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      Abstract 

  

For the conventional superconductors it will be shown that not only the superconducting energy gap, Egap(T=0), and 

the critical field, Bc(T=0), but also the London penetration depth, λL(T=0), scale in a reasonable approximation with 

the superconducting transition temperature, TSC, as ~TSC, ~TSC
2 and ~T-1/2, respectively. From these scaling relations 

the conclusion obtained earlier, using a completely different method, is confirmed that the London penetration depth 

corresponds to the diameter of the Cooper-pairs. As a consequence, only one layer of Cooper pairs is sufficient to 

shield an external magnetic field completely. The large diamagnetism of the superconductors is caused by the large 

orbital area of the Cooper-pairs. From the fact that, in the zero-field ground state, the temperature dependence of the 

superconducting heat capacity is given above and below TSC by power functions of absolute temperature it follows 

that the only critical point is T=0. The superconducting transitions of the element superconductors, therefore, are all 

within the critical range at T=0. As a consequence, above and below TSC there is short-range order only. As we know 

from Renormalization Group (RG) theory, in the critical range the dynamics is the dynamics of a boson field, 

exclusively. Evidently, the Cooper-pairs have to be considered as the short-range ordered units created by this boson 

field. It is reasonable to assume that the relevant bosons in the superconducting state are identical with the bosons 

giving rise to the universal linear-in-T electronic heat capacity above TSC. Plausibility arguments will be given that 

these bosons must be electric quadrupole radiation generated by the non-spherical charge distributions in the soft 

zones between the metal atoms. The radiation field emitted by an electric quadrupole can be assumed to be essentially 

curled or circular. In the ordered state below TSC, the bosons are condensed in resonating spherical modes which 

encapsulate the two Cooper-pair electrons and shield their charge perfectly. 
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1. Introduction 
     The postulation of Cooper pairs [1] marks a historical 

breakthrough in our understanding of the phenomenon of 

superconductivity. However, the detailed nature of the 

coupling mechanism between the two Cooper-pair electrons 

is still unclear [2-8]. Further experimental information on the 

properties of the Cooper-pairs, such as the temperature 

dependence of their size and their density, therefore, is of 

vital importance. The present study aims to contribute in a 

rather phenomenological way to the solution of these 

problems. A final confirmation of the here advanced ideas 

must come from field-theoretical studies. 

     It is evident that at the superconducting transition 

temperature, TSC, Cooper-pairs get formed and are 

responsible for the two prominent superconducting 

properties: a vanishing electrical resistivity and the 

emergence of a huge diamagnetism (Meissner-effect) [1]. 

Formation of Cooper-pairs at TSC reminds on the formation 

of domains at the magnetic ordering temperature. In fact, 

Cooper-pairs and domains have to be considered as the 

characteristic ordered units with linear dimensions of much 

larger than the inter-atomic distance. As a consequence, 

domains and Cooper-pairs cannot result from atomistic 

short-range interactions. In order to illustrate the similarities 

and differences between the magnetic domains and the 

Cooper-pairs, it is useful to discuss first the better understood 

magnetic domains.  

     Quite generally, at virtually all order-disorder phase 

transitions a boson field orders [9,10]. The visible atomic or 

magnetic order results from a coupling of the atoms or spins 

to the ordered boson field. Essential for a long-range and 

coherent order of a boson field is that the emission 

characteristics of the individual boson source is axial and that 

the bosons get generated by stimulated emission. These 

conditions hold for the bosons that order at the magnetic 

ordering transition [9]. It could be shown that these bosons 

are magnetic dipole radiation generated by the precessing 

spins [11]. We have called these bosons, in honor of J. 

Goldstone, Goldstone-bosons [12,13]. Due to stimulated 

emission the bosons get collimated along those 

crystallographic directions with a high density of the boson 

sources and, eventually, condense in a single quantum state. 

In the ordered state of the Goldstone-boson field, all bosons 

are in a one-dimensional, perfectly coherent and long-range 
ordered state. This is realized in each magnetic domain. The 

reduction from a spatially isotropic propagation of the 

bosons to a few propagation directions is an example of 

broken symmetry. In fact, stimulated emission seems to be 

an important origin of the phenomenon of broken symmetry 

[12]. 
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     The ordered boson field has a well-defined, self-

organized, spatially limited contour. In the magnetic case this 

are the well-known domains. The domains result from a self-

constriction mechanism of the ordered boson field and define 

the limits of a region with homogenously ordered spins. They 

are self-contained units. The ordered spins are, so to say, 

enclosed in the domain. Moreover, the domains have the 

functionality of a resonator. Within each domain, bosons and 

magnons are standing plane waves. The dynamics in the 

individual domain, therefore, is perfectly one-dimensional. 

The one-dimensionally ordered structure is a consequence of 

the axial radiation characteristics of the individual boson 

source, i.e., the precessing spin. As a result, for many 

magnets, the observed magnon dispersions are as for the 

linear spin chain, independent of the assumed locally 

anisotropic exchange interactions that are not relevant in the 

critical range above the ordering temperature and for all 

lower temperatures as well [14,15]. A three-dimensional 

dynamic symmetry results by a coupling of the one-

dimensional boson fields of the domains along x-, y-, and z-

axis. The observed critical exponents are defined by the 

dimensionality of the global boson field [15].   

     The superconducting transition is particular in that it is a 

transition into a state with a short range ordered boson field. 

The ordered units generated by these bosons are the Cooper-

pairs. In contrast to the magnetic domains that are weakly 

fixed to the crystal lattice, the Cooper-pairs can move 

without any resistance across the metal [16]. The fact that 

there is no correlation between the positions of the Cooper-

pairs conforms to the short-range order in the 

superconducting state. While the surface of the magnetic 

domains consists of planes, the shape of the Cooper-pairs 

must be rather spherical. A resistivity-free propagation mode 

of the Cooper-pairs is surprising in view of the two-fold 

electric charge of the Cooper-pair. Evidently, the boson 

resonator surrounding the two Cooper-pair electrons shields 

the charge of the two electrons perfectly against all other 

charges of the metal. There are good reasons to assume that 

the condensed bosons in the superconducting state are 

identical with the bosons giving rise to the universal linear-

in-T electronic heat capacity above TSC. We will call the 

bosons of the continuous metallic solid CMS-bosons [17]. At 

TSC, these bosons change the type of short-range order and 

assume a definite shape below TSC. It is suggestive to identify 

the CMS-bosons with electric quadrupole radiation 

generated by the anisotropic charge distributions in the rather 

soft zones between the metal atoms. One experimental 

observation supporting this idea is the strong dependence of 

TSC upon application of an external pressure [18]. It is 

evident that application of pressure leads to deformations of 

the mechanically soft zones between the metal atoms and 

therefore to changes of the quadrupole moments. This has a 

direct effect on the generation process of the CMS-bosons, 

and, as a consequence, on TSC. Note that the ordering 

transition of a boson field occurs for a sufficiently high 

density of identical bosons [9].  

