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Abstract 

This paper aims to study some semi-symmetric and curvature tensor conditions on 𝛼-Kenmotsu 

pseudo-metric manifolds. Some conditions of semi-symmetric, locally symmetric, and the Ricci semi-

symmetric are considered on such manifolds. Also, the relationships between the 𝑀-projective 

curvature tensor and conformal curvature tensor, concircularly curvature tensor, and conharmonic 

curvature tensor are investigated. Finally, an example of 𝛼-Kenmotsu pseudo-metric structure is given. 

 
Bazı Tensör Koşullarının 𝜶-Kenmotsu Pseudo-Metrik Yapılar İçin 
İncelenmesi 
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Öz 

Bu makale 𝛼-Kenmotsu pseudo-metrik manifoldlar üzerinde bazı yarı simetrik ve eğrilik tensör şartlarını 

çalışmayı amaçlamaktadır. Bazı yarı-simetrik, lokal simetrik ve Ricci yarı-simetrik şartlar bu tür 

manifoldlar için göz önüne alınmıştır. Ayrıca, 𝑀-projektif eğrilik tensörü ile konformal eğrilik tensörü, 

konsirküler eğrilik tensörü ve konharmonik eğrilik tensörü arasındaki ilişkiler araştırılmıştır. Makale 

açıklayıcı bir 𝛼-Kenmotsu pseudo-metrik manifold örneği ile sonlandırılmıştır. 

                                                    © Afyon Kocatepe Üniversitesi. 

 

1. Introduction 

Almost contact manifolds are critical to the manifold 

theory. A (2𝑛 + 1)-dimensional differentiable 

manifold 𝑀 of class 𝐶∞ is said to have an almost 

contact structure if the structural group of its 

tangent bundle reduces to 𝑈(𝑛) × 1 (Gray 1959); 

equivalently an almost contact structure is given by 

a triple (𝜑, 𝜉, 𝜂) satisfying the following conditions 

             𝜂(𝑈)𝜉 − 𝑈 = 𝜑2𝑈,        𝜂(𝜉) = 1.              (1) 

In 1960, Sasaki defined a metric 𝑔 such that 

             𝑔(𝑈, 𝑉) − 𝜂(𝑈)𝜂(𝑉) = 𝑔(𝜑𝑈, 𝜑𝑉)          (2) 

                                   𝜂(𝑈) = 𝑔(𝑈, 𝜉)                        (3) 

on the structure (𝜑, 𝜉, 𝜂, 𝑔). Thus Sasaki introduced 

the concept of almost contact metric structure to 

the literature. Then, Sasaki and Hatakeyama gave 

the normality condition on almost contact 

manifolds (Sasaki and Hatakeyama 1962). After 

these studies, Goldberg and Yano defined 

cosymplectic manifolds, a class of almost contact 

metric manifolds. (Goldberg and Yano 1969). The 

most extensive and detailed research in this field of 

study began with Blair (Blair 1976). After that many 

studies were handled by Olszak on almost 

cosymplectic manifolds (Olszak 1981, 1989). 
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The manifold, which forms the basic structure of our 

study, was first mentioned by Kenmotsu (Kenmotsu 

1972). These manifolds are known as Kenmotsu 

which are certain subclasses of almost contact 

metric structures, and it is defined as follows: 

𝛻𝑈𝜉 = 𝑈 − 𝜂(𝑈)𝜉,                      (4) 

(𝛻𝑈𝜑)𝑉 = 𝑔(𝜑(𝑈), 𝑉)𝜉 − 𝜂(𝑉)𝜑(𝑈)    (5) 

for any 𝑈, 𝑉 ∈ 𝜒(𝑀) (Kenmotsu 1972). Then the 

structure (𝜑, 𝜉, 𝜂, 𝑔) is normal. Since it is not a 

Killing, the 𝜉 is not Sasakian.  

For contact metric manifolds, the first study with the 

help of pseudo-metric was made in 1969 by 

Takahashi on Sasakian manifolds (Takahashi 1969). 

After this study, contact manifolds and Sasakian 

pseudo-Riemannian manifolds defined with the 

help of pseudo-Riemann metrics attracted the 

attention of some researchers (Duggal 1990, 

Calvaruso and Perrone 2010). Calvaruso and 

Perrone put forward the most systematic study on 

this subject. The similarities and differences 

between the Riemann and pseudo-Riemann metrics 

were discussed. Contact pseudo-metric structures 

whose sectional curvature is constant, contact 

pseudo-metric structures with local symmetry, and 

homogeneous contact Lorentzian metric structures 

of dimension 3 were investigated and classified 

(Calvaruso and Perrone 2010). Also, Oneil's book is 

the most significant source of motivation for all 

authors studying in this field (O'neil 1983). 

A classification of almost 𝛼-Kenmotsu pseudo-

metric manifolds has not been undertaken yet. The 

first study, one of the detailed studies in the 

literature, was investigated by Wang and Liu (Wang 

ve Liu 2016). Moreover, some authors have also 

focused on this topic (Öztürk 2020, Öztürk 2021, 

Naik et al. 2020). In particular, Öztürk studied the 𝜂-

parallelity conditions on almost 𝛼-cosymplectic 

pseudo-metric manifolds (Öztürk 2021).  

