 0.9562 0.0252 

Huber 2.6222 2.0132 0.0007 0.9607 0.0236 

Cauc. 2.6184 2.0751 0.0007 0.9614 0.0233 

Quan. 2.7824 2.0737 0.0011 0.9375 0.0299 

RM 2.5860 1.9379 0.0007 0.9593 0.0241 

 

 

 

 

 

Table 2. Estimates of parameters of Weibull distribution 

and the model selection criteria for monthly wind speed 

data (April-June) 

 

Est.     2  2R  RMSE 

April 

ML 2.5033 1.9043 0.0014 0.9364 0.0325 

LS 2.4647 2.1562 0.0013 0.9391 0.0318 

LTS 2.4223 1.7257 0.0021 0.9042 0.0399 

LMS 2.4048 1.6528 0.0027 0.8783 0.0448 

LAD 2.4499 1.8908 0.0014 0.9361 0.0323 

Tukey 2.4658 1.9590 0.0013 0.9408 0.0309 

Huber 2.4658 2.0266 0.0012 0.9424 0.0304 

Cauchy 2.4647 2.0663 0.0012 0.9423 0.0305 

Quantile 2.6821 2.0609 0.0020 0.9104 0.0384 

RM 2.4442 1.7852 0.0018 0.9201 0.0365 

May 

ML 2.4611 2.1262 0.0004 0.9842 0.0153 

LS 2.4334 2.2982 0.0006 0.9808 0.0204 

LTS 2.4294 1.9724 0.0006 0.9762 0.0197 

LMS 2.4216 1.9520 0.0007 0.9730 0.0210 

LAD 2.4291 2.0755 0.0004 0.9836 0.0157 

Tukey 2.4368 2.0963 0.0004 0.9843 0.0153 

Huber 2.4369 2.1558 0.0004 0.9848 0.0154 

Cauchy 2.4367 2.1886 0.0004 0.9844 0.0161 

Quantile 2.5840 2.1336 0.0007 0.9709 0.0217 

RM 2.4350 2.0240 0.0004 0.9811 0.0171 

June 

ML 2.3766 1.9104 0.0003 0.9870 0.0138 

LS 2.3549 2.0290 0.0004 0.9838 0.0177 

LTS 2.3383 1.7133 0.0007 0.9682 0.0216 

LMS 2.3253 1.6934 0.0008 0.9624 0.0234 

LAD 2.3336 1.8375 0.0003 0.9840 0.0152 

Tukey 2.3483 1.8676 0.0003 0.9862 0.0141 

Huber 2.3505 1.9257 0.0003 0.9873 0.0141 

Cauchy 2.3523 1.9550 0.0003 0.9869 0.0148 

Quantile 2.5412 1.9471 0.0006 0.9702 0.0211 

RM 2.3410 1.7756 0.0004 0.9785 0.0176 
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Table 3. Estimates of parameters of Weibull distribution 

and the model selection criteria for monthly wind speed 

data (July-September) 

 

Est.     2  2R  RMSE 

July 

ML 2.7455 1.9914 0.0007 0.9586 0.0225 

LS 2.7312 2.0440 0.0007 0.9552 0.0238 

LTS 2.7412 1.8677 0.0006 0.9590 0.0223 

LMS 2.7675 1.8293 0.0007 0.9588 0.0227 

LAD 2.7543 1.9522 0.0006 0.9603 0.0219 

Tukey 2.7357 1.9522 0.0006 0.9595 0.0222 

Huber 2.7335 1.9844 0.0007 0.9585 0.0226 

Cauchy 2.7374 1.9998 0.0007 0.9580 0.0228 

Quantile 2.7692 2.0023 0.0006 0.9587 0.0224 

RM 2.7568 1.9092 0.0006 0.9608 0.0218 

August 

ML 2.6174 2.0879 0.0005 0.9745 0.0191 

LS 2.5881 2.2602 0.0007 0.9679 0.0230 

LTS 2.5785 1.9400 0.0007 0.9690 0.0218 

LMS 2.5692 1.8634 0.0009 0.9580 0.0258 

LAD 2.5889 2.0255 0.0005 0.9747 0.0192 

Tukey 2.5898 2.0579 0.0005 0.9753 0.0188 

Huber 2.5900 2.1223 0.0005 0.9749 0.0190 

Cauchy 2.5911 2.1499 0.0005 0.9740 0.0195 

Quantile 2.6723 2.0678 0.0006 0.9719 0.0206 

RM 2.5950 1.9685 0.0006 0.9722 0.0207 

September 

ML 2.5357 2.0855 0.0003 0.9860 0.0145 

LS 2.5124 2.2055 0.0004 0.9840 0.0166 

LTS 2.5123 1.9780 0.0004 0.9817 0.0172 

LMS 2.5145 1.9741 0.0004 0.9815 0.0174 

LAD 2.5242 2.0428 0.0003 0.9854 0.0150 

Tukey 2.5189 2.0547 0.0003 0.9856 0.0148 

Huber 2.5177 2.0926 0.0003 0.9861 0.0144 

Cauchy 2.5220 2.1081 0.0003 0.9861 0.0145 

Quantile 2.6234 2.1035 0.0004 0.9807 0.0176 

RM 2.5220 1.9945 0.0004 0.9833 0.0165 

 

 

 

 

 

Table 4. Estimates of parameters of Weibull distribution 

and the model selection criteria for monthly wind speed 

data (October-December). 

