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Abstract 

 

This paper presents a novel nonlinear robust adaptive trajectory tracking control architecture for 

stabilizing and controlling a quadrotor in the presence of actuator partial faults. The proposed control 

strategy utilizes an Incremental Nonlinear Dynamic Inversion (INDI) algorithm as the baseline 

controller in the inner loop and augments a nonlinear model reference adaptive controller in the outer 

loop to ensure robustness against unmodeled faults. Additionally, a modified PID controller is 

introduced in the most outer-loop to track the desired path. The effects of actuator faults are modeled by 

considering sudden variations in motor thrust and torques. To enhance the control algorithm's 

robustness, a projection operator is employed in the robust adaptive structure. Comparative performance 

evaluations with a previous successful algorithm implemented on a quadrotor model demonstrate that 

the proposed controller achieves full controllability of the faulty quadrotor in pitch, roll, and yaw 

channels in the presence of actuator partial faults up to 50%. 
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1. Introduction 
 

The use of Multi-rotor Unmanned Aerial Vehicles (UAVs) has generated significant interest 

among researchers due to their diverse applications across various fields such as surveillance, 

reconnaissance, agriculture, rescue operations, and mining. The versatility and capabilities of 

these UAVs have propelled them into the forefront of technological advancements. One of the 

outstanding research challenges in multirotor design is the requirement of a sophisticated 

control system that can cope with unexpected casualties like actuator failures [1,2]. Faults and 

failures are inevitable in complex systems like aircraft. Hence, scientists are working on fault-

tolerant control strategies to safely land the aircraft in presence of faults or failures [3–5]. Fault-

tolerant control (FTC) techniques have been proposed in several researches to recover the 

control of faulty aircraft [6–11]. Nonlinear L1 adaptive control [6], robust adaptive control [7], 

adaptive sliding mode control [8], Linear Parametric Variable (LPV) sliding mode control [9], 

optimal adaptive control [10], and Model Reference Adaptive Control (MRAC) [11] are some 

instances of direct fault-tolerant control algorithms. In addition to the direct methods, fault-

detection and identification algorithms are also used in some references in the fault-tolerant 

control strategy [12]. Timely detection of the actuator failures and estimation of their severity 

plays an important role in avoiding crashes and leading to fast recovery for a safe landing. Fault-

detection approaches can be categorized into model-based, signal-based, knowledge-based, and 

active diagnosis techniques [13]. Controlling multi-rotor Unmanned Aerial Vehicles (UAVs) 

poses a challenging task due to their nonlinear, highly-coupled, and underactuated dynamic 

systems. Moreover, the occurrence of actuator faults in multi-rotors raises concerns regarding 

their reliability and safety. Extensive research has been conducted to address the control and 

recovery of multi-rotors in the presence of motor faults or failures. These studies can be broadly 

categorized into two groups: partial actuator faults and complete loss of actuator effectiveness 

or actuator failure. Some studies focus on analyzing the impact of partial faults on rotor 

performance and propose fault-tolerant strategies, while others investigate the effects of motor 

failure and develop appropriate fault-tolerant control strategies. Within these research 

endeavors, certain studies integrate fault detection algorithms as part of their fault-tolerant 

control strategies, while others directly implement fault-tolerant control algorithms to govern 

the multi-rotor's behavior. The investigation of partial motor faults, which lead to a reduction 

in control effectiveness, has been a subject of interest in numerous research studies. Ref [14] 

introduced a fault-tolerant control strategy to control a quadcopter in case of a time-varying 

motor fault. The proposed fault-tolerant strategy includes fault detection and identification 

algorithm based on the controller outputs and the angular rates calculated by a discrete extended 