This paper aims to study some semi-symmetric and 

curvature tensor conditions on 𝛼-Kenmotsu 

pseudo-metric manifolds such that a smooth 

function defined 𝑑𝛼 ∧ 𝜂 = 0 on 𝑀. Semi-symmetry, 

local symmetry, Ricci semi-symmetry, and the 

curvature tensors of conformal, concircularly, 

conharmonic, and 𝑀-projective are investigated. 

Many results are obtained related to such tensor 

conditions. Many results have been obtained 

related to such tensor conditions. An illustrative 

example is provided at the end of the paper. 

2. Preliminaries 

A (2𝑛 + 1)-dimensional differentiable manifold 𝑀 

with a triple (𝜑, 𝜉, 𝜂), such that 𝜑 is a tensor field 

type of (1,1), 𝜉 is a vector field, and  𝜂 is a 1-form on 

𝑀 defined by (1). 

Admitting a Riemannian metric 𝑔, given by (2) and 

(3), then 𝑀 is called almost contact metric structure 

(𝜑, 𝜉, 𝜂, 𝑔). Also, the fundamental 2-form 𝛷 of 𝑀 is 

defined by  

𝛷(𝑈, 𝑉) = 𝑔(𝜑𝑈, 𝑉).                   (6) 

If the Nijenhuis tensor vanishes, then 𝑀 is called 

normal. Here it is noted that the Nijenhuis tensor 

defined by 

 𝑁𝜑(𝑈, 𝑉) = [𝜑𝑈, 𝜑𝑉] − 𝜑[𝜑𝑈, 𝑉] − 𝜑[𝑈, 𝜑𝑉] +

                          𝜑2[𝑈, 𝑉] + 2𝑑𝜂(𝑈, 𝑉)𝜉,                   (7)                                                                        

and Kenmotsu manifold is normal. 

The conformal curvature tensor defined as 

   𝐶(𝑈, 𝑉)𝑍 = 𝑅(𝑈, 𝑉)𝑍 − (
1

2𝑛−1
) [𝑆(𝑉, 𝑍)𝑈 −

𝑆(𝑈, 𝑍)𝑉 + 𝑔(𝑉, 𝑍)𝑄𝑈 − 𝑔(𝑈, 𝑍)𝑄𝑉] +  

                       (
𝑟

2𝑛(2𝑛−1)
) [𝑔(𝑉, 𝑍)𝑈 − 𝑔(𝑈, 𝑍)𝑉]   (8) 

for any 𝑈, 𝑉, 𝑍 ∈ 𝜒(𝑀) (Yano and Kon 1984). 

Besides, the other essential curvature tensor fields, 

which are called concircular 𝐶̅, conharmonic 𝐻, and 

𝑀-projective 𝑀∗ in Riemannian geometry, are 

presented as follows, respectively: 

𝐶̅(𝑈, 𝑉)𝑍 = 𝑅(𝑈, 𝑉)𝑍 

          − (
𝑟

2𝑛(2𝑛+1)
) (𝑔(𝑉, 𝑍)𝑈 − 𝑔(𝑈, 𝑍)𝑉),         (9) 

 

𝐻(𝑈, 𝑉)𝑊 = 𝑅(𝑈, 𝑉)𝑊 
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− (
1

2𝑛 − 1
) [𝑆(𝑉, 𝑊)𝑈 − 𝑆(𝑈, 𝑊)𝑉 

                 +𝑔(𝑉, 𝑊)𝑄𝑈 − 𝑔(𝑈, 𝑊)𝑄𝑉],              (10) 

 

𝑀∗(𝑈, 𝑉)𝑊 = 𝑅(𝑈, 𝑉)𝑊 

− (
1

4𝑛
) [𝑆(𝑉, 𝑊)𝑈 − 𝑆(𝑈, 𝑊)𝑉 

                        +𝑔(𝑉, 𝑊)𝑄𝑈 − 𝑔(𝑈, 𝑊)𝑄𝑉]        (11) 

(Yano and Kon 1984). 

If the structure of Kenmotsu satisfies the condition 

of Nomizu (𝑅 ∙ 𝑅 = 0), then it has constant negative 

curvature.  In addition, if the Kenmotsu manifold 

holds  the conformal flatness condition, then the 

manifold has constant negative curvature −1 for 

dimension greater than 3.  

The definition of semi-symmetry for the Riemannian 

manifold is defined by  

                           𝑅(𝑈, 𝑉) ∙ 𝑅 = 0,                             (12) 

for any 𝑈, 𝑉 ∈ 𝜒(𝑀). Here 𝑅(𝑈, 𝑉) acts as a 

derivation on  𝑅 (Nomizu 1968). A semi-symmetric 

space is the same space as the curvature tensor of a 

symmetric space at a point 𝑝 ∈ 𝑀. Of course, this 

may change according to the point of 𝑝 ∈ 𝑀. So, it 

is obvious that local symmetry implies semi-

symmetry. Nevertheless, the converse of this 

proposition is not necessarily correct (Calvaruso and 

Perrone 2002). These spaces were studied in the 

sense of a complete intrinsic classification by Szabó 

(Szabó 1982).  