 

Est.     2  2R  RMSE 

October 

ML 2.1432 1.7642 0.0007 0.9742 0.0222 

LS 2.1069 2.0371 0.0007 0.9757 0.0225 

LTS 2.0534 1.8102 0.0004 0.9819 0.0182 

LMS 2.0230 1.7459 0.0006 0.9754 0.0212 

LAD 2.0518 1.8767 0.0004 0.9853 0.0168 

Tukey 2.0916 1.7900 0.0005 0.9790 0.0196 

Huber 2.0833 1.9098 0.0004 0.9833 0.0178 

Cauchy 2.0809 1.9569 0.0005 0.9830 0.0185 

Quantile 2.2650 1.9164 0.0012 0.9522 0.0297 

RM 2.0616 1.8273 0.0004 0.9827 0.0178 

November 

ML 2.5396 1.7202 0.0003 0.9804 0.0155 

LS 2.5013 1.9104 0.0004 0.9801 0.0173 

LTS 2.4614 1.5603 0.0008 0.9507 0.0246 

LMS 2.4526 1.5398 0.0009 0.9432 0.0263 

LAD 2.4839 1.6508 0.0004 0.9730 0.0182 

Tukey 2.4974 1.7184 0.0003 0.9812 0.0151 

Huber 2.5002 1.7939 0.0003 0.9843 0.0141 

Cauchy 2.5024 1.8287 0.0003 0.9839 0.0146 

Quantile 2.6824 1.8601 0.0007 0.9588 0.0224 

RM 2.4820 1.5984 0.0006 0.9625 0.0215 

December 

ML 2.1589 1.8639 0.0015 0.9424 0.0320 

LS 2.1263 2.1064 0.0019 0.9406 0.0351 

LTS 2.0639 1.5758 0.0036 0.8667 0.0487 

LMS 2.0474 1.4432 0.0058 0.7838 0.0619 

LAD 2.1367 1.7482 0.0019 0.9309 0.0354 

Tukey 2.1225 1.8932 0.0014 0.9459 0.0310 

Huber 2.1230 1.9628 0.0015 0.9471 0.0311 

Cauchy 2.1290 1.9827 0.0015 0.9461 0.0315 

Quantile 2.3970 2.0507 0.0036 0.8647 0.0490 

RM 2.1115 1.6120 0.0030 0.8909 0.0445 
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Table 5. Estimates of parameters of Weibull distribution 

and the model selection criteria for yearly wind speed data. 

 

Est.     2  2R  RMSE 

Whole Year 

ML 2.4734 1.8811 0.0004 0.9803 0.0169 

LS 2.4367 2.1016 0.0005 0.9774 0.0191 

LTS 2.4097 1.7321 0.0006 0.9658 0.0224 

LMS 2.4075 1.7274 0.0006 0.9649 0.0227 

LAD 2.4288 1.8306 0.0004 0.9781 0.0178 

Tukey 2.4389 1.8983 0.0003 0.9816 0.0162 

Huber 2.4391 1.9659 0.0003 0.9823 0.0160 

Cauchy 2.4402 1.9955 0.0003 0.9818 0.0163 

Quantile 2.5885 1.9164 0.0005 0.9723 0.0204 

RM 2.4293 1.7637 0.0005 0.9713 0.0206 

Table 6 provides the wind power density based on the 

estimated parameters of Weibull distribution. Comparisons 

of ML and robust methods according to the reference mean 

wind power density value show that ML provides closer 

wind power to reference power value than the other 

methods. Next to ML, the considered M-estimators 

calculate mean power density correctly. 

 

To evaluate robustness of the estimators for wind speed 

data, artificially large wind speed data is created. In other 

words, we modified 5 % of the right side of the data by 

adding μ+3σ for generating unusual wind speed data. μ and 

σ are respectively the mean and standard deviation of the 

original wind speed data. The obtained wind power density 

results for the modified data sets are given in Table 7. 

 

  

 

       Table 6. The estimated mean wind power density values and reference wind power. 