     The Cooper-pairs behave as a dense gas of neutral 

particles [16]. Possibly, the mobility of the Cooper-pairs is 

by tunnel effect. In recently performed new analyses of 

published superconducting heat capacity data of the 

conventional superconductors, low-temperature crossover 

events were identified that could be interpreted as Bose-

Einstein (B-E) condensation of the Cooper-pairs [16]. From 

the observed B-E condensation temperature, TBE, it is 

possible to obtain the density, n, of the Cooper-pairs at TBE 

according to TBE~n2/3 [19]. The observed TBE temperatures 

turned out to scale, to a good approximation, with the 

superconducting transition temperature, TSC, as 

TBE=0.135‧ TSC [16]. As a consequence, the density of the 

Cooper-pairs at TBE scales with the superconducting 

transition temperature, TSC, as n(T~0)~TSC
3/2 [16]. Since TBE 

is much lower than TSC, the density of the Cooper-pairs at 

TBE can be taken as representative of the density at T=0. 

Assuming that at all temperatures the Cooper-pairs form a 

dense-packed gas of bosons with a spin of S=0, their 

diameter at T~0, λ(T~0) is given by λ(T~0)~n-1/3~TSC
-1/2.  

     Interestingly, the same scaling relation as for the diameter 

of the individual Cooper-pair, λ(T~0)~TSC
-1/2, holds for the 

London penetration depth, λL(T~0)~TSC
-1/2 (see Figure 2 

below). The diameter of the Cooper-pair, therefore, 

corresponds to the London penetration depth. In other words, 

only one layer of Cooper-pairs, next to the inner surface of 

the superconductor, is sufficient to shield an applied 

magnetic field completely. As a consequence, the 

diamagnetic moment of the individual Cooper-pair, i.e., its 
cross-section area, is given by the square of the London 

penetration depth. As the experimental data show, the 

London penetration depth, λL, is divergent at TSC and 

decreases strongly with decreasing temperature towards a 

finite value for T→0 (see Figures 5-7 below) [20]. We can 

assume that the proportionality λL~λ holds for all 

temperatures. As a consequence, the diameter of the 

individual Cooper-pair decreases with decreasing 

temperature, in proportionality to the London penetration 

depth. This allows one to obtain the temperature dependence 

of the Cooper-pair diameter from measurements of the 

temperature dependence of the London penetration depth. 

The decreasing diameter of the Cooper-pairs is indicative of 

an increasing binding energy between the two Cooper-pair 

electrons. This is certainly a dynamic, i.e., temperature-

dependent effect and has to be ascribed to a constricting 

force, inherent to the condensed boson shield that surrounds 

the two Cooper-pair electrons. In fact, there is a reasonable 

proportionality between the Cooper pair coupling energy, 

given by the gap energy Egap(T), and the reciprocal London 

penetration depth λL
-1(T) (compare Figure 4 and Figure 5 

below). In other words, the larger the coupling energy, 

Egap(T), is, the lower is the diameter of the Cooper-pair. The 

condensed boson shell surrounding the two Cooper-pair 

electrons has the functionality of a cage that exerts the 

necessary force, needed to counteract the electrostatic 

repulsion between the two electronic charges. Due to an 

increasing constricting force of the boson cage with 

decreasing temperature, the size of the Cooper pairs 

decreases with decreasing temperature, in parallel to the 

London penetration depth [16]. This “electrostriction” has 

some similarity with the spontaneous magnetostriction in the 

ordered magnets [21]. In both cases the constricting forces 

are a dynamic property of the ordered boson field. However, 

magnetostriction acts on the collective of a nearly constant 

configuration of dense packed domains and lets the lattice 

parameter decrease with decreasing temperature [21]. The 

corresponding electrostriction acts on each of the increasing 

number of Cooper-pairs and has little effect on the 

temperature dependence of the lattice parameter [22]. 

    The decreasing size of the Cooper-pairs with decreasing 

temperature gets compensated by a corresponding increase 

of their density such that the volume of the superconductor 

is always completely filled with Cooper-pairs, similar to the 

volume of the ordered magnets that is completely filled with 
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domains. A complete filling seems to be specific to a 

homogeneous phase. The increasing number of electrons, 

needed for the increasing number of Cooper-pairs, can be 

assumed to be delivered by the conduction band. The 

superconducting system thereby gains an increasing mass 

which is certainly of importance on the superconducting 

dynamics, i.e., on the temperature dependence of the 

superconducting heat capacity [10,16]. At the same time, the 

conduction band gets depleted and the lattice parameter 

increases [22]. As a consequence, the superconductors 

resemble a two-phase system with the Cooper-pairs as the 

condensed phase and the conduction electrons as the vapor 

phase. The Cooper-pairs correspond, so to say, to the 

droplets in a vapor-liquid mixture.  

     Even in the limit T→0 where the London penetration 

depth and the diameter of the Cooper-pairs have a minimum, 

the orbital diamagnetism of the Cooper-pairs is sufficiently 

large such that, in the superconductors of the first kind, only 

one layer of Cooper-pairs at the inner surface of the 

superconductor shields a magnetic field completely. For the 

superconductors of the second kind, the low-temperature 

diameter of the Cooper-pairs, and therefore the orbital 

diamagnetism seems not to be sufficient to shield an applied 

magnetic field completely. The applied magnetic field then 

penetrates the superconductor as vortices.  