Moreover, the other semi-symmetric curvature 

conditions, 𝑅 ∙ 𝐶 = 0 and 𝑅 ⋅ 𝐶̅ = 0, are called 

conformally semi-symmetric and concircularly semi-

symmetric, respectively (Bagewadi and Venkatesha 

2007). 

3. 𝜶-Kenmotsu Pseudo-Metric Manifolds 

Assume that (𝑀, 𝜑, 𝜉, 𝜂) is an almost contact 

manifold of dimension (2𝑛 + 1). Now, let us include 

the pseudo-Riemannian metric in (2). In other 

words, a compatible pseudo Riemannian metric 𝑔 

satisfies 

             𝑔(𝑈, 𝑉) − 𝜀𝜂(𝑈)𝜂(𝑉) = 𝑔(𝜑𝑈, 𝜑𝑉)       (13) 

such that 𝜀 = ±1 (Calvaruso and Perrone 2010). 

Then (𝑀, 𝜑, 𝜉, 𝜂, 𝑔) is called an almost contact 

pseudo-metric manifold. Also, we have 

𝑔(𝜑𝑈, 𝑉) = −𝑔(𝑈, 𝜑𝑉), 

             𝜂(𝑈) = 𝜀𝑔(𝑈, 𝜉),  𝑔(𝜉, 𝜉) = 𝜀                 (14) 

(Wang and Liu 2016). In this case, the 𝜉 is either 

space-like or time-like and can not be light-like 

(𝑔(𝜉, 𝜉)  = 0).   

If (𝑀, 𝜑, 𝜉, 𝜂, 𝑔) satisfies the conditions 𝑑𝜂 = 0 and 

𝑑𝛷 = 2𝛼(𝜂 ∧ 𝛷), then 𝑀 is called an almost 𝛼-

Kenmotsu pseudo-metric manifold for 𝛼 ≠ 0, 𝛼 ∈

𝐼𝑅. We note that if (7) vanishes, then 𝑀 is said to be 

an 𝛼-Kenmotsu pseudo-metric manifold. 

Proposition 3.1 An almost 𝛼-Kenmotsu pseudo-

metric manifold 𝑀 of dimension (2𝑛 + 1) is an 𝛼-

Kenmotsu pseudo-metric manifold if and only if  

    (𝛻𝑈𝜑)𝑉 = 𝛼𝜀𝑔(𝜑𝑈, 𝑉)𝜉 

                                                −𝛼𝜂(𝑉)𝜑𝑈                (15) 

for any 𝑈, 𝑉 ∈ 𝜒(𝑀) (Öztürk 2020). 

Proposition 3.2 An 𝛼-Kenmotsu pseudo-metric 

manifold 𝑀 of dimension (2𝑛 + 1) holds 

                                    𝛻𝑈𝜉 = −𝛼𝜑2𝑈                      (16) 

      (∇𝑈𝜂)𝑉 = 𝛼𝜀𝑔(𝑈, 𝑉) 

                                             −𝛼𝜂(𝑈)𝜂(𝑉),               (17) 

for any 𝑈, 𝑉 ∈ 𝜒(𝑀). Here 𝛼 is a smooth function 

such that 𝑑𝛼 ∧ 𝜂 = 0 (Öztürk 2020). 

Proposition 3.3 An 𝛼-Kenmotsu pseudo-metric 

manifold 𝑀 of dimension (2𝑛 + 1) satisfies the 

following curvature properties 

      𝑅(𝑈, 𝑉)𝜉 = [𝛼² + 𝜉(𝛼)][𝜂(𝑈)𝑉 − 𝜂(𝑉)𝑈]   (18) 

𝑅(𝑈, 𝜉)𝑉 = −[𝛼2 + 𝜉(𝛼)] 

                          [−𝜀𝑔(𝑈, 𝑉)𝜉 + 𝜂(𝑉)𝑈]                 (19) 

 

𝑅(𝑈, 𝜉)𝜉 − 𝜑𝑅(𝜑𝑈, 𝜉)𝜉 = 
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     2[𝛼2 + 𝜉(𝛼)][−𝑈 + 𝜂(𝑈)𝜉]               (20) 

 

𝑔(𝑅(𝑈, 𝑉)𝑊, 𝜉) = −𝜀[𝛼2 + 𝜉(𝛼)] 

[−𝑔(𝑈, 𝑊)𝜂(𝑉) + 𝑔(𝑉, 𝑊)𝜂(𝑈)]          (21) 

 

       𝑆(𝜉, 𝑈) = −2𝑛𝜂(𝑈)[𝛼² + 𝜉(𝛼)]      (22) 

 

  𝑆(𝜉, 𝜉) = −2𝑛𝜀[𝛼² + 𝜉(𝛼)]                   (23) 

 

                 𝑄𝜉 = −2𝑛𝜀[𝛼² + 𝜉(𝛼)]𝜉         (24) 

 

𝑆(𝜑𝑈, 𝜑𝑉) = [𝛼2 + 𝜉(𝛼)] 

    𝜀{−2𝑛[−𝜀𝜂(𝑉)𝜂(𝑈) + 𝑔(𝑉, 𝑈)] + 𝑆(𝑉, 𝑈)}. (25)            

Here 𝛻𝜉𝛼 = 𝜉(𝛼), 𝜀 = 𝑔(𝜉, 𝜉) and 𝛼 is a smooth 

function defined 𝑑𝛼 ∧ 𝜂 = 0, for any 𝑈, 𝑉, 𝑊 ∈

𝜒(𝑀) (Öztürk 2020). 

