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Abstract 
 

The paper discusses the solution of an interior-boundary value problem of one-dimensional time-fractional Cattaneo-

type heat conduction and its stress fields for a rigid ball. The interior value problem describes the dependence of the 

boundary conditions within the ball's inner plane at any instant with a prescribed temperature state, in contrast to the 

exterior value problem, which relates the known surface temperature to boundary conditions. A single-phase-lag 

equation with Caputo fractional derivatives is proposed to model the heat equation in a medium subjected to time-

dependent physical boundary conditions. The application of the finite spherical Hankel and Laplace transform 

technique to heat conduction is discussed. The influence of the fractional-order parameter and the relaxation time is 

examined on the temperature fields and their related stresses. The findings show that the slower the thermal wave, the 

bigger the fractional-order setting, and the higher the period of relaxation, the slower the heat flux propagates. 

  

Keywords: Fractional Cattaneo-type equation; fractional calculus; non-Fourier heat conduction; ball; thermal 

stress; integral transform. 

 

1. Introduction 

Many papers deal with the temperature and thermal stress 

fields due to body heating in the theory of thermal stress. The 

determination of either heat flux or temperature at interior 

points is deduced from the known temperature at the surface. 

In contrast, there is a subset of cases in which the temperature 

distribution at some interior points is known. It is required to 

determine either temperature or heat flux on the surface, 

commonly named interior value problems (or so-called 

inverse temperature field problems). In order to find the 

unknown functions that characterize the boundary 

conditions, one assumes that (i) a kind of the boundary 

conditions are known, (ii) initial conditions are known, (iii) 

other boundary conditions - if any exist - are known, (iv) 

specific mechanical or thermal internal responses inside the 

object are known. When it comes to determining the transient 

temperature or heat flux distribution at a surface where 

temperature or heat flux measurements are impossible or 

problematic, then inverse temperature field problems will 

have a practical and useful application. Such situations have 

been documented several times in literature; therefore, few 

of them are quoted here. 

Stolz [1] suggested the first solutions for the inverse heat 

problems with integral equations and numerical methods. 

Necsulescu [2], Woodbury [3], Özışık [4] and Beck [5] have 

developed several methods of interior-boundary value heat 

conduction problems for various forms of boundary 

conditions. Torsten et al. [6] solved the linear inverse heat 

conduction problem to reconstruct unknown heat flux at the 

boundary for two- and three-dimensional problems. Lu and 

Tervola [7] developed an empirical approach to heat 

conduction in a composite slab when subjected to periodic 

temperature changes. Khobragade et al. [8] investigated an 

inverse transient thermoelastic problem in which we need to 

determine the unknown temperature, displacement and stress 

function on the outer curved surface of a thin annular disc 

when the interior heat flux is known using integral transform 

techniques. Woodfield et al. [8] solved the inverse heat 

conduction problems analytically using the Laplace 

transform when it has a given far-field boundary state. 

Pourgholi and Rostamian [9] used the Tikhonov 

regularization approach to provide a numerical solution to 

the one-dimensional inverse heat conduction problems. 

Danaila and Chira [10] proposed a solution to the inverse 

one-dimensional heat conduction problem; they intend to 

estimate the unsteady boundary state on the right side using 

two techniques: first, to combine the gradient approach with 

an adjunct issue for the estimate of gradient function, and 

second, to regularize Tikhonov for hyperbolization of the 

equation of heat conduction. Ivanchov and Kinash [11] 

found the inverse problem in a rectangle, the heat conduction 

equation with an unknown coefficient, as a function of time 

and space variables using the Green function. Chen et al. [12] 

used the one-dimensional problem of inverse heat 

conduction to measure the surface temperature; they used a 

nonlinear form of calculation with an integral equation. 

Chang et al. [13] split them into two main solving groups in 

their study paper on the computing approaches used for 

inverse heat conduction problems: mesh techniques and 

meshless algorithms. 