  P_ref P_ml P_ls P_lts P_lms P_lad P_tukey P_huber P_cauchy P_quant P_rm 

Jan. 15.6915 15.3940 12.8146 16.4757 16.7434 15.0804 14.7739 14.1180 13.8653 17.0641 16.0460 

Feb. 12.1107 11.8248 9.8937 11.5795 11.2836 10.7520 11.0111 10.5441 10.2996 11.8203 11.2144 

March 18.5097 17.3800 14.0063 15.8340 13.7824 14.0152 15.3466 14.5798 14.0800 16.9057 14.5730 

April 13.7299 13.4870 11.3273 13.8685 14.4631 12.7469 12.4826 12.0402 11.7913 15.2344 13.6038 

May 11.2232 11.4234 10.3298 11.8497 11.8706 11.2394 11.2379 10.9501 10.8022 13.1796 11.6097 

June 11.3090 11.4979 10.4752 12.6043 12.6078 11.4065 11.3943 11.0225 10.8611 13.7553 12.0389 

July 16.6190 16.9273 16.2195 18.1208 19.1325 17.4629 17.1125 16.7692 16.7037 17.2689 17.9577 

Aug. 13.7939 13.9792 12.5949 14.4293 14.9618 13.9426 13.7360 13.3372 13.1954 15.0194 14.4726 

Sep. 12.4976 12.7248 11.7611 13.0648 13.1266 12.8128 12.6579 12.4153 12.3918 13.9763 13.0986 

Oct. 9.7701 9.3169 7.4721 7.9210 7.9491 7.5554 8.4944 7.7471 7.5113 9.9165 7.9202 

Nov. 16.4699 16.0562 13.4047 17.0298 17.2383 15.9691 15.2927 14.4667 14.1503 17.0641 16.7698 

Dec. 8.8958 8.8739 7.4314 9.8732 11.3189 9.3478 8.2774 7.9500 7.9307 10.9290 10.1838 

Year 13.3472 13.1979 11.2095 13.5836 13.5971 12.9207 12.5177 12.0356 11.8590 14.8024 13.5739 
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       Table 7. The mean wind power density values for 5% contaminated data. 

  P_ref P_ml P_ls P_lts P_lms P_lad P_tukey P_huber P_cauchy P_quant P_rm 

Jan. 15.6915 37.5687 20.4670 16.2435 16.8609 15.6192 15.6522 15.6090 15.2608 17.0641 16.1792 

Feb. 12.1107 29.2530 15.8517 11.2843 11.2836 10.9852 11.1276 10.9200 10.6815 11.8203 11.2204 

March 18.5097 42.6058 22.5282 15.3851 13.7824 14.3711 14.8950 15.0943 15.0647 16.9057 14.5730 

April 13.7299 32.7640 18.0985 13.5207 14.4142 13.1517 13.1240 13.1402 13.1255 15.2344 13.8333 

May 11.2232 26.9169 16.1134 11.9064 11.9926 11.6355 11.7085 11.8096 11.7357 13.1796 11.8188 

June 11.3090 27.7735 16.3906 12.8241 12.6872 12.3744 12.5545 12.4473 12.3746 13.7553 12.5288 

July 16.6190 40.3481 24.8295 18.2529 19.1098 18.2457 17.7401 18.1179 18.3327 17.2689 18.6169 

Aug. 13.7939 33.2406 19.6847 14.4443 14.9124 14.5102 14.3065 14.3137 14.0824 15.0194 14.7594 

Sep. 12.4976 30.4075 18.2854 13.2763 13.2801 13.1875 12.9494 13.1660 13.0705 13.9763 13.4229 

Oct. 9.7701 22.8985 11.8919 7.8753 7.9491 7.8004 7.8095 8.0121 8.3918 9.9165 7.9202 

Nov. 16.4699 39.4908 21.1761 16.9734 17.1392 16.4657 16.5930 16.0629 15.6694 17.0641 16.8914 

Dec. 8.8958 21.5738 12.0651 9.9257 11.3189 10.1502 8.7943 9.5889 9.5450 10.9290 10.7828 

Year 13.3472 31.7370 17.5509 13.5420 13.8234 13.2692 13.3412 13.1097 12.8449 14.8024 13.7637 

 

5. CONCLUSIONS  

 

Some robust estimation methods of the Weibull distribution 

are introduced for wind energy applications. The considered 

robust methods are evaluated in terms of estimating 

parameters of Weibull distribution and wind power. It is 

based on the analyses, the main findings of this study are 

listed as follows: 

1. Some of robust methods provide good performance 

for both clear wind speed data and contaminated 

wind speed data. 

2. Particularly M-estimation performs better than 

classical estimation methods.  

3. Also, LAD estimator provides good performance 

for clear and contaminated wind speed data cases. 

4. It is also observed that the calculated wind power 

density values based on classical estimation 

methods change with contaminated wind data. 

5.  As a result, we suggest that robust methods not 

only can be used to estimate wind power for real 

wind speed, but also can simultaneously be used 

with classical efficient estimators to check the 

reliability of the estimated wind power results.  
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