Corollary 3.1 If 𝛼 is parallel along the characteristic 

vector field 𝜉, then Proposition 3.3 becomes 

            𝑅(𝑈, 𝑉)𝜉 = 𝛼²[𝜂(𝑈)𝑉 − 𝜂(𝑉)𝑈]              (26) 

 𝑅(𝑈, 𝜉)𝑉 = −𝛼²[−𝜀𝑔(𝑈, 𝑉)𝜉 + 𝜂(𝑉)𝑈]            (27) 

𝑅(𝑈, 𝜉)𝜉 − 𝜑𝑅(𝜑𝑈, 𝜉)𝜉 = 2𝛼²[−𝑈 + 𝜂(𝑈)𝜉]   (28) 

𝑔(𝑅(𝑈, 𝑉)𝑊, 𝜉) = 

     −𝜀𝛼²[−𝑔(𝑊, 𝑈)𝜂(𝑉) + 𝑔(𝑊, 𝑉)𝜂(𝑈)]         (29) 

                       𝑆(𝜉, 𝑈) = −2𝑛𝜂(𝑈)𝛼²                     (30) 

                               𝑆(𝜉, 𝜉) = −2𝑛𝜀𝛼²                     (31) 

                                 𝑄𝜉 = −2𝑛𝜀𝛼²𝜉                        (32) 

𝑆(𝜑𝑈, 𝜑𝑉) = 

  𝛼2(𝜀𝑆(𝑈, 𝑉) − 2𝑛[−𝜀𝜂(𝑉)𝜂(𝑈) + 𝑔(𝑉, 𝑈)])  (33) 

for any 𝑈, 𝑉 ∈ 𝜒(𝑀) (Öztürk 2020).   

Moreover, an 𝛼-Kenmotsu pseudo-metric manifold 

𝑀 is called Einstein if its Ricci tensor 𝑆 holds 

                                 𝑆(𝑈, 𝑉) = 𝜇𝑔(𝑈, 𝑉)                (34) 

where 𝜇 is constant and it is called 𝜂-Einstein if its 

Ricci tensor 𝑆 holds 

                               𝑆 = 𝑎𝑔 + 𝑏(𝜂⨂𝜂)                     (35) 

for any 𝑈, 𝑉 ∈ 𝜒(𝑀), where 𝑎, 𝑏: 𝑀 → 𝑅  are the 

functions on 𝑀 (Yano and Kon 1984). 

 

4. Certain Semi-Symmetric Tensor Fields 

We study some semi-symmetric conditions and 

obtain some results in this section. 

Theorem 4.1 Let 𝑀 be a (2𝑛 + 1)-dimensional 𝛼-

Kenmotsu pseudo-metric manifold and 𝛼 is parallel 

along the characteristic vector field 𝜉. If 𝑀 holds the 

Ricci semi-symmetric condition, then it is Einstein 

with 𝑆 = −2𝑛𝛼2𝜀𝑔 and 𝑟 = −2𝑛(2𝑛 + 1)𝛼². 

Proof. By the hypothesis, the tensor product of 𝑅 ∙

𝑆 is defined as 

           (𝑅(𝑉, 𝑍) ∙ 𝑆)(𝑈, 𝑋) = 𝑆(𝑅(𝑉, 𝑍)𝑈, 𝑋) −

                               𝑆(𝑈, 𝑅(𝑉, 𝑍)𝑋).                          (36) 

For 𝑅 ∙ 𝑆 = 0, we have 

       𝑆(𝑅(𝑉, 𝑍)𝑈, 𝑋) + 𝑆(𝑈, 𝑅(𝑉, 𝑍)𝑋) =)0.       (37) 

Taking  𝑉 = 𝜉 in (37) and using (18), we get 

0 = 𝑆(𝛼2𝜂(𝑈)𝑍 − 𝛼2𝜂(𝑍)𝑈 + 𝜉(𝛼)𝜂(𝑈)𝑍 −

𝜉(𝛼)𝜂(𝑍)𝑈, 𝑋) − 2𝑛[𝛼2 + 𝜉(𝛼)]𝜂(𝑅(𝑈, 𝑍)𝑋)  (38) 

Again taking  𝑍 = 𝜉 and from 𝜉(𝛼) = 0 and (22), it 

follows that 

0 = −𝛼²𝑆(𝑋, 𝑈) − 2𝑛𝛼⁴𝜂(𝑋)𝜂(𝑈) 

               +2𝑛𝛼4𝜂(𝑈)𝜂(𝑋) − 2𝑛𝜀𝛼4𝑔(𝑋, 𝑈).      (39) 

Hence, (39) becomes 

                     𝑆(𝑈, 𝑋) = −2𝑛𝛼2𝜀𝑔(𝑈, 𝑋).             (40) 

Let {𝐸₁, 𝐸₂, . . . , 𝐸2𝑛, 𝜉} be a local pseudo 𝜑-basis of 

𝑀 for 𝑖 = 1,2, . . . ,2𝑛 + 1.  Putting 𝑈 = 𝑋 = 𝐸𝑖  in 

(40) and then taking contraction over the index 𝑖, we 

obtain 
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𝑟 = −2𝜀𝑛𝛼² ∑ 𝑔(𝐸𝑖 , 𝐸𝑖)

2𝑛+1

𝑖=1

. 