     Very peculiar is that the zero-field heat capacities of the 

conventional superconductors exhibit no critical behavior at 

TSC but the Cooper-pair binding energy, Egap(T), and the 

London penetration depth, λL(T), show critical behavior at 

T=TSC (see Figures 4-7 below), as it is familiar for the 

spontaneous magnetization  [21,23] and for the magnon gap 

in the ordered magnets [21,24]. The typical critical power 

functions of the argument |TSC-T| are absent in the zero-field 

heat capacity of the conventional superconductors. Note that 

Egap(T) and λL(T) are quantities that are not specific to the 

dynamics of the ground state of the unperturbed 

superconductor. Observation of these quantities requires 

special excitation conditions. As the finite critical range at 

TSC and at T=0 shows, the temperature dependence of Egap(T) 

and λL(T) is controlled by a long-range ordered boson-field 

that, apparently, has a higher dispersion energy than the 

bosons that are responsible for the dynamics of the 

superconducting ground state. As a consequence, there seem 

to exist two boson types in the superconductor. Only one of 

them can be relevant. The excited state bosons are, evidently, 

not relevant for the dynamics of the superconducting ground 

state and appear to be completely absent in zero-field 

measurements. For the ground state bosons T=0 is the only 

critical point. These bosons are in a short-range ordered state. 

The complicated temperature dependence of the 

superconducting zero-field heat capacity is another 

indication of a complicated excitation spectrum of the 

superconducting elements [10,16]. Note that there can be an 

interaction between thermally not occupied excited states 

and the thermally occupied ground state. This interaction can 

modify the dynamics of the ground state.  

     A possible explanation of the existence of two boson 

types could be that the radiation field emitted by an electric 

quadrupole is rather complicated. It is possible that this 

radiation field includes a linear and a curled component. In 

the superconducting state, the linear component is long-

range ordered but not relevant for the dynamics of the 

ground-state. The heat capacity of this boson field is 

responsible for the temperature dependence of Egap(T) and 

λL(T), in particular for the critical behavior of the two 

quantities at TSC in addition to T=0. In the ordered state, the 

curled component gives the Cooper-pairs their spherical 

shape. Due to the exclusion principle of relevance, the 

binding mechanism of the two Cooper-pair electrons seems 

to be decoupled from the dynamics of the Cooper-pairs in the 

zero-field ground state. The Cooper-pairs are rather stable 

objects. No critical behavior at TSC is observed not only in 

the zero-field heat capacity but also for the critical field, Bc 

[25].      

     In the first part of this communication, we discuss the 

relation between the zero-temperature values of the Cooper-

pair gap energy, Egap(T=0), of the London penetration depth, 

λL(T=0), and of the critical field, Bc(T=0) of the 

superconducting elements [26]. As is well-known, the 

Cooper-pair gap energy, Egap(T=0) and the critical field 

Bc(T=0) scale to a good approximation with the 

superconducting transition temperature, TSC, as 

Egap(T=0)~TSC [1] and Bc(T=0)~TSC
2 [25]. For the London 

penetration-depth the scaling relation will be shown to be 

λL(T=0)~TSC
-1/2 [16]. From these scaling relations it follows 

conclusively that the diamagnetic moment of the Cooper 

pair, μ(T=0), is proportional to the square of the London 

penetration depth, i.e., μ(T=0)~λL
2(T=0)~TSC

-1. In other 

words, the Cooper-pairs are closed objects with a diameter 

that corresponds to the London penetration depth. The strong 

superconducting diamagnetism results from the large orbital 

area of the Cooper-pair wave function. The two Cooper-pair 

electrons are evidently in a spherical symmetric s-state. The 

antiparallel coupling of the spins of the two Cooper-pair 

electrons seems to be by the rather weak dipole-dipole 

interaction. The Cooper-pairs, therefore, receive a net 

magnetic moment in a rather low applied magnetic field and 

superconductivity breaks down at the moderate critical field, 

Bc [25]. 

     In the second part of this work, representative data of the 

temperature dependence of the Cooper-pair gap energy, 

Egap(T), and of the reciprocal London penetration depth, 

λL(T)-1, are analyzed. Typical of the long-range order of the 

boson field that controls the dynamics of the two quantities 

is that the complete temperature dependence of Egap(T) and 

of λL(T)-1 is given by the two critical power functions at T=0 

and at T=TSC. This is as for the spontaneous magnetization 

of the ordered magnets [21,23]. As the identical critical 

exponents of Egap(T) and of λL(T)-1 show, the two quantities 

are proportional to each other. In conformity with the 

increasing binding energy between the two Cooper-pair 

electrons as a function of a decreasing temperature, given by 

Egap(T), the diameter of the Cooper-pair orbital, i.e., λL(T) 

shrinks.  

 

2. Properties at T=0 
     As done by the BCS-theory [1], we make use of the 

empirical fact that the superconducting elements have 
similar electronic properties and differ essentially by their 

transition temperatures, TSC, only. In this way it could 

plausibly be proven that the gap energy at T=0, Egap(T=0) is 

proportional to TSC [1] and that the critical field Bc(T=0) is 

proportional to TSC
2 [25]. For the London penetration depth, 

it turns out that λL(T=0) is proportional to TSC
-1/2 (Figure 2) 

[16]. As a consequence, for a high TSC, the Cooper-pairs are 

strongly bound and, as a consequence, are small objects with 

a small diameter given by λL. 
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Figure 1. Experimental Cooper-pair gap energies at T~0, 

Egap(T=0), converted to temperatures for some 

superconducting elements as a function of the transition 

temperature, TSC [26]. A linear fit of these data results 

reasonably into a slope of four, which deviates only slightly 

from the prediction of the BCS-theory of ~3.528 (see text) 

[20]. 

 
Figure 2.  Experimental data of the London penetration 

depth at T~0, λL(T=0), of some superconducting elements 

versus the reciprocal root of the superconducting transition 

temperature [26]. 

 

     Figure 1 reproduces the famous proportionality between 

the gap energy at T=0 and TSC. In Figure 1 the gap energies 

are converted to temperatures [26]. It can be seen, that 

Egap(T=0)/kB is to a good approximation proportional to TSC, 

as predicted by the BCS-theory [1]. A linear fit of the data in 

Figure 1 results in a proportionality constant of 3.931±0.258 

which is somewhat larger than ~3.528 predicted by the BCS-

theory [1,20]. It seems justified to consider the fit result for 

the proportionally constant as consistent with four, although 

3.5 cannot be excluded. 