Recently, the fractional-order concept has been put in use 

to obtain better performance of the system. The Laplace 
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transform was used by Kukla and Siedlecka [14] to solve 

fractional heat conduction in a two-layer slab. Meanwhile, 

technological development and innovation in research 

helped bring about a revolution by applying heat relaxation 

time to the non-equilibrium heat conduction system [15-18]. 

Cattaneo [19] and Vernotte [20] have summed the heat 

relaxation time to a partial heat flux time derivative. In the 

meantime, Compte and Metzler [21] focused on four 

different generalizations of the Cattaneo telegraph equations, 

each of which was accompanied by a different scheme: 

continuous-time random walks, nonlocal transport theory, 

and delayed flux-force relation. According to Povstenko 

[22], the time-fractional Cattaneo heat conduction equation 

derived from the Fourier law's time-non-local generalization 

using multiple kernels is a function Mittag-Leffler form's 

related thermal stress theory. Mishra and Rai [23] obtained 

the fractional single-phase heat conductivity function by 

applying the Taylor series's fractional formula to the single-

phase heat conductivity function. The mathematical 

solutions of the fractional Cattaneo-Vernotte heat 

conduction problem with Neumann boundary conditions 

have recently been obtained in a semi-infinite medium by a 

few researchers [24-29]. Nevertheless, the interior-boundary 

value problem of time-fractional Cattaneo-type heat 

conduction with the physical Robin-type boundary state was 

less studied, based on the fractional model Cattaneo-

Vernotte. Hence, this paper investigates the analytical 

solution for Cattaneo's time-fractional heat conduction in a 

finite one-dimensional ball under Robin-type conditions and 

analyzes the heat conduction mechanism, which differs from 

the fractional-order parameters. 

The outline of the paper consists of five parts. In part 2, 

the basic set of equations for the mathematical modelling of 

the single-phase-lag heat conduction equation of the 

fractional Cattaneo-type model is stated. Then, a way of 

obtaining the exact solutions of time-fractional Cattaneo heat 

conduction analysis for such a problem is briefly presented. 

The final parts contain an analysis of the outcomes and a 

discussion concerning the particular case. Conclusive 

findings are summed up in the last detail. 

 

2. Mathematical Model 

2.1 Formulation Of Fractional Cattaneo Equation 

The classical Fourier's law of heat conduction [30] 

 

( ) ( )  q t k T t                                                                  (1) 

 

in which ( )q t  is the heat flux vector represents heat flow 

per unit time per unit area of the isothermal surface, t is the 

time, and k is the thermal conductivity of the material,  is 

the spatial gradient operator, and T is the temperature 

gradient, and it is a vector normal to the surface, respectively. 

Since the heat flux points to decreasing temperature, the 

minus sign is involved in making the heat flow a positive 

quantity. When the heat flux is in W/m3, and the temperature 

gradient is in oC/m, the thermal conductivity has W/(moC). 

Introduction of single-phase-lag to evade discrepancy 

between the mathematical model [19,20] and the 

experimental observations [31], and this extension turns the 

parabolic into a hyperbolic equation 

 

( )
( ) ( )


   



q t
q t k T t

t
                                                  (2) 

 

Here the flux relaxes with some given characteristic time 

constant   is the phase lag of the heat flux or so-called 

relaxation time. Consequently, the propagation velocity is 

finite. As a limiting case 0 , one recovers Fourier's law 

with an infinitely fast propagation. The Laplace transform 

allows us to rewrite Eq. (2) as a time-non-local constitutive 

equation with the exponential kernel [22] as 

 

0
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Combining Eq. (1) with the conservation law of energy 

[32], leads to 

 

( )
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
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
v

T t
q t Q C

t
                                                    (4) 

 

leads to the single-phase-lag heat conduction equation as 

 
2

2
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where thermal diffusivity is / vk C  , k  being the 

conductivity of the material,   is the density of the material,

vC  is the specific heat capacity, Q
 
represents the uniform 

heat generation inside the material, and the square root of the 

ratio /   defines the finite speed within the medium, 

respectively. 