Thus the proof is completed. 

Theorem 4.2 If an 𝛼-Kenmotsu pseudo-metric 

manifold 𝑀 of dimension (2𝑛 + 1) is semi-

symmetric and 𝛼 is parallel along the characteristic 

vector field 𝜉, then it is Einstein. 

Proof. In view of (12), the  tensor product 𝑅 ∙ 𝑅 is 

defined as follows: 

(𝑅(𝑋, 𝑌) ∙ 𝑅)(𝑍, 𝑈)𝑉 = 

𝑅(𝑋, 𝑌)𝑅(𝑍, 𝑈)𝑉 − 𝑅(𝑅(𝑋, 𝑌)𝑍, 𝑈)𝑉 

      −𝑅(𝑍, 𝑅(𝑋, 𝑌)𝑈)𝑉 − 𝑅(𝑍, 𝑈)𝑅(𝑋, 𝑌)𝑉.        (41) 

By the hypothesis, we have 

𝑅(𝑋, 𝑌)𝑅(𝑍, 𝑈)𝑉 − 𝑅(𝑅(𝑋, 𝑌)𝑍, 𝑈)𝑉 

   −𝑅(𝑍, 𝑅(𝑋, 𝑌)𝑈)𝑉 − 𝑅(𝑍, 𝑈)𝑅(𝑋, 𝑌)𝑉 = 0.   (42) 

By the help of (18) and (19), we consider four tensor 

product expressions separately on the left side of 

(42) for 𝑈 = 𝜉. Then we obtain 

𝑅(𝑋, 𝑌)𝑅(𝑍, 𝜉)𝑉 

= [𝛼2 + 𝜉(𝛼)](𝜂(𝑉)𝑅(𝑌, 𝑋)𝑍 

                                −𝜀𝑔(𝑉, 𝑍)𝑅(𝑌, 𝑋)𝜉)                (43) 

 

−𝑅(𝑅(𝑋, 𝑌)𝑍, 𝜉)𝑉 

= [𝛼2 + 𝜉(𝛼)](−𝜂(𝑉)𝑅(𝑌, 𝑋)𝑍 

                                   +𝜀𝑔(𝑅(𝑌, 𝑋)𝑍, 𝑉)𝜉)             (44) 

 

−𝑅(𝑍, 𝑅(𝑋, 𝑌)𝑈)𝑉 

= [𝛼2 + 𝜉(𝛼)](𝜂(𝑋)𝑅(𝑌, 𝑍)𝑉 

                                          −𝜂(𝑌)𝑅(𝑋, 𝑍)𝑉)            (45) 

 

−𝑅(𝑍, 𝜉)𝑅(𝑋, 𝑌)𝑉 = [𝛼2 + 𝜉(𝛼)] 

          (𝑔(𝑅(𝑋, 𝑌)𝑉)𝑍, 𝜉) − 𝜀𝑔(𝑅(𝑋, 𝑌)𝑉, 𝑍)𝜉). (46) 

Then summing (43)-(46) side by side and using 𝑋 =

𝜉 ve 𝜉(𝛼) = 0 we deduce 

𝑅(𝑍, 𝑌)𝑉 = 𝜀𝛼2𝑔(𝑍, 𝑉)𝑌  −𝜀𝛼2𝑔(𝑌, 𝑉)𝑍. 

Lastly, taking contraction with respect to 𝑍 = 𝐸𝑖  for  

the local pseudo 𝜑-basis in the above equation, it 

yields 

𝑆(𝑌, 𝑉) = −2𝑛𝜀𝛼2𝑔(𝑌, 𝑉). 

This ends the proof. 

Theorem 4.3 Let 𝑀 be a (2𝑛 + 1)-dimensional 𝛼-

Kenmotsu pseudo-metric manifold and 𝛼 is parallel 

along the characteristic vector field 𝜉. If 𝑀 satisfies 

the locally symmetric condition, then it is Einstein. 

Proof. Due to the hypothesis, we can write 

0 = 𝛻𝑈(𝑅(𝑉, 𝑊)𝑍) − 𝑅(𝛻𝑈𝑉, 𝑊)𝑍 

                       −𝑅(𝑉, 𝛻𝑈𝑊)𝑍 − 𝑅(𝑉, 𝑊)𝛻𝑈𝑍.      (47)    

Let us remember that  the locally symmetric 

conditon holds 

                           (𝛻𝑈𝑅)(𝑉, 𝑊)𝑍 = 0                       (48) 

for 𝑈, 𝑉, 𝑊, 𝑍 ∈ 𝜒(𝑀).  