     Considering the gap energy as the thermodynamic 

stability limit of the Cooper-pairs and that TSC defines the 

temperature scale, one can, formally, consider Egap(T=0) as a 

multiple of 1/2‧ kBTSC. Note, however, that this 

proportionality does not mean a thermal equilibrium. In other 

words, the individual Cooper-pair has between 7 and 8 

degrees of freedom. Since there are certainly three 

translational degrees of freedom, the Cooper-pair has 

between 4 and 5 additional energy degrees of freedom. This 

could mean that the Cooper-pairs are not perfectly spherical 

in shape and/or have a number of internal degrees of freedom 

such as breathing or pump modes. According to the generally 

low superconducting transition temperatures it is clear that 

the two electrons of the Cooper pair are not rigidly bound to 

each other. In fact, as the temperature dependence of Egap(T) 

shows, the coupling of the two Cooper-pair electrons is a 

dynamic process.       
    Another characteristic quantity of the superconductors is 

the low-temperature minimum of the London penetration 

depth, λL(T=0), that gives the distance from the surface of 

the sample over which an external magnetic field can 

penetrate into the superconductor. Note that the penetration 

depth is divergent at TSC and assumes a finite minimum for 

T→0 (see Figures 5-7 below) [20]. For T=0, the volume of 

the superconductor (of the first kind) is field-free, except for 

a thin layer at the surface with a thickness of λL(T=0). It is 

evident that this phenomenon, known as Meissner-

Ochsenfeld effect [27], is a direct consequence of the strong 

diamagnetism of the Cooper-pairs owing to their large orbital 

area. The strong diamagnetism is consistent with the view 

that the two electrons of the Cooper-pair can move on closed 

loops. They circulate the stronger, the larger the applied 

magnetic field is. The diamagnetic moment can be expected 

to be proportional to the applied magnetic field. Note that in 

the normal-conducting state there are no Cooper-pairs. Most 

conventional superconductors are paramagnetic in the 

normal state. Figure 2 shows experimental data of the 

London penetration depth at T~0 as a function of the square 

root of the reciprocal transition temperature, TSC
-1/2 [26]. 

From this data representation it follows that, the lower the 

transition temperature is, the larger is the penetration depth 

for a magnetic field. Eventually, for TSC→0, the penetration 

depth, λL(T=0), diverges and the superconductor does no 

longer shield the magnetic field. This proves consistently 

that the strong diamagnetism is restricted to the 

superconducting state. It is evident that for a low TSC, the two 

electrons of the Cooper-pair are weakly coupled only and the 

size of the Cooper-pair orbital is correspondingly large. The 

London penetration depth then is correspondingly large as 

well. In other words, the T=0 values of the London 

penetration depth and of the size of the Cooper pairs increase 

with decreasing TSC. 

     Another characteristic quantity of the conventional 

superconductors is the critical field at T=0, Bc(T=0). As is 

well-known, Bc(T=0) scales with the square of the transition 

temperature (Figure 3) [25]. The relation Bc(T=0)~TSC
2 is 

satisfactorily confirmed by the data representation of Figure 

3 [26].        

     The three quantities Egap(T=0), λL(T=0) and Bc(T=0) are 

certainly not independent of each other. In order to find out 

a correlation between them we make use of the formal energy 

equation 

 

μ(T=0)‧ Bc(T=0)=Egap(T=0)                                                  (1)  

                                                      

with μ(T=0) as diamagnetic moment of the Cooper-pair 

orbital at T=0 for an applied magnetic field of Bc(T=0). 

Inserting into equation (1) the two relations: 

 

Bc(T=0)~TSC
2    (Figure3)  and 

Egap(T=0)~TSC   (Figure 1)                                                   (2) 
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it results that μ(T=0)~TSC
-1. Considering that the London 

penetration depth is λL(T=0)~TSC
-1/2 (Figure 2) it follows that 

 

μ(T=0)~λL(T=0)2                                                                        (3)                                                                                                                                                                                 

 
Figure 3. The critical field at T~0, Bc(T=0), as a function of 

the superconducting transition temperature squared for a 

selection of superconducting elements [25,26]. 

                                                                             
     As a consequence, the diamagnetic moment μ of the 

Cooper-pair is proportional to the square of the London 

penetration depth. In other words, λL
2 gives the cross-section 

area of the Cooper-pair, and the diameter of the Cooper-pair 

is proportional to the London penetration depth, λL. This 

result provides a plausible microscopic explanation of the 

London penetration depth λL and supports the real-space, or 

particle picture of the Cooper-pair. As a consequence, only 

one layer of diamagnetic Cooper-pairs next to the inner 

surface of the superconductor is sufficient to shield the 

external magnetic field completely. The London penetration 

depth deceases as a function of a decreasing temperature 

because the Cooper-pair orbital area decreases as a function 

of a decreasing temperature. For the type I superconductors 

the minimum of the orbital area of the Cooper-pairs for T→0 

and, as a consequence, the associated small diamagnetic 

moment is still sufficient to shield the applied magnetic field 

completely. On the other hand, a complete shielding of a 

magnetic field for all temperatures by only one layer of 

Cooper-pairs requires that the decreasing size of the Cooper-

pairs, with decreasing temperature, gets compensated by a 

corresponding increase of their density such that the volume 

of the sample is always nearly completely filled with 
Cooper-pairs [16]. For the type II superconductors, either the 

orbital area or the density of the Cooper-pairs seems not to 

be sufficiently large to shield the magnetic field completely. 

The magnetic field then penetrates the superconductor as 

vortices.  

     The result expressed by the proportionality (3) agrees 

with a recent experimental study of the Bose-Einstein (B-E) 

condensation temperatures, TBE, of the Cooper-pairs of the 

superconducting elements [16]. Note that Cooper-pairs are 

bosons with an integer spin of S=0 [2]. In spite of their two-

fold charge, the Cooper-pairs can move completely freely 

across the metallic matrix, which is a condition for an 

electrical resistivity of zero of the superconducting current. 

This shows that the charges of the two Cooper-pair electrons 

get completely shielded by the surrounding CMS-boson 

cage. As an empirical fact, the thermodynamics of the 

Cooper-pair gas can be described by the same algorithm as it 

applies to the dilute alkali-metal atom gases [19]. From the 

observation of the B-E condensation temperature, TBE, it is 

possible to evaluate the density of the Cooper-pairs, n, at TBE. 