Kalman filter and a discrete nonlinear adaptive tracking controller. There are also several other 

researches, which have tried to control the quadrotor in presence of partial fault [2]. The sliding 

mode control technique has been applied in Ref. [15] as a passive fault-tolerant control method 

to control the quadrotor’s attitude considering partial rotor fault. An adaptive fuzzy system is 

used as a compensator to compensate for the estimation error of nonlinear functions and faulty 

parts. Ref. [16] applies a sliding mode disturbance observer inside the fault-tolerant sliding 

mode controller to control and improve the performance of the quadrotor with partial actuator 

fault. There are several researches regarding the controllability of multi-rotors in presence of 

rotor fault or failure, in which different configurations including quadrotor, hexarotor, and 

octarotors have been investigated to determine the status of controllability [17,18]. Among the 

aforementioned multi-rotors, quadrotors suffer more from rotor fault due to lack of actuator 

redundancy. Respecting the controllability of quadrotors, it is well known that failure of one 

rotor results in an uncontrollable system. Therefore, full attitude control of the quadrotor can 

be achieved for a maximum specific magnitude of the partial fault and is not achievable in 

presence of complete one rotor failure. In case of one rotor failure in quadrotors, controllability 
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of the yaw state is scarified and the controller tries to control the roll and pitch angles of the 

quadrotor[19]. Various control methodologies have been addressed in literature the problem of 

complete loss of one or two rotors of the quadrotor [19–21].  A robust feedback linearization 

controller along with an H∞ loop shaping technique is adopted in Ref. [19] to achieve regulation 

of roll and pitch angles around the chosen working point. A nonlinear sensor-based fault-

tolerant controller is developed in Refs. [21,22] to stabilize a quadrotor with failure of two 

opposing rotors in the high-speed flight condition. Ref [23] proposes a complete FTC design 

approach with fault detection and diagnosis (FDD) of a quadrotor in presence of a partial fault. 

Hexarotor seems to be more robust respecting motor failure because of having more actuators. 

Despite the higher numbers of motors concerning quadrotors, researchers demonstrated that 

standard hexarotors are not fully controllable in case of one motor failure, in which yaw control 

is lost if one engine is failed [24]. It is difficult to reach a controller that can cope with motor 

failures in the standard configurations, and most proposed controller algorithms in the literature 

are confined to reduced attitude control [25]. In the standard configuration of hexarotor 

(PNPNPN: P stands for rotation in the positive direction and N stands for rotation in the 

negative direction), all neighboring motors rotate in opposite directions. Non-standard 

configurations (PPNNPN) can maintain full controllability in presence of one rotor failure. 

Accordingly, Ref. [26] applies the composition of a Tau-observer and a disturbance based 

sliding mode controller on a non-standard configuration of hexarotor and investigated the fault 

detection and control of a hexarotor in presence of one and two motor failure with controlling 

the attitudes including the heading and keep the hovering flight to landing. It can be 

demonstrated that the non-standard configurations of hexarotor are fully controllable in 33% of 

up to two random motor failures [17]. In addition, some researches in the literature try to control 

the faulty multirotor to another appropriate configuration corresponding to the failure. A 

reconfiguration technique based on control allocation has been proposed to transform a 

quadcopter into a tricopter in Ref. [27]. The proposed approach can tolerate complete failure 

but requires an extra weight mounted on the opposite motor. In a similar strategy, Ref. [20] 

applied a backstepping control algorithm and transformed the quadrotor into a birotor for an 

emergency landing in presence of one motor failure.  

 

Building upon the aforementioned discussions, this paper aims to explore the full controllability 

of a quadrotor (roll, pitch, and yaw) in the presence of partial actuator faults. It is well-known 

from the literature that achieving full controllability becomes challenging in the case of 

complete loss of one motor's effectiveness or motor failure. To address this issue, a novel 

approach is proposed, utilizing the Incremental Nonlinear Dynamic Inversion (INDI) control 

algorithm augmented with a nonlinear robust adaptive controller to effectively control the 

quadrotor in the presence of a motor fault. The simulation results validate the excellent 

performance of the introduced control architecture. Additionally, for trajectory tracking 

purposes, a modified PID algorithm is employed as the third loop in the three-loop control 

strategy. 

 

The subsequent sections of this paper are organized as follows: Section (II) presents the 

derivation of the quadrotor's nonlinear dynamic equation of motion. Section (III) details the 

controller architecture, encompassing the INDI algorithm, the robust adaptive controller 

approach, and the application of the PID controller. In Section (IV), numerical results are 

provided, evaluating the controller's performance and conducting comparisons. Finally, the 

conclusion section offers a brief summary of the key findings obtained throughout the study. 
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2. Mathematical model 
 

This section presents the quadrotor model and the corresponding equations of motion, taking 

into account disturbances arising from unknown dynamics. Additionally, the motor model and 

the motor mixer equations are described in detail. 