 Recently, a kind of generalization of Eq. (2) and (4) 

consisting of replacing the classical integer-order derivative 

with fractional order can be referred to in literature [21,22] 

and the reference therein. Next, we consider the 

generalization of Eq. (2) in the form 
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in which the fractional Caputo derivative of order   with a 

lower limit zero 
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whereas the Riemann-Liouville fractional derivative is taken 

as 
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The law of heat conduction proposed by Gurtin and 

Pipkin [33], which leads to general time-nonlocal 

dependence, was later modified by Povstenko [22] as 

 

0
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t
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where a general heat flux history model depends on the 

relaxation kernel ( )K t . 

By simple calculations, Compte and Metzler [4] have 

shown that the generalized Cattaneo law, obtained from the 

following relationship 
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By using Leibniz's formula for the differentiation of an 

integral, one obtains 
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Now compared with Eq. (6), it appears clear that we 

must have (0) K k  and  

 
1

1
( ) ( ) 0





 
 

 
K t K t

t t




                                               (12) 

 

By solving Eq. (12), one can obtain the relaxation 

function in the Laplace domain as  
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The expression in (14) can be inverted in terms of a 

generalized Mittag-Leffler function (see [34]) to yield 
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Multiplying with vector   to Eq. (6), and then using Eq. 

(4), results in the generalized Cattaneo equation [22] 
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It was also observed that only a few authors had paid 

attention to the fourth equation. Here, the authors believe that 

this gap could lead to generalization, taking into account the 

generation of internal heat sources within the body. 

 

2.2 Solution Time-Fractional Cattaneo Heat Conduction 

Figure 1 shows a schematic sketch for a ball in the 

spherical coordinate axes r, θ, z is used to describe a time-

fractional thermoelastic analysis. The temperature profile is 

assumed to be a radial coordinate's transient function 

independent of the tangential and azimuthal coordinates. 

 

 
Figure 1. Profile of a spherical metal ball. 

 

We assume that the temperature at every instant is given 

by 
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where ( , )r t  is the basic solution to the following problem: 
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subjected to zero initial and ambient conditions 

 

( , 0) 0, ( , 0) 0, 0 ,0 1r t r t r a
t
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under the physical Robin boundary condition [36-38], which 

is a linear combination of temperature and its normal 

derivative along the radial direction 

 

1( , ) ( , ) ( ),0 , 0 1RL sr t D r t q t a
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and the assumed bounded condition at the origin as 

 

0
lim ( , ) 



r
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with the fact that the temperature at the ball surface, say 

( , ) ( )  r a t t , is unknown. Here the notation 

represents the far-field temperature, 1

RLD   is the Riemann 

Liouville fractional derivative of the fractional-order 1 , 
1( ) ( 0, ) ( ) ( )    s t RLq t q r t D f t , 0( ) ( )f t q t  is the 

sectional prescribed heat supply, ( )
 
is the Dirac delta 

function and 0q
 
is a constant associated with delta term, 

respectively. 

 We present the function ( , )r t  in the first phase of solving 

this problem in the superposition of steady-state and 

transient solution 

 

( , ) ( ) ( , ) s tr t r r t                                                         (21) 

 

The function ( )s r
 
satisfies the steady-state differential 

equation  



 
040 / Vol. 26 (No. 1)  Int. Centre for Applied Thermodynamics (ICAT) 

2

2

1
0

  
  

  

s Q
r

r r kr

 


                                               (22) 

 

subjected to non-homogeneous boundary conditions as given 

in Eq. (19). Solving Eq. (22) leads 
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in which the constant 2C
 
is obtained within the Laplace 

domain as 
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where 
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Similarly, the function ( , )t r t  satisfies the non-

homogeneous differential equation 
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subjected to homogenous boundary conditions given as 
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Applying the Laplace transform with respect to variable 

t leads to 
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Multiplying 2

0 ( )iJ r k r  to Eq. (28) and integrating with 

regards to r from 0  to a. Now on account of the operational 

property (refer to Appendix A) and inserting the boundary 

condition (29), one obtains 
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Taking the Laplace inversion integral [39] of Eq. (30), 

one obtains 
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where c is greater than the real part of the integrand's 

singularities. 