For the uniform Bose gas, confined to a three-dimensional 

box, the dependence of TBE on the density of the gas 

particles, n, is given by 

                                     

 kB‧ TBE≈3.31(ħ2n2/3/m)                                                             (4)                                                              

 

with ħ=h/2π as Planck constant and m=2me as the mass of 

the Cooper-pair (me is the mass of the electron) [19]. Because 

of the low mass of the electron, the B-E condensation 

temperatures of the Cooper pairs are five to six orders of 

magnitude higher than for the alkali-atom condensates. 

However, in contrast to the dilute alkali-atom condensates 

the density of the Cooper-pairs is temperature dependent. As 

we have already argued, the density of the Cooper-pairs 

increases as a function of a decreasing temperature according 

to their decreasing size such that for all temperatures the 

volume of the superconductor is nearly completely filled 

with Cooper-pairs. In other words, the observed 

condensation temperature, TBE, corresponds to the Cooper-

pair density at TBE. Since the TBE values turned out to be 

proportional to TSC as TBE~0.135‧ TSC [16] the density of the 

Cooper-pairs at TBE can be taken as representative for the 

density at T=0.  

     The B-E condensation of the Cooper-pairs gives rise to a 

crossover event in the heat capacity of the superconductor 

[10,16]. Inserting the experimental scaling relation 

TBE=0.135‧ TSC into formula (4), the density of the Cooper 

pairs at TBE, i.e., at T~0, follows as  

 

n(T=0)=0.88‧ 1015‧ TSC
3/2                                                      (5)                                                            

 

with n in units of cm-3 [16].  

     Another, completely independent estimate of the Cooper-

pair density at T=0 is possible from the London penetration 

depth data in Figure 2, assuming that the Cooper pairs form 

a dense gas of particles with no significant distance between 

them. Under this condition, the distance between the Cooper-

pairs corresponds to their diameter λL(T~0). The density of 

the Cooper pairs therefore is given by n~λL
-3. Using 

λL(T=0)~TSC
-1/2 from Figure 2 it follows that n(T=0)~TSC

3/2. 

As a consequence, the same relation n(T=0)~TSC
3/2 results 

from two completely different experimental methods. 

Inserting λL=90‧ TSC
-1/2 (in nm) from Figure 2 into n~λL

-3 it 

follows that 

                                                     
n(T=0)=1.37‧ 1015‧ TSC

3/2                                                         (6)                                                                      

 

with n in units of cm-3. The pre-factor in equation (6) is larger 

by a factor of ~1.5 compared to the pre-factor in equation (5). 

This indicates that the assumption of no space at all between 

the Cooper-pairs is not perfectly correct and that the density 

of the Cooper-pairs is over-estimated, assuming that their 

distance corresponds to their diameter. Nevertheless, it 

seems to be a reasonable approximation that for all 

temperatures the available space in the superconductor is 

nearly completely filled with Cooper-pairs.   

     Using the fitted slopes in Figure 1 and Figure 3, an 

estimate of the diamagnetic moment of the Cooper pairs at 

T=0 for an applied magnetic field of B=Bc(T=0) can be 

obtained. According to formula (1) the diamagnetic moment 
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of the Cooper pairs results as μ(T=0)=-2.8‧ 103μB/TSC, with 

μB as Bohr magneton. This surprisingly large diamagnetic 

moment is consistent with the view that for an applied field 

of Bc(T=0) the two electrons of the Cooper-pair circulate 

with a high frequency on a closed loop. However, in view of 

the enormous diamagnetic moment obtained in this way, we 

cannot exclude that formula (1) is correct except for an 

unknown proportionality constant.   

     We should recall that in 1935 when F. and H. London 

proposed a theoretical explanation of the Meissner-

Ochsenfeld effect [27,28,29], Cooper-pairs were unknown 

[1-8]. Using the free electron model of the metals, the 

strongly increasing diamagnetism of the superconductors 

with decreasing temperature had to be explained by a strong 

increase of the electron density, ne, with decreasing 

temperature. In other words, no specific assumption on the 

superconducting electronic state was made. There is, 

however, neither a physical reason, nor some experimental 

evidence for such a strong temperature dependence of the 

electron density. It is clear that because of the large orbital 

diamagnetism of the Cooper-pairs, the shielding of an 

external magnetic field is much more efficient by Cooper 

pairs than by a gas of free electrons. According to the London 

theory, the relation between the density of the free electron 

gas, ne, and the London penetration depth λL is given by 

[28,29]: 

 

 λL
2=me/μ0e2ne                                                                       (7)                                                                                              

 
     In formula (7), me is the mass of the electron, μ0 is the 

vacuum permeability and e is the charge of the electron. 

Inserting λL(T=0)=90‧ TSC
-1/2 (in nm) according to Figure 2 

into formula (7), results for the electron density at T=0: 

 

ne(T=0)=3.48‧ 1021‧ TSC                                                         (8)                                                                                    

 

with ne in cm-3. Note that in contrast to the Cooper-pair 

density at T=0 that is proportional to TSC
3/2, according to 

formula (6), the electron density at T=0 of the London theory 

is proportional to TSC, according to formula (8). As a 

conclusion, the historical London theory explains the low 

penetration depth of a magnetic field for T→0 by an electron 

density of the assumed free-electron gas that is larger by a 

factor of ~106 compared to a Cooper-pair density that results 

into the same shielding effect (formula (5)).  

    In 1935, the importance of bosons for the dynamics of 

solids was unknown. This new chapter of solid-state physics 

began only in 1974 when the Renormalization-Group theory 
appeared [30]. Although RG-theory has restricted to the 

magnetic degrees of freedom, it became more and more clear 

that bosons are essential for the dynamics of all other degrees 

of freedom as well. In particular ordered boson fields are 

responsible for the generation of Cooper-pairs and magnetic 

domains. 