Putting 𝑍 = 𝜉, (47) gives 

                      0 = 𝛻𝑈(𝑅(𝑉, 𝑊)𝜉) − 𝑅(𝛻𝑈𝑉, 𝑊)𝜉 

                         −𝑅(𝑉, 𝛻𝑈𝑊)𝜉 − 𝑅(𝑉, 𝑊)𝛻𝑈𝜉.     (49) 

Taking into account of (16), (18) and 𝜉(𝛼) = 0,  

(49) reduces to 

𝑅(𝑉, 𝑊)𝑈 = 

                    −𝛼2𝜀[−𝑔(𝑉, 𝑈)𝑊 + 𝑔(𝑊, 𝑈)𝑉].     (50) 

Then taking contraction with respect to 𝑉 = 𝐸𝑖  for  

the local pseudo 𝜑-basis, it follows that 

𝑆 = −2𝑛𝛼²𝜀𝑔 

for any 𝑈, 𝑊 ∈ 𝜒(𝑀). So the last equation implies 

that 𝑀 is Einstein and 𝑟 = −2𝑛(2𝑛 + 1)𝛼². 

 

5. Certain Curvature Tensor Fields 

This section is devoted to investigating specific 

curvature tensors. We study the relationships 

between the 𝑀-projective curvature tensor and 
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conformal, concircular, and conharmonic curvature 

tensors. 

Theorem 5.1 If an 𝛼-Kenmotsu pseudo-metric 

manifold 𝑀 of dimension (2𝑛 + 1) is 𝑀-projectively 

flat and 𝛼 is parallel along the characteristic vector 

field 𝜉, then it is Einstein. 

Proof. Follows from 𝑀∗ = 0 and (11), we have 

     𝑅(𝑈, 𝑉)𝜉 = (
1

4𝑛
) [𝑆(𝜉, 𝑉)𝑈 − 𝑆(𝜉, 𝑈)𝑉 +               

                        𝑔(𝜉, 𝑉)𝑄𝑈 − 𝑔(𝜉, 𝑈)𝑄𝑉].               (51) 

Making use of (18) and (22), (51) becomes 

[𝛼² + 𝜉(𝛼)][𝜂(𝑈)𝑉 − 𝜂(𝑉)𝑈] = 

(
1

4𝑛
) [−2𝑛(𝛼2 + 𝜉(𝛼)) 

(𝜂(𝑉)𝑈 − 𝜂(𝑈)𝑉) + 𝜀𝜂(𝑉)𝑄𝑈 − 𝜀𝜂(𝑈)𝑄𝑉].     (52) 

Then simplifying (52) for 𝜉(𝛼) = 0, we get 

                                  𝑄𝑈 = −2𝑛𝛼2𝜀𝑈.                    (53) 

Putting 𝑈 = 𝜉 in (53), we have 

                                    𝑄𝜉 = −2𝑛𝛼2𝜀𝜉.                    (54) 

Also, taking account of (52) for 𝑉 = 𝜉  and (54), it 

follows that 

          𝑆(𝑉, 𝑈) = 𝑔(𝑄𝑉, 𝑈) = −2𝑛𝛼2𝜀𝑔(𝑈, 𝑉).  (55) 

This completes the proof. 

Corollary 5.1 Suppose that 𝑀 is an 𝛼-Kenmotsu 

pseudo-metric manifold of dimension (2𝑛 + 1) and 

𝛼 is parallel along the characteristic vector field 𝜉. If 

it is 𝑀-projectively flat, then its scalar curvature is 

𝑟 = −2𝑛(2𝑛 + 1)𝛼². 

Proof. Using (55)  and then taking contraction with 

respect to 𝑈 = 𝑉 = 𝐸𝑖  in (55) for  the local pseudo 

𝜑-basis, the proof is obvious. 

Theorem 5.2 Let 𝑀 be a (2𝑛 + 1)-dimensional 𝛼-

Kenmotsu pseudo-metric manifold and 𝛼 is parallel 

along the characteristic vector field 𝜉. If 𝑀-

projectively curvature and concircular curvature 

tensors are linearly independent, then 𝑀 is Einstein. 

Proof. Considering (9) and (11), by the help of the 

hypothesis, assume that 

                         𝑒𝐶̅(𝑈, 𝑉)𝑋 =𝑀∗(𝑈, 𝑉)𝑋                  (56) 

where 𝑒 is a reel constant and 𝑒 ≠ 0. 