 

2.1 Quadrotor frame 

 

The S500 frame with the EMAX2212/ 820KV motors is selected as the plant model in this 

research. The quadrotor parameters, which are used in this paper are given in Table 1 [12].  

 

 

Table 1. Quadrotor Frame Specifications 

Quadrotor Parameters Values 

Mass, m 1.59 kg 

Thrust Parameter, b 2.02 × 10-7 N/rpm2 

Drag Parameter, d 4.18 × 10-9 Nm/rpm2 

Moment arm (C.G to motor distance), l 0.243 m 

Moment of Inertia about the x-axis, Ixx 0.0213 kg.m2 

Moment of Inertia about the y-axis, Iyy 0.0221 kg.m2 

Moment of Inertia about the z-axis, Izz 0.028 kg.m2 

Translational drag coefficients, ,x yk k  5.5 4e N m s  

Translational drag coefficients, zk  6.3 4e N m s  

Rotational drag coefficients, ,k k   5.5 4e N rad s  

Rotational drag coefficients, k  6.35 4e N rad s  

Total rotational moment of inertia, JT 6.8× 10-5 kg.m2 

 

 

2.2 Dynamic equations 

 

The translational and rotational equations of the quadrotor in the body frame are presented in 

Eqs. (1) and (2), respectively [28]. As depicted in Figure 1, the quadrotor consists of four 

motors. Number one and two motors rotate counter-clockwise with velocities 
1 , 

2 , 

respectively, whereas the other two motors (number 3 and 4) rotate in the opposite (clockwise) 

direction with velocities 
3 , 

4 . 

 

x

y

 

x

y

z  
Figure 1 Schematic representation of quadrotor 
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 Translational dynamics 
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 Rotational dynamics 
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 Euler Equations 
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where x, y, and z are the position of quadrotor center of mass in the inertial frame and , ,    

are the Euler angles, which represent the body frame rotation concerning the inertial frame. Ixx, 

Iyy, and Izz are the moments of inertia in x, y, and z-direction, respectively, m is the system mass, 

l is the distance between the center of the mass and the motors, and g is the gravitational 

acceleration. The quadrotor inputs are represented by T , xM , yM , zM , which are the total thrust 

force (T ) generated by propellers in z-direction and moments about x, y, z axes, respectively. 

(See Part C.). The terms drag

xf , drag

yf , drag

zf , drag

p , drag

q , and drag

r are the drag forces and moments 

produced by the quadrotor’s frame, which are expressed as drag x

x

k
f x

m
  , ydrag

y

k
f y

m
  , 

drag z

z

k
f z

m
  , 2drag

p

xx

k
p

I


   , 2drag

q

yy

k
q

I

   , 2drag

r

zz

k
r

I


   . The constant parameters , ,x y zk k k  are 

translational drag coefficients, and , ,k k k    are rotational drag coefficients, which are 

considered with values according to Table 1. Moments produced by the gyroscopic effect of 

the rotors around x and y axes are presented by gyro

p , gyro

q , which are expressed as gyro T

p

xx

J
q

I
    

and gyro T

q

yy

J
p

I
    , in which JT is the moment of inertia of each motor and   represents the 

propellers total speed as below: 

 1 2 3 4  (4) 

The terms w

xf , w

yf , w

zf  and wind

p , wind

q , wind

r are the forces and moments, which are produced by 

the effect of wind. The wind model can be composed of different elements of the wind including 

the mean wind, wind gust, and turbulence [29]. For the purpose of simulation, this paper 
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considers the Dryden turbulence model, which is the stochastic component of the wind and is 

inherently dependent on the quadrotor’s states. 