 

3. Temperature Dependence of Egap and λL 

     As we have already mentioned, in contrast to the critical 

field and the zero-field heat capacity which exhibit critical 

behavior at T=0 only, the Cooper-pair gap energy, Egap(T), 

and the reciprocal London penetration depth, λL(T)-1, exhibit 

critical behavior additionally at T=TSC, as it is known for the 

spontaneous magnetization and for the magnon gap of the 

ordered magnets [23,24,31]. Since we know that the 

temperature dependence of the two magnetic quantities is 

controlled by the heat capacity of the long-range ordered 

Goldstone-boson field (magnetic dipole radiation), it can be 

concluded that the temperature dependence of Egap(T) and of 

λL(T)-1 is controlled also by the heat capacity of a long-range 

ordered boson field. This boson field is evidently different 

from the boson field that is responsible for the temperature 

dependence of the zero-field heat capacity. For these low-

energy bosons, T=0 is the only critical point, i.e., these 

bosons do not order into a long-range ordered state. The 

bosons that control the temperature dependence of Egap(T) 

and λL(T)-1 become apparent only under the special 

excitation conditions necessary for the observation of the two 

quantities, and, evidently, have high dispersion energies. 

This shows that the excitation spectra of the superconductors 

are very complicated [10]. Relevance of excited-state bosons 

requires a thermal population of the dispersion relation of 

these bosons. Population of the dispersion relation of excited 

state-bosons is, however, not a continuous process, 

according to the Boltzmann-factor, but occurs in the discrete 

manner of a crossover event. At this crossover, the excited 

state bosons suddenly become relevant and TSC appears as a 

second critical temperature. Below this crossover 

temperature, the excited state bosons seem to be completely 

absent and T=TSC is not a critical point. Due to the symmetry 

selection principle of relevance, only one boson type can be 

relevant [30]. On the other hand, thermal population of the 

dispersion relation of the excited state bosons that control the 

temperature dependence of Egap(T) and λL(T)-1 is certainly 

never given considering that the Egap(T=0)/kB values are 

about four times larger than TSC (Figure 1).   

 
Figure 4. Normalized Cooper-pair gap energy of tantalum 

as a function of the reduced temperature to a power of four 

[32]. As for all here investigated superconducting elements, 

thermal decrease of the gap energy with respect to saturation 

at T=0 is given by a T4 power function, followed by a 

crossover to the critical power function of the argument 

(TSC-T) with mean field exponent of β=1/2 [21]. 

 

     As far as Egap(T) data are available, the same type of 

universal temperature dependence as in Figure 4 [32] is 

observed for all superconducting elements [21]. Universality 

holds in the vicinity of the two critical points T=0 and T=TSC. 

At the critical point T=0 the critical power function is a 

power function of absolute temperature and exhibits the 

critical exponent of ε=4. The critical power function at 

T=TSC is a power function of the argument (TSC-T) and 

exhibits mean field exponent of β=1/2. Formally, this critical 
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exponent agrees with the BCS-theory [1,20]. However, in 

contrast to the atomistic BCS-theory, the observed, boson-

defined critical power function holds over a finite distance 

from the critical point [31]. The finite width of the critical 

range provides clear evidence of boson dynamics. The 

critical range at TSC is limited by the crossover to the critical 

power function at T=0. Crossover events are analytical 

changes of the temperature function and are clearly beyond 

the atomistic models. 

     As for the spontaneous magnetization of the ordered 

magnets [21,23], the two critical power functions at T=TSC 

and at T=0 intersect and give a complete description of the 

temperature dependence of Egap(T). For niobium, the same 

universal exponents as in the temperature dependence of 

Egap(T) occur in the temperature dependence of the reciprocal 

London penetration depth, λL
-1 (Figure 5) [33]. This one can 

reasonably expect since the temperature dependence of the 

two quantities is controlled by the same boson type. 

Observation of the same critical exponents does, however, 

not mean that the two quantities are perfectly proportional to 

each other. In fact, as we have seen, for T→0 Egap(T=0)~TSC 

(Figure 1) but λL
-1(T=0)~TSC

1/2 (Figure 2). Moreover, the 

pre-factors of the two universal power functions at T=0 and 

at T=TSC, i.e., the critical amplitudes, can be different for the 

two quantities. The similar temperature dependence of Egap 

and λL
-1 proves that the larger the gap energy is, i.e., the 

stronger the two Cooper-pair electrons are coupled, the lower 

is the diameter of the Cooper-pair orbital and the London 

penetration depth. Figure 5 shows, as an example, the 

normalized reciprocal London penetration depth of niobium 

as a function of the reduced temperature [33]. In other words, 

λL diverges at TSC with a critical exponent of β=1/2.   

     For chemically and structurally more complicated 

superconducting compounds, the critical exponent at TSC 

seems to remain β=1/2. This exponent is typical of an 

isotropic behavior as it can be expected for cubic, or weakly 

non-cubic materials. In structurally strongly anisotropic 

systems, the symmetry, i.e., the dimensionality of the excited 

state boson field can be lower at the critical point T=0. The 

exponent ε of the Tε function then can assume a rational 

value different from ε=4. In this case, a symmetry crossover 

coincides with the common crossover between the two 

critical power functions at T=0 and at T=TSC. The observed 

exponent of ε≠4 is characteristic of the specific low-

temperature symmetry of the excited state boson field. As we 

know from magnetism, a crossover to a lower symmetry 

class at T=0 compared to TSC can be caused by a sufficiently 

strong spontaneous lattice distortion as a function of a 

decreasing temperature [21]. The material then cannot be 

classified by only one symmetry class alone. In other words, 

each critical point, either T=0 or T=Tc can have its own 

dynamic symmetry. Although spontaneous lattice distortions 

increase continuously with decreasing temperature, the 

boson-defined dynamics reacts in the discrete manner of a 

crossover event when the distortion has increased beyond the 

threshold to become relevant. Finite distortions that remain 

below this threshold are not relevant and have no effect on 

the boson-controlled thermodynamic observables, i.e., on the 

critical exponents. As an example of a low symmetry class 

at T=0, Figure 6 shows the normalized reciprocal London 

penetration depth of the two-dimensional organic salt κ-

(BEDT-TTF)2Cu(NCS)2 as a function of the reduced 

temperature [34]. The meaning of the exponent of ε=5/2 is 

difficult to specify as long as this exponent is not reproduced 

by many other similar materials. 

 
Figure 5. Normalized reciprocal London penetration depth 

of niobium as a function of the reduced temperature [33]. 

The same critical exponents as for Egap(T) in Figure 4 are 

observed at T=0 and at T=TSC. 