 The integration path for 0t  inside the principal branch 

of ( arg )  s s    is depicted in Figure 2.  

 

 
Figure 2 Integration path 
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on the circular arcs with (1/ )o R . Then 

2 2( ) (1/ )   ig s s s k  has exactly two zeros /   A Bs i   

on the principal branch, which are simple, conjugate 

complex and placed in the open left half-plane. To solve Eq. 

(30), using the residue theorem lead to 
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Firstly consider 
1 ( )t as the sum of the first two terms of 

Eq. (32) and taking ˆ Re[ ( )] Aa g s and ˆ Im[ ( )], Ab g s one 

gets 
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Removing the imaginary number in the denominator by 

its conjugate, one gets 

 

2 2 2 2 2

0

sin( ) exp( )
( )

[ (1 / ) (cos( ) ] [(1 / ) sin( )]i

p pt dp
t

p p k p



 




     

 
  

   
       

(35) 



 
Int. J. of Thermodynamics (IJoT) Vol. 26 (No. 1) / 041 

Taking the sum of residues as 
1 2( ) ( ) ( ) s t t t   , one 

obtains 
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Applying the inversion theorem (refer to Appendix A), 

one obtains 
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Taking the temperature as ( , ) ( ) ( , ) s tr t r r t   , one 

obtains 
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and unknown temperature function on the outer curved 

surface is given by 
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Substituting Eq. (40) into ( , ) ( )  r a t t , one can get 

the unknown temperature 
0

( , ) ( ) ( )   
t

T r a t f t d   at 

the ball surface.  

 

2.3 Displacement And Stress Field Solution 

Let ( , )r ru u r t be a component of displacement and 

expressed [40] as 
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that satisfies the displacement equation 
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in which [(1 ) /(1 )]   tK    is the restraint coefficient, 
t  

and  denote the coefficient of linear thermal expansion and 

Poisson's ratio, respectively.  

Let , ,rr     be the components of stress and 

expressed [40] as 
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      (43) 

 

in which traction-free boundary conditions are

( , ) 0 rr r a t .  

Substituting ( , )T r a t  into Eqs. (41) and (43), one can 

obtain the ball surface's unknown displacement and thermal 

stresses. 

 

3. Numerical Results, Discussion And Remarks 

For the sake of simplicity of numerical computations, we 

introduce the following nondimensional parameters as 
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with physical parameters for the solid ball as  
a = 2m and the surrounding temperature as  

T0 = 150°C.
 
Substituting the value of Eq. (44) in Eqs. (39), 

(41) and (43), one obtains the expressions for the 

temperature, displacement and thermal stresses for our 

numerical discussion. 

 

Table 1. Thermo-mechanical properties: Aluminum. 

Dimension Value 

Modulus of Elasticity, E 70 GPa 

Poisson's ratio 0.35 

Thermal Expansion Coefficient, t 2310-6/0C 

Thermal diffusivity, κ 84.1810-6 m2s−1 

Thermal conductivity, λ 204.2Wm−1K−1 

 
The numerical computations have been carried out for the 

Aluminum (pure) material with the thermo-mechanical 

properties as given in Table 1. The / i ik a 2.61736, 

5.51894, 8.65373, 11.7915, 14.9309, 18.0711, 21.2116, 

24.3525, 27.4935, 30.6346, 33.7758, 36.9171, 40.0584, 

43.1998, 46.3412, 49.4826are the positive and real roots of 

the transcendental equation ( ) ( )  i n i n ik J ak h J ak

( / ) ( ) ( ) 0  i n i n ia J hJ   .  