 

2.3 Rotor dynamics 

 

The thrust generated by the motors is modeled as a first-order system to account for the rotor 

dynamics for variation of rotational speed: 

 
0

0
ci iu K u

S







 (5) 

where S is the Laplace variable, 
ci

u is the i-th motor input which is the PWM reference signal 

to the motors, K is the motor gain, and 
0  is the bandwidth of the motors. The motors’ thrust 

force and torque depend on the rotational velocity, propeller diameter, as well as the 

aerodynamics characteristics of blades as below: 

 

2 4 2

2 5 2 , 2.07 2

i t i i

i d i i i

T C D b

Q C D k T d k e m





   
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 (6) 

Where Ti and Qi are the i-th motor’s aerodynamic thrust force and torque, respectively, Ct, Cd 

are thrust and drag coefficients,   is the air density, 
i  is the rotational speed of each motor in 

rpm, and D is the propeller diameter. The numerical values of b and d are introduced in Table 

1. Accordingly, the actuation inputs in the body frame are expressed based on the rotational 

speeds as follows: 

 2UU K Ω  (7) 

where , , ,
T

x y zT M M M   U , 
2

0 0

0 0
U

b b b b

bl bl

bl bl

d d d d



 
 

 
 
 

  

K
, and 2 2 2 2

1 2 3 4, , ,
T

      Ω .  

The autopilot outputs (U) must be translated into each motor inputs to send the signal to the 

quadrotor speed controls, then apply the related PWM signal to each quadrotor’s motor. 

 

a) Motor mixer 

 

The motor mixer plays a crucial role in determining the rotational speeds of each rotor based 

on the intermediate autopilot outputs (U). By inverting Equation (7), the motor mixer 

expression can be derived as follows:  

 2 2 2, ( )U U Uinv   Ω K U K K  (8) 

   

b) Motor thrust and speed limitations  

 

Based on the motor type, propeller size, battery specifications, the maximum speed of each 

motor (
max ) is found to be 6250 rpm. Accordingly, the maximum thrust of each motor is 7.89N, 

and therefore, the minimum rotational speed of the motors will be confined based on the hover 

rotational speed. Therefore, the minimum rotational speed (
min ) of motors in fault scenarios is 

specified based on the quadrotor weight and thrust of each motor, which is considered to be a 

little less than the rotational velocity of motors in hover conditions: 

 
min

4
2

1

15.39
4364 4364

4 2.02 7hoveri i iW b rpm rpm
e

      
 

  (9) 

The maximum and minimum bounds of the controller output before converting to the input of 

each motor is:  
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2.4 Motor fault modeling 

 

When there is a degradation in motor performance or damage to the rotor, it can be interpreted 

as a partial fault in the actuator compared to its normal operational condition. This partial fault 

on the i-th actuator results in a loss of thrust, consequently causing undesired roll, pitch, and 

yawing moments. Therefore, the impact of partial fault on the thrust force and moment is treated 

as a parametric uncertainty, which can be represented as follows: 

 

2 2

2 2

,

,

i f i i i i i

i f i i i i i

T T T b b b f b

Q Q Q d d d f d

          

          
 (11) 

 

where ,b d   are bounded variation of motor effectiveness respecting its nominal values and 

can be represented as 0, 0b b d d         and 
if  is the i-th motor fault. Therefore, the actual 

signal (u ) generated by the faulty actuator (
fu ) is as follows: 

 

1 2 3 4

1 2 3 4

( ) (1 ) ( ) , ( ) [ , , , ]

0

( , , , )

T

f

f

f

t t t T T T T

t t

diag f f f f t t
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
 



u Γ u u

Γ
 (12) 

 

In the above equation, ft  is the time that fault occurs and 0 1if  , in which 0if  , 1if   

represent the healthy and the fully failed actuator, respectively.  

 

3. Fault tolerant control strategy 
 

In this section, the multiple-timescales approach is employed to separate the rotational and 

translational dynamics. This is done by assuming that the rotational dynamics evolve much 

faster compared to the translational dynamics. The block diagram of the controller, illustrating 

this separation, is depicted in Figure 2. 

 

It is clear that classical controller algorithms do not have appropriate performance in presence 

of motor failure. To deal with fail conditions a cascade control algorithm is applied to the 

quadrotor. The attitude control loop is a robust adaptive controller based on INDI and the 

position control loop is the PID algorithm.  