 
Figure 6. Normalized reciprocal London penetration depth 

of the strongly anisotropic organic salt κ-(BEDT-

TTF)2Cu(NCS)2 as a function of the reduced temperature 

[34]. The exponent of ε=5/2 of the critical power function at 

T=0, Tε, is indicative of a low-symmetry class. 

 

     For hexagonal MgB2, investigated in [35], a critical 

exponent of ε=2 can be identified in the reciprocal London 

penetration depth (Figure 7). According to the unusual 

intersection of the two critical power functions in Figure 7, 

compared to Figure 5 and Figure 6, the symmetry of the 

excited state boson field must be considerably lower at T=0 

compared to the symmetry at T=TSC. Quite generally, when 

the symmetry at the critical point T=0 is much lower than the 

symmetry at T=TSC, the crossover between the critical power 

function at T=TSC and at T=0, can assume a rather anomalous 

appearance. It is evident that more systematic investigations 

are necessary for an understanding of the different observed 

exponents ε.  

l
L
(T

=
0

)/
l

L
(T

)

T/TSC

fitted exponent:

3.777 ± 0.069

niobium

~T4

b =1/2
fitted exponent:

0.500 ± 0.030

S.M. Anlage et al.

Phys. Rev. B 44 

(1991) 9764

TSC= 9.2 K

0.4 0.6 0.8 1.0

0.4

0.6

0.8

1.0

l
L
(T

=
0
)/
l

L
(T

)

T/TSC

fitted exponent:

2.444 ± 0.09746

~T5/2

b=1/2

k-(BEDT-TTF)2Cu(NCS)2

M. Lang, N. Toyota, T. Sasaki, H. Sato,

Phys. Rev. Lett. 69 (1992) 1443.

TSC= 9.15 K

fitted exponent:

0.489 ± 0.030

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0



 
033 / Vol. 26 (No. 1)  Int. Centre for Applied Thermodynamics (ICAT) 

 
Figure 7. Normalized reciprocal London penetration depth 

of a MgB2 thin film sample as a function of the reduced 

temperature [35]. 

 

4. Concluding Remarks 
     It seems to be now clear that at phase-transitions into a 

long-range and coherently ordered state, a boson field orders 

[9]. The visible atomic or magnetic order results from a 

coupling of atoms or spins to the ordered boson field. As we 

have mentioned, the superconducting transition is 

exceptional, in that the relevant bosons enter a short-range 

ordered state only. Nevertheless, comparison with the better 

understood long-range ordered boson field in the magnetic 

systems, is most revealing [9]. Characteristic of a transition 

into a long-range ordered boson field is the finite width of 

the critical range and the observed rational critical exponents 

[36,37,38]. The observed perfect collinear order of the spins 

results from a surprisingly strong coupling of the spins to the 

perfectly ordered boson field. The locally anisotropic near-

neighbor interactions would never result into a perfect 

coherent, long-range order. If the anisotropic local exchange 

interactions would be the relevant excitations, a spin-glass 

like order would result. This is realized in Ising magnets only 

[11]. Note that in Ising magnets, Goldstone-bosons get not 

generated because Ising spins do not precess. The dynamics 

therefore is atomistic, i.e., due to the local exchange 

interactions. In other words, the order realized by ordered 

boson fields is the highest possible one and provides an 

entropy argument for the dominance of the bosons. The long-

range ordered objects generated by the ordered Goldstone-

boson field are the domains. Domains are typical of the 

ordered magnets [39] and of the ordered ferroelectrics [40]. 
The mosaic blocks, occurring in practically all single 

crystals, have also to be viewed as domains, generated by the 

bosons that order at the melting transition [38]. These bosons 

are, however, completely unexplored. The bosons that order 

at the magnetic ordering temperature, i.e., the Goldstone-

bosons, are magnetic dipole radiation, generated by the 

precessing spins [11]. The bosons of the ferroelectric 

materials are evidently electric dipole radiation [40]. 

Although the individual domain is a stable unit, the domain 

configurations are not very stable and can easily be 

manipulated by suitable external means. As is well known, 

upon ferromagnetic saturation the whole sample gets 

transformed into the mono-domain state. The dynamic 

symmetry then is one-dimensional [41]. In other words, a 

dimensionality crossover occurs upon ferromagnetic 

saturation [41]. Since the linear dimensions of the domains 

are much larger than the inter-atomic distance, it is evident 

that the domains do not result from atomistic near-neighbor 

interactions. The domain is, so to say, a universal, self-

contained geometrical unit. The size and shape of the 

individual domain, therefore, must result from the 

ballistically propagating bosons. The finite dimension of 

each domain is indicative of a self-constriction mechanism 

of the ordered boson field. Self-constriction has to be 

considered as a dynamic particularity of the ordered boson 

fields and seems to be one origin of the spontaneous 

magnetostriction [21]. The domains are resonators, self-

organized by the ordered boson field. In each domain, bosons 

and magnons are standing one-dimensional waves. As a 

consequence, in many magnets the magnon dispersions are 

as for the linear spin chain, irrespective of the locally 

anisotropic exchange interactions that are not relevant in the 

sense of the RG-theory [15,23]. Condition for a one-

dimensional long-range order of the boson field is that the 

emission characteristics of the individual boson source is 

axial and that the dominant generation process of the bosons 

is by stimulated emission. This holds for the magnetic and 

for the electric dipole radiation. Due to stimulated emission, 

the number of bosons propagating along those 

crystallographic directions with a high density of the boson 

sources gets enhanced [42,43]. This can be viewed as a self-

collimation mechanism of the bosons. Eventually, for a 

sufficiently sharp collimation, the critical boson density for 

the spontaneous onset of stimulated will be reached and the 

boson field orders perfectly one-dimensional [9,42,43]. Now 

all bosons are condensed in the same quantum state. This is 

realized in each domain. The ordered boson field resembles 

the beam of a LASER. A three-dimensional global boson 

field results by a coupling between the one-dimensional 

boson fields of the domains along x-, y- and z-axis. In other 

words, the dimensionality of the global boson field is given 

by the number of inequivalently oriented domains. The 

observed critical exponents are defined by the global boson 

field.     

     The superconducting transition is particular in that the 

relevant bosons undergo a transition into a short-range 

ordered state. In contrast to the long-range ordered magnets, 

there are no domains observed in the superconducting state. 