 

 
Figure 3. Temperature distribution along  for different 

values of r ( 1 , 0.6t  ). 
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Figure 4. Temperature profile along   for different 

values of ( 0.8r , 0.6t ). 

 

 
Figure 5. Temperature along r for different values of 

  ( 0.75 , 1t  ). 

 

 
Figure 6. Temperature variation along r for various 

values of ( 0.8 , 1t ). 

 

 
Figure 7. Temperature distribution along t for 

different values of   ( 1 , 0.6t ). 

 

 

Figure 8. Temperature profile along t for different 

values of  ( 0.8 , 1r ). 
 

Figures 3-14 illustrate the numerical results in the 

graphical form for temperature distribution, displacement 

profile and variation in stress distribution in a spherical ball 

under the physical Robin boundary condition. Figures 3-4 

denote the temperature distribution against the fractional 

order  for the various values of  r  and ,  both with and 

without an internal heat source. It can be noticed in both the 

figures that under the absence of a heat source, the 

temperature is zero at the initial stages, starts gradually 

increasing, attains maxima at a different value of r  and  , 

and it finally decreases asymptotically. On the other hand, 

the temperature has a specific value at the initial stages under 

a heat source and behaves the same as it did without a heat 

source. The gradual increase in the temperature for both, 

with or without a heat source, for a particular value   may 

be due to the body's geometry's ability to hold the heat.  

 

Figures 5-6 represent the temperature value along 

dimensionless radial direction for different values of  and 

, for both with and without a heat source. The hike in the 

sinusoid pattern may be due to the internal heat generation 

accumulation, but it gets flattened at the ball's outer core. 

Figures 7-8 depict the variation in the temperature 

distribution over time t  for different values of   and , with 

and without an internal heat source. From the figure, it is 

clearly understood that the temperature value increases 

linearly with the increase in time in the absence of an internal 

heat source and surrounding temperature, which defines the 

close correlation between time and temperature. In contrast, 

the presence of heat generation as well as surrounding heat 

generates a gradual increase curve for the value of 

temperature and attains uniformity after some time. Figure 9 

gives a variation of dimensionless displacement ru  along the 

radial direction for different values   with and without a 

heat source. The effect of the temperature distribution in the 

presence of internal heat generation causes a dramatic 

change in displacement compared to the change observed in 

the absence of a heat source. It can be easily seen that no 

displacement is observed initially, but along the radial 

direction, it increases and then becomes stagnant at a 

particular value of r  due to the effect of temperature 

distribution on the ball.  
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Figure 9. Variation of displacement ru   along the r

direction for different  . 

 

 
Figure 10. Displacement distribution ru  along the   

direction for different r . 

 

 
Figure 11. rr  along r for different values of    

( 1 , 1t ). 

 

 
Figure 12. rr

 
profile along for various values of 

  ( 0.4r , 0.6t ). 

 

 
Figure 13.     along r for different values 

of   ( 0.75 , 1t ). 

 

 
Figure 14.     along  for various values of 

  ( 0.6r , 0.8t ). 

 

Figure 10 shows the variation in the displacement 

distribution ru   along the   direction for different values of  

r  both availability or absence of an internal heat source. 