 

Based on the rotational dynamics according to Eq. (2), the nonlinear model of quadrotor can be 

transformed into an affine control model as below: 

 ( )
c

x f x g(x)U  (13) 

where 
3x  is the vector of rotational velocities (  , ,p q rx ); 3

c U  is the controller output 

moments vector ( , ,c x y zM M M   U ); 3f(x)  and 3 3g(x)  are differentiable matrices of 

state and input functions, respectively. 
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Figure 2 Total controller architecture 

 

3.1 INDI controller design 

 

Considering the rotational dynamics of the quadrotor based on Eq. (2), the Taylor series 

approach is applied to expand Eq. (2) while neglecting higher-order terms. Accordingly, Eq. 

(14) is obtained as below: 

 
( ) ( )

( ) ( )

( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

c c c c

c c

c

c
t Ts t Ts

t Ts t Ts

c c c c
t Ts

c
t Ts

t t Ts t Ts t Ts
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t t Ts t Ts t t Ts

x=x x=x

U U U U

x=x

U U

x f x g(x )U

f x x - x x U x - x
x x

f x U - U g x U - U
U

 

(14) 

where Ts is the sampling time. The first part of Eq. (14), ( ) ( ) ( )
c

t Ts t Ts t Tsf x g(x )U  is 

equal to ( )t Tsx . This part includes some terms, which can be calculated based on the onboard 

sensors at any instance of the flight time. The term ( )t Tsx can be computed by taking 

derivative from rate gyros’ outputs, which are the rotational speeds. In other words, the dynamic 

related terms ( ) ( ) ( )
c

t Ts t Ts t Tsf x g(x )U are replaced by the derivative of the sensor 

outputs. That is why this approach. i.e. INDI, is referred to as a sensor-based control strategy. 

The other part of Eq. (14) 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

c c c c c c

c c c
t Ts t Ts t Ts

c
t Ts t Ts t Ts

t t Ts g t Ts t t Ts
x=x x=x x=x
U U U U U U

f x x - x x U x - x f x U - U
x x U

 

can be neglected if the sampling time Ts is small. Thus, Eq. (14) can be rewritten as Eq.(15). 

 ( ) ( ) ( ) ( ) ( )
c c

t t Ts t Ts t t Tsx x g x U - U  (15) 

According to Eq.(15), the parameters in Eq. (2) can be rewritten as below: 
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1
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As explained before, the angular acceleration terms are derived by taking derivatives from the 

angular rates. Since the sensor measurements from the gyroscope are naturally noisy due to 

disturbances induced by the vibrations of the motor or propeller on the vehicle’s frame.  Since 

differentiating the noisy signal amplifies the effect of noise on the output, the application of an 

appropriate filter is required. Accordingly, a second-order filter is adopted to be applied before 

differentiating the outputs of rate gyros [30]. The implemented filter in the form of a transfer 

function in the Laplace domain is given in Eq. (17). Satisfactory results are obtained from the 

filter with 50 / secn rad  and 0.55  . For the same application, other low-pass filters like the 

Butterworth filter can also be implemented. 

 
2

2500
( )

55 2500
C s

s s


 
 (17) 

In the next step, the controller command should be computed corresponding to the INDI 

approach. Hence, by inversing Eq. (15) the control signal is obtained as below: 

 
1( ) ( ) ( ) ( )

c f c
t g t Ts v t TsU x x U  (18) 

where: 

 
1( ( ) ( ))

f
L t Ts C sx x  (19) 

Where 1L  is the Laplace inverse operator, f
x is the filtered derivatives of the angular rates, 

andv is the pseudo-control input, which is determined by the robust adaptive controller in the 

next section. The INDI controller architecture is illustrated in Figure 3. 

c
x f x g x U ( )C s

1z

1z

cU x f
x






 
1 ( ) ( )

f
g t Ts vx x

( )t Tsx

diff

 
Figure 3 INDI controller architecture 
 

 

3.2 Robust-adaptive controller design 

 

To enhance the INDI robustness, especially in presence of motor fault effect, a robust adaptive 

control algorithm is augmented to the INDI algorithm to generate the pseudo-control input (v
). Integration of the INDI algorithm as the baseline controller and the model reference robust-

adaptive controller as the outer-loop controller can improve the performance of the total 

controller. In the following, the design procedure and application of the robust adaptive 

algorithm, as an augmentation algorithm to the INDI controller is described.  