Moreover, the typical critical power functions of the 

argument |TSC-T|, as they occur at the magnetic ordering 

transition, are absent in the zero-field heat capacity of the 

superconductors [10,13]. Instead, universal power functions 

of absolute temperature are observed above and below TSC 

[10,16]. As a consequence, the superconducting transitions 

are all within the critical range of the critical point T=0. As 
we know from RG-theory [30], the dynamics in the critical 

range is exclusively due to bosons. Characteristic of a critical 

range is short-range order. This means, at TSC the type of 

short-range order of the relevant bosons changes. Evidently, 

the short-range ordered units of the superconducting state are 

the Cooper-pairs. The radiation field emitted by the sources 

of the relevant bosons, therefore, cannot be axial. It is quite 

clear, that the bosons that order at TSC are the same as the 

bosons above TSC [18]. We have called the bosons of the 

continuous metallic solid that give rise to the universal 

linear-in-T heat capacity above TSC, CMS-bosons [17]. It is 

suggestive to identify these bosons with electric quadrupole 

radiation generated by the inhomogeneous charge 

distributions in the soft zones between the metal atoms. 

Although the radiation field generated by an electric 
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quadrupole is theoretically unexplained, it evidently contains 

a component that is essentially circular or spherical in shape. 

Due to stimulated emission many identical quanta of the 

spherical waves can superimpose whereby a sharp spherical 

shell is generated that encapsulates the two Cooper-pair 

electrons. This is as for the magnetic domains that 

encapsulate a region with coherently ordered spins. The 

shape and volume of the magnetic domains (Cooper-pairs) is 

defined by the ordered Goldstone-boson field (ordered CMS-

boson field). The short-range ordered Cooper-pairs 

correspond, so to say, to the domains in the long-range 

ordered magnets. The CMS-boson shell, surrounding the two 

Cooper-pair electrons, shields the charge of the two Cooper-

pair electrons perfectly and allows for a free mobility of the 

Cooper-pairs. This is a condition for a resistivity of zero of 

the superconducting current. In contrast to the magnetic 

domains that are fixed to each other and to the crystal lattice, 

the spherical Cooper-pairs can move freely across the metal. 

They behave as a dense gas of neutral particles [16]. 

Consistent with the short-range order in the superconducting 

state is that there is no correlation between the positions of 

the Cooper-pairs. In contrast to the ordered magnets, for 

which the dynamic dimensionality is defined by the number 

of inequivalently oriented domains, the conventional (cubic) 

superconductors are isotropic system. The CMS-boson shell 

exerts the necessary constricting force to counteract the 

repulsion between the charges of the two Cooper-pair 

electrons. This constriction is an inherent dynamic, i.e., 

temperature dependent property of the ordered boson field, 

and is similar to the spontaneous magnetostriction in the 

ordered magnets [21]. Since the constriction gets stronger 

with decreasing temperature, the diameter of the Cooper- 

pairs shrinks with decreasing temperature. The 

corresponding binding energy between the two Cooper-pair 

electrons is given by the gap energy Egap(T) that increases 

with decreasing temperature. Egap(T) has much similarity 

with the magnon gap in the ordered magnets that is a measure 

of the stability of the spin order due to the interaction with 

the ordered Goldstone-boson field (magnetic dipole 

radiation) [44]. The decreasing diameter of the Cooper-pairs 

with increasing Egap(T) agrees with the temperature 

dependence of the London penetration depth for an applied 

magnetic field. This allows one to obtain the temperature 
dependence of the diameter of the Cooper-pairs from 

measurements of the temperature dependence of the London 

penetration depth. The strong superconducting 

diamagnetism results from the large orbital cross section of 

the Cooper-pairs. Since the London penetration depth agrees 

with the diameter of the individual Cooper-pair, it results that 

only one layer of Cooper-pairs next to the inner surface of 
the superconductor is sufficient to shield an applied magnetic 

field completely.  The fact that, for all temperatures, a 

magnetic field is expelled out of the superconductor shows 

that the decreasing size of the Cooper-pairs gets 

compensated by a corresponding increase of their density 

such that the volume of the superconductor is always nearly 

completely filled with Cooper pairs [16]. This is as for the 

volume of the ordered magnets that is completely filled with 

domains. It can be assumed that the increasing number of 

electrons needed for the increasing number of Cooper-pairs 

is delivered by the conduction band. The superconductor, 

therefore, resembles a two-phase system with the Cooper-

pairs as the condensed phase and the conduction-band 

electrons as the vapor phase. With the increasing number of 

Cooper-pairs with decreasing temperature the 

superconducting systems receives an increasing mass which 

is certainly of influence on the dynamics, i.e., on the 

temperature dependence of the heat capacity of the zero-field 

ground state.     

     Concluding it has to be remarked that the just sketched 

scenarios need more detailed investigations, in particular 

field-theoretical studies, for a final approval. Many of the 

statements and ideas advanced in this rather 

phenomenological work are heuristic guides only, intended 

to stimulate further research activities. It cannot be excluded 

that with the continuing progress of our understanding of the 

dynamics in solids, one or the other of the here presented 

ideas will need a considerable correction. Nevertheless, the 

dominant role of bosons for the dynamics of solids is now a 

firmly established experimental fact. Essential for this 

dominance seems to be that the bosons get generated by 

stimulated emission. Due to stimulated emission the bosons 

can order, i.e., they condense all in the same or a few 

quantum states, whereby extremely high, local 

electromagnetic fields get generated. These high fields affect 

the microscopic near-neighbor interactions and determine 

the dynamics in the ordered state, instead of the non-relevant 

near-neighbor interactions. 

 

Nomenclature  
λL, London penetration depth (nm) 

Egap, Cooper-pair energy gap (meV) 

TSC, superconducting transition temperature (K)  

λ, diameter of the Cooper-pair 

TBE, Bose-Einstein condensation temperature 

μB, Bohr-magneton (Vsm) 

μ, diamagnetic moment of the Cooper-pair (Vsm) 

Bc, critical magnetic field (Gauss) 

n, spatial density of the Cooper-pairs (cm-3) 

ne, conduction-band electron density (cm-3) 

me, mass of the electron (Kgr) 

β, critical exponent at TSC 

ε, critical exponent at T=0 

e, charge of the electron (C) 

μ0, vacuum permeability (Vs/Am)  
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