One can observe the change taking place in the displacement 

with an increase in the relaxation time. Initially, the 

displacement is none and slowly increases asymptotically 

due to the effect of the temperature distribution. Figure 11 

depicts the relation between the radial stresses along the 

radial direction for the different values of  when 1 t   
in both when internal heat sources are present or absent. In 

both cases, the difference in the stresses can be readily 

noticeable. The nature of the stresses is such that it starts 

accumulating stability at the ball's outer end with a gradual 

increase that can be seen from low initiation. Figure 12 gives 

variation in radial stresses along relaxation time for various 

values of   for both, with and without a heat source. The 

gradual decreasing nature in the plot can be observed at zero 

relaxation time no, or a negligible amount of stresses are 

found, which decreases as the relaxation time increases, 

ultimately defining the importance of relation time. Figures 

13-14 show the relation between     along r and 

for different values of  . The graph's nature is the same in 

both figures, with and without a heat source. The stresses' 

values are very low initially and increase slowly at the outer 

end due to the accumulation of the surrounding temperature. 

 

4. Deduction And Validation Of The Results 

This section corresponds to the deduction of results 

obtained above regarding the classical uncoupled 

thermoelasticity model and classical Cattaneo-Vernotte 

thermoelasticity theory for a homogeneous sphere.  
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(i) Taking 0  and 1  in Eq. (7), the equation 

reduces to the classical Fourier heat conduction 

model [30]. 

 

(ii) Taking 1   in Eq. (7), the equation results in the 

classical Cattaneo-Vernotte heat conduction model 

[19,20]. 

 

The present deduced thermoelastic solutions agree with 

the key derived by Ghonge and Ghadle [41] for an isotropic, 

homogeneous, elastic sphere. This work combines a 

fractional-order constitutive model with the standard 

continuity equation. However, recent investigations [47,48] 

show the coexistence of the non-Fourier constitutive model 

and non-trivial continuity equation based on the Boltzmann 

transport theory. The results illustrate that the constitutive 

model and continuity equation are not independent of each 

other, which is not considered in this work. 

 

4. Conclusion 

In this problem, the fractional Cattaneo model is derived 

for studying the thermoelastic response of a rigid ball that is 

internally impacted by an assigned temperature. At the same 

time, heat supply is a source in the energy equation. The 

theory of integral transformation is used to obtain the 

analytical solution for the fractional Cattaneo and classical 

Fourier models. The temperature distribution dependence 

and its thermoelastic response on the fractional-order 

parameter and relaxation time are studied for different times 

and positions. It is observed that the fractional Cattaneo 

model gives continuous temperature and thermal stress 

variation irrespective of the fractional-order parameter. It is 

also detected that the heat flux flows from higher 

temperatures to lower for the fractional Cattaneo and 

classical Fourier models. 
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Nomenclature 

t linear coefficient of thermal expansion (/0C) 

κ thermal diffusivity (m2s-1) 

λ thermal conductivity (W/m.K) 

Greek symbols 

μ Lame's constants (GPa) 

ν Poisson's ratio 

ρ density (kg/m3) 

uij displacement potential function 

σij components of stress tensor 

σrr radial stress (Pa) 

σθθ circumferential stress (Pa) 
 

Appendix 

The Transformation And Its Essential Property 

Here, the Fourier-Bessel series and Hankel transform [42] to 

spherical coordinates [43] are extended, which is more 

suitable to third-kind boundary conditions. Assuming a finite 

interval 0  r a  in the spherical coordinate led to the 

spherical-Bessel series representation of a function ( )f r , 

which can be stated as 
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( ) ( )
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 i n i

i

f r c J r k                                                      (A.1) 

 

where 
ic  are the coefficients to be determined and ( )n iJ r k  

is a spherical Bessel function of order n. The eigenvalues 

/i ik a  are defined by the solutions of 
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in which
i  is an ith root of the spherical Bessel function, and 

the prime denotes the differentiation of the Bessel function. 

Multiplying Eq. (A.1) by ( )n jJ r k , integrating both sides of 

the result from 0 to a, and using the orthogonal property of 

Bessel functions, then taking n = 0, one obtains 
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Following the procedure of Chen [43], one obtains the series 

coefficients as 
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Substituting the value of 
ic  into Eq. (1) gives 
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Thus, the zero-order finite Hankel transform and its inverse 

are defined as 
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and the only property which will be made use 
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