In our proposed robust MRAC strategy, the dynamics of the reference model is considered as 

follows: 

 m m m m
x A x B R  (20) 
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where n n

m R A  is known desired Hurwitz closed-loop system dynamics and m

m

nR B  is an 

identity matrix (I) in our case. Applying simple feedback, the poles of the closed-loop system 

are set to the eigenvalues of the matrix Am. Therefore, the differential equations of the plant’s 

dynamics can be propagated as follows: 

 
1 0

( ) , , (0)

( ) ( )
m m m

Tt t
ad

x A x B u x x u x x

y c x

θ σ Δ
 (21) 

where .


 is the infinity norm; (t) nx R is the measured system state; n nc R  is a known constant 

vector; (t) mRadu is the control input; ω, θ, σ are unknown constant parameters with known 

signs and lower and upper bounds;  ,1Δ x u : n nR R R   is a continuous bounded unknown 

nonlinear argument due to INDI error and the effect of rotor fault.  

The above system architecture is replicated by the use of state predictor which is given by Eq. 

(22): 

 
0

ˆ ˆˆ ˆ ˆ( ˆ ), (0)

ˆ ˆ(t) (t)
m m m m

T
ad

x A x B u x x x

y c x

θ σ
 (22) 

where ˆ (t) R 
 
is the estimate of ,

L u , ˆ(t) nRθ , and ˆ nRσ  are adaptive estimates of 

the dynamic model parameters (t)θ  and (t)σ , which are continuously differentiable and bounded 

as; 1 2 3
, ,θ σ .  

 

Adaptive Law:  The adaption laws governing the adaptive estimates are as follows [6]: 

 

0

0

0

ˆ ˆ ˆ ˆ(t) Proj (t), (t) (t) , (0) ,

ˆ ˆ ˆ ˆ(t) Proj (t), (t) , (0) ,

ˆ(t) Proj ˆ(t), (t) (t) , ˆ(0) ˆ

T

T

T

x Pb x

x Pb

x Pbu

 (23) 

 

In Eq. (23), the term   is the adaptation gain and 
0
ˆ , 0

ˆ , 0
ˆ  are the initial values of pertinent 

variables, which are guessed for initialization of the algorithm. Large values of , increase the 

rate of adaptation for desirable performance without reducing the robustness properties. 

0TP P   and 0TQ Q  are used in the Lyapunov function T

m mA P PA Q   , and 

ˆ(t) (t) (t)x x x  is the error function. 

 

The projection operator, which is denoted by Proj(.,.)  guarantees estimated parameters 

boundedness according to Ref [6]. The projection operator is defined as below: 

 

if ( ) 0,

( , ) if ( ) 0 0,

( . ) ( ) if ( ) 0 0.

T

T

z h

Proj z z h and h z

h h
z z h h and h z

h h



 

 


 


   
  
    

 

 
(24) 

where “.” and   represent the inner product and gradient, respectively and h is a convex 

function defined as   2

max

2

max

1
( )

T

h




   


 

 
 , and 0   is the projection tolerance bound, and  

max  is the norm bound forced on the vector  , which is defined in a bounded convex as 

 ( ) c , 0 1n

c R h c       . 
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Control Algorithm: The robust model reference adaptive control algorithm signal is obtained 

as below: 

 
1 ˆ ˆ( )
ˆ

ad gu x k R 
 

     (25) 

 

In the above control algorithm equation, 
gk  is selected to ensure a unity DC gain of the desired 

system corresponding to Eq. (20). The complete block diagram of the proposed controller 

including the INDI algorithm, the state estimator, adaptation law, and the adaptive control 

algorithm is illustrated in Figure 4. 

c
x f x g x UcU x



R




INDI

Km

0
ˆ ˆˆ ˆ ˆ( ˆ ), (0)