Taking into account of (9), (11) and (56), it follows 

that 

𝑅(𝑈, 𝑉)𝑋 = (
1

4𝑛
)

1

1−𝑒
[−𝑆(𝑈, 𝑋)𝑉 + 𝑆(𝑉, 𝑋)𝑈  

−𝑄𝑉𝑔(𝑈, 𝑋) + 𝑄𝑈𝑔(𝑉, 𝑋)] 

   − (
𝑒𝑟

2𝑛(2𝑛+1)
)

1

1−𝑒
[−𝑔(𝑈, 𝑋)𝑉 + 𝑔(𝑉, 𝑋)𝑈].   (57) 

Now, taking contraction with respect to 𝑈 = 𝐸𝑖  in 

(57) for  the local pseudo 𝜑-basis, we get  

 

𝑆(𝑉, 𝑋) = (
1

4𝑛
)

1

1−𝑒
[(2𝑛 − 1)𝑆(𝑉, 𝑋)  

               −(2𝑛 + 1) 2𝑛[𝛼² + 𝜉(𝛼)]𝜀𝑔(𝑉, 𝑋)] 

                − (
𝑒𝑟

2𝑛(2𝑛+1)
)

1

1−𝑒
[2𝑛𝑔(𝑉, 𝑋)].               (58) 

Simplifying (58), thanks to 𝜉(𝛼) = 0, we obtain  

                       (−
2𝑛−1

4𝑛
+ 1 − 𝑒) 𝑆(𝑋, 𝑉)  

                       + (
𝑒𝑟

2𝑛+1
−

𝑟

4𝑛
) 𝑔(𝑋, 𝑉) = 0.           (59) 

Then putting 2𝑛 + 1 = 𝑡 and 4𝑛𝑘 = 𝑠 in (59), the 

last equation reduces to 

                        𝑆(𝑉, 𝑋) = (
𝑟𝑡−𝑟𝑠

𝑡(𝑡−𝑠)
) 𝑔(𝑉, 𝑋).          (60) 

Hence, it is clear that 

𝑆 = (
𝑟

2𝑛+1
) 𝑔  

for 𝑉, 𝑋 ∈ 𝜒(𝑀). Therefore, it completes the proof. 

Theorem 5.3 Let 𝑀 be a (2𝑛 + 1)-dimensional 𝛼-

Kenmotsu pseudo-metric manifold and 𝛼 is parallel 

along the characteristic vector field 𝜉. If 𝑀-

projectively curvature and conharmonic curvature 

tensors are linearly independent, then 𝑀 is Einstein. 

Proof. According to the hypothesis, using (10) and 

(11), let us denote 

                      𝑑𝐻(𝑈, 𝑉)𝑋 = 𝑀∗(𝑈, 𝑉)𝑋                 (61) 

where 𝑑 is a reel constant and 𝑑 ≠ 0. 

With the help of (10), (11) and (61), it yields 
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   (
1

4𝑛
−

𝑑

2𝑛−1
)

1

𝑑−1
[𝑔(𝑋, 𝑉)𝑄𝑈 − 𝑔(𝑋, 𝑈)𝑄𝑉      (62) 

    +𝑆(𝑉, 𝑋)𝑈 − 𝑆(𝑈, 𝑋)𝑉] = 𝑅(𝑉, 𝑈)𝑋. 

After the necessary arrangements, taking 

contraction with respect to 𝑈 = 𝐸𝑖  in (62) for  the 

local pseudo 𝜑-basis, it gives 

            𝑆(𝑉, 𝑋) = (−
𝑐𝑟

−1+𝑑+𝑐(2𝑛−1)
) 𝑔(𝑉, 𝑋)     (63) 

such that 𝑐 = (
1

4𝑛
−

𝑑

2𝑛−1
). So (63) can be written 

as 

            𝑆(𝑉, 𝑋) = (
𝑟(2𝑛−1−4𝑛𝑑)

4𝑛2−1
) 𝑔(𝑉, 𝑋)           (64) 

which is the desired result. 

Theorem 5.4 Let 𝑀 be a (2𝑛 + 1)-dimensional 𝛼-

Kenmotsu pseudo-metric manifold and 𝛼 is parallel 

along the characteristic vector field 𝜉. If 𝑀-

projectively curvature and conformal curvature 

tensors are linearly independent, then 𝑀 is an 

Einstein manifold. 

Proof. In view of (8) and (11), suppose that 

                       𝜆𝐶(𝑈, 𝑉)𝑋 = 𝑀∗(𝑈, 𝑉)𝑋                 (65) 

where 𝜆 is a reel constant and 𝜆 ≠ 0. 

Making use of (8), (11) and (65), we have 

0 = 𝑅(𝑈, 𝑉)𝑋 + (
1

4𝑛
−

𝜆

2𝑛−1
)

1

𝜆−1
[−𝑆(𝑈, 𝑋)𝑉 +

𝑆(𝑉, 𝑋)𝑈 − 𝑔(𝑈, 𝑋)𝑄𝑉 + 𝑔(𝑉, 𝑋)𝑄𝑈]  

 + (
𝜆𝑟

2𝑛(2𝑛−1)
)

1

𝜆−1
[−𝑔(𝑈, 𝑋)𝑉 + 𝑔(𝑉, 𝑋)𝑈].       (66) 

The set of {𝐸₁, 𝐸₂, . . . , 𝐸2𝑛, 𝜉} is a local pseudo 𝜑-

basis of 𝑀 for 𝑖 = 1,2, . . . ,2𝑛 + 1. Putting 𝜉(𝛼) = 0 

and 𝑌 = 𝐸𝑖  in (66) and then taking contraction over 

the index 𝑖, (66) reduces to 

             𝑆(𝑉, 𝑋) = − (
𝑎𝑟+2𝑛𝑏

𝜆+𝑎(2𝑛−1)−1
) 𝑔(𝑉, 𝑋)      (67) 

such that 𝑎 = (
1

4𝑛
−

𝜆

2𝑛−1
) and 𝑏 = (

𝜆𝑟

2𝑛(2𝑛−1)
). 