ˆ ˆ(t) (t)
m m m m

T
ad

x A x B u x x x

y c x

θ σ

0

0

0

ˆ ˆ ˆ ˆ(t) Proj (t), (t) (t) , (0) ,

ˆ ˆ ˆ ˆ(t) Proj (t), (t) , (0) ,

ˆ(t) Proj ˆ(t), (t) (t) , ˆ(0) ˆ

T

T

T

x Pb x

x Pb

x Pbu

1 ˆ ˆ( )
ˆ

ad gu x k R 
 

   
x%

x̂

Adaptive Law

State’s estimator

Control Law

 
Figure 4 Model Reference Robust adaptive controller with INDI Algorithm  

 

 

c) Outer loop controller design 

 

In the outer-loop position control, a PID control algorithm is utilized. By considering the desired 

trajectory along with its first and second derivatives, the dynamics of the position error can be 

derived as follows: 

 
0

[ , , ] ,
e d p e I e

d d d d e d

K K K dt

x y z
e

P P P P

P P P P
 (26) 

where 
dP  is the desired position with bounded first and second derivatives,

eP  is the positions 

error, and the PID gains (
pK ,

dK ,
iK ) are derived corresponding to the conditions of Routh-

Hurwitz to exponentially converge the error to zero. According to the error dynamics, the 

following equation can be computed: 

 0
d d e p e I e
K K K dtP P P P P  (27) 

 

Based on the desired positions and translational dynamics of Eq. (1), the desired Euler angles 

are derived as the command pitch and roll angles as follows: 

 

arcsin
cos

arcsin
cos

c

d

c

d

mx

T

my

T

 (28) 
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Where in the above equation 2 2 2( )T m x y z g  and the desired heading angle (
d ) is 

imposed by the trajectory generation unit corresponding to the desired trajectory. The 

conventional PID control algorithm has two disadvantages; 1) sudden jump of the output of the 

derivative part of PID, which can saturate the actuator if the desired input is like a step function 

and 2) the problem of integral wind up when the integral value is high and the error switches 

its sign. To remove these problems, as shown in Figure 5, the system output is used in the 

derivative part without accounting for the desired input, and an anti-windup filter is applied in 

an integral part of the PID algorithm [31].  

 
Figure 5 Anti wind up PID controller architecture  

 

 

4. Simulation results 
 

Several numerical simulations are considered in the presence of partial loss of motor 

effectiveness to verify the performance of the proposed three-loop robust adaptive fault-tolerant 

controller. The results of the implementation of the proposed algorithm are compared with a 

robust adaptive controller augmented with an NDI algorithm. In the first simulation scenario, 

the performance of the introduced controller is investigated for the case of the healthy (no-fault) 

quadrotor. Accordingly, Figures 6-10 represent the parameters of the quadrotor, when tracking 

a helical trajectory.  Figures 6, 7 represent the quadrotor’s attitude rates and Euler angles, 

respectively. The rotational speeds of the rotors along with the corresponding control moments 

are depicted in Figures 8, 9, respectively. Accordingly, the required rotation speed of the rotors 

to track the desired path is around 4400 RPM. Finally, the quadrotor position in 3D space and 

the trajectory tracking performance of the proposed controller has been illustrated in Figure 10. 

As shown, the controller has a satisfactory tracking performance. In addition to the proposed 

controller, the results are compared with an NDI controller augmented with the robust adaptive 

algorithm. Comparison of the results based on the proposed algorithm and the NDI controller 

shows the performance of both controllers are close in case of no-fault for the healthy quadrotor. 

Several fault scenarios are considered to investigate the performance and robustness of the 

controller algorithm. For this purpose, the performance of the controller is examined and 

compared with the NDI algorithm for different percentages of fault on the motor number1 as 

illustrated in Figures 11-25. 
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Figure 6 Quadrotor body angular rates  

 
Figure 7 Quadrotor Euler Angles (deg) 

 
Figure 8 Quadrotor rotational speeds of motors (RPM) 
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Figure 9 Quadrotor Controller moments 
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Figure 10 Quadrotor position in 3D space  

 
Figure 11 Angular rates with 20% fault on 

motor1 

 
Figure 12 Euler Angles with 20% fault on 

motor1 
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Figure 13 Motors speeds with 20% fault on motor1 

 

 
Figure 14 Controller moments with 20% fault 

on motor1 

 

 

 

10

20

30

40

50

-10

-5

0

5

10

-15
-10

-5
0

5
10

H
 (

m
)

X
 (
m

)

Y (m)

INDI

Ref

NDI

 
Figure 15 Trajectory tracking with 20% fault 

on motor1 
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Figure 16 angular rates with 40% fault on 

motor1 

 
Figure 17 Euler Angles with 40% fault on motor1 

 
Figure 18 Motors speeds with 40% fault on motor1 
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Figure 19 Controller moments with 40% fault 

on motor1 
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Figure 20 Trajectory tracking with 40% fault 

on motor1 

00  

Figure 21 angular rates with 50% fault on 

motor1 

 
Figure 22 Euler Angles with 50% fault on motor1 
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Figure 23 Motors speeds with 50% fault on motor1 

 

 
Figure 24 Controller moments with 50% fault 

on motor1 
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Figure 25 Trajectory tracking with 50% fault 

on motor1 
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Figures 11-15 present the quadrotor's parameters under a 20% rotor fault scenario. These figures 

include the body rotational speed, Euler angles, motors' rotational speeds, moments generated 

by the motors, and the quadrotor's position. Each figure displays the curves of the desired 

values, the NDI outputs, and the proposed controller outputs. As depicted in Figure 11 and 

Figure 12, the proposed controller successfully restores the rotational rates and Euler angles of 

the quadrotor at a much faster rate compared to the NDI algorithm. Additionally, Figure 15 

confirms that the trajectory tracking performance of the proposed strategy surpasses that of the 

NDI algorithm. 

 

Similar simulations are conducted for a 40% fault on the number one rotor, as shown in Figure 

16 to Figure 20. Despite the excellent trajectory tracking performance of the proposed controller 

(Figure 20), there is a significant deviation in the trajectory of the NDI controller. As previously 

discussed, the controller maintains full controllability (roll, pitch, and yaw) of the quadrotor up 

to a maximum of 50% rotor fault. Figures 21-25 illustrate the performance of the controller in 

the presence of a 50% motor fault. In Figure 25, the proposed controller tracks the desired inputs 

and trajectory perfectly, while the NDI algorithm exhibits significant variations and oscillations 

due to the effect of the fault. Notably, the roll angle increases to approximately 50 degrees when 

applying the NDI algorithm, leading to a significant deviation from the desired trajectory 

(Figure 22). Figure 23 demonstrates that the rotational speed of rotor number one approaches 

saturation magnitude under a 50% partial fault. The maximum rotation speed of the rotors is 

6250 RPM, which explains why the rotational speed of the faulty motor saturates and the 

controller's performance deteriorates drastically for faults greater than 50%. 

 

5. Conclusion 
 

This paper introduces a novel approach by augmenting the Incremental Nonlinear Dynamic 

Inversion (INDI) algorithm with a model reference robust adaptive algorithm to effectively 

control and recover a quadrotor in the presence of partial actuator faults. The robust adaptive 

algorithm is designed to handle the impact of unmodeled faults arising from the rotor system. 

Through various simulation scenarios, the performance of the proposed control strategy is 

thoroughly evaluated. Furthermore, a comprehensive comparison is conducted between the 

introduced controller and the NDI algorithm augmented with the robust adaptive algorithm to 

validate the effectiveness of the proposed approach. 

 

The simulation results demonstrate that the proposed control strategy ensures full controllability 

of the quadrotor in the roll, pitch, and yaw channels even when partial actuator faults occur, 

with a fault tolerance capability of up to 50%. By achieving full controllability across all 

channels, the quadrotor is capable of accurately tracking desired trajectories despite the 

presence of partial actuator faults. A comparative analysis between the introduced algorithm 

and the NDI controller reveals that the INDI controller exhibits significantly superior 

performance, particularly when the dynamics are affected by actuator faults. While the NDI 

controller can still control the faulty quadrotor, it leads to notable deviations from the desired 

path at the moment of failure occurrence. 
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