Thus the proof is completed. 

Example 5.1 Denoting the standart coordinates of 

𝑅³(𝑢, 𝑣, 𝑤) and considering the set of 𝑀 is given  by 

𝑀 = {(𝑢, 𝑣, 𝑤) ∈ 𝑅3, 𝑤 ≠ 0}. 

Then we choose the local pseudo 𝜑-basis as follows: 

𝐸1 = 𝑒𝑤4
(

𝜕

𝜕𝑢
)   

𝐸2 = 𝑒𝑤4
(

𝜕

𝜕𝑣
) 

𝐸3 = (
𝜕

𝜕𝑤
). 

The pseudo-Riemannian metric tensor product is 

defined as 

𝑔 = (𝑒−2𝑤4
)(𝜀1𝑑𝑢 ⊗ 𝑑𝑢 + 𝜀2𝑑𝑣 ⊗ 𝑑𝑣) 

+𝜀(𝑑𝑤 ⊗ 𝑑𝑤) 

Here 𝜀𝑖 = 𝑔(𝐸𝑖, 𝐸𝑖) for 𝑖 = 1,2,3 . 

Suppose that 𝜂 is an 1-form given by 

𝜂(𝑈) = 𝜀𝑔(𝑈, 𝐸₃) 

for any 𝑈 ∈ 𝜒(𝑀) and 𝜑 is a (1,1)-type tensor 

defined by 

𝜑(𝐸₁) = 𝐸₂, 𝜑(𝐸₂) = −𝐸1, 𝜑(𝐸₃) = 0. 

Then using linearity of 𝑔 and 𝜑, we have (13) and 

𝜑2𝑈 = −𝑈 + 𝜂(𝑈)𝐸₃,   𝑔(𝐸₃, 𝐸₃) = 𝜀, 

Furthermore, the Levi-Civita connection 𝛻 gives 

[𝐸₁, 𝐸3] = −4𝜀𝑤3𝐸₁,   [𝐸₂, 𝐸3] = −4𝜀𝑤3𝐸₂,    

[𝐸₁, 𝐸₂] = 0. 

Thus the structure (𝜑, 𝜉, 𝜂, 𝑔) has almost contact 

metric one and it yields 

𝛷 (
𝜕

𝜕𝑢
,

𝜕

𝜕𝑣
) = −𝛷 (

𝜕

𝜕𝑣
,

𝜕

𝜕𝑢
) = −𝜀𝑖𝑒−2𝑤4

 

and 

𝛷 = −𝜀𝑖𝑒−2𝑤4
(𝑑𝑢 ∧ 𝑑𝑣). 

Here it is noted that 𝛷(𝐸₁, 𝐸₂) = −1 and otherwise 

𝛷(𝐸𝑖 , 𝐸𝑗) = 0 for 𝑖 ≤ 𝑗. So we get 

𝑑𝛷 = 8𝑤3𝜀𝑖𝑒−2𝑤4
(𝑑𝑢 ∧ 𝑑𝑣 ∧ 𝑑𝑤). 

Since 𝜂 = 𝑑𝑤, we have 

𝑑𝛷 = −8𝜀𝑖𝑤3(𝜂 ∧ 𝛷). 

Here 𝛼 is defined by 𝛼(𝑧) = −4𝜀𝑖𝑤3. Also, since the 

Nijenhuis torsion tensor of 𝜑 is identically zero, 

then 𝑀 is an 𝛼-Kenmotsu manifold. 
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6. Discussion and Conclusion 

This study deals with the conformal, conharmanic, 

concircular, and 𝑀-projective curvature tensors, 

which are essential in Riemannian geometry. There 

are many physical applications of such curvature 

tensors.  

 

In general relativity, Weyl tensor curvatures provide 

space-time when the Ricci tensor vanishes. The 

origin of the Ricci tensor consists of the energy-

momentum of the local matter distribution. If the 

matter distribution vanishes, then the Ricci tensor 

will have vanished. Since the Weyl conformal 

curvature participates in curvature to the 

Riemannian curvature tensor, spacetime does not 

have to be flat in this case.  

 

The conharmonic curvature tensor symbolizes the 

deviation of the manifold 𝑀 from conharmonic 

flatness. This situation holds the whole symmetric 

properties of 𝑅. Pokhariyal and Mishra introduced 

the 𝑀-projective curvature tensor as in (11). This 

tensor indicates the deviation of the manifold from 

𝑀−projective flatness. Also, the concircular 

geometry is concerned with concircular 

transformations. The concircular curvature tensor 𝐶̅ 

symbolizes the deviation of the manifold 𝑀 from the 

constant curvature. 

 

Following this work, our aim in future studies is to 

investigate certain symmetric and curvature tensor 

conditions on almost 𝛼-Kenmotsu pseudo-metric 

manifolds using some special Einstein structures, 𝐷-

homothetic deformation, nullity distribution, and 

certain Ricci solitons. In addition, it is among our 

priorities to examine their physical properties. 
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