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Abstract 
 
Two different numerical methods for buckling analysis of laminated composite plates are presented. Main 
formulations are based on the first-order shear deformation theory (FSDT) have been given. The method of 
discrete singular convolution (DSC) and differential quadrature (DQ) are employed for numerical solution. The 
results obtained by DSC and DQ methods were compared.  
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1. Introduction 

 
As parallel to the composite materials technology in 1960s composite and laminated 
composite structural components have been widely used in different engineering applications 
such as automobile,  mechanical, civil, aero-space and chemical engineering. Therefore, 
mechanical modeling of these systems is increasing studied such as free vibration, bending 
and buckling analyses by many researchers. More detailed information can be found in 
literature [1-8]. 
In this paper, numerical solution of buckling analysis of laminated composite rectangular 
plates are obtained via discrete singular convolution (DSC) and differential quadrature 
methods. First-order shear deformation theory (FSDT) is used for modeling. Based on the 
first-order shear deformation theory, the governing equations for symmetric laminates under 
transverse loads are given [1] 
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Where yxyx NNN  and  , are the in-plane applied forces. Also, mass inertias are given as  
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Where  and h denote the density and total thickness of the plate, respectively. The bending 
moments and shear forces are given as  
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Where ijA  and ijD  are the stretching and bending stiffness, k is the shear correction factor 
taken as 5/6. Also, the x-y coordinate plane is located on the mid-plane of the laminate. 
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2. Discrete Singular Convolution (DSC) 
 
A singular convolution can be defined, in the context of distribution theory, by [9] 
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where )( xtT  is a singular kernel. The DSC algorithm can be realized by using many 
approximation kernels. However, it was shown [10-41] that for many problems, the use of the 
regularized Shannon kernel (RSK) is very efficient. The RSK is given by [11] 
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where =/(N-1) is the grid spacing and N is the number of grid points. For numerical 
computations, this can be expressed as 
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where superscript n denotes the nth-order derivative with respect to x.  

 
3. Differential Quadrature Method (DQM) 
   In the differential quadrature method, a partial derivative of a function with respect to a 
space variable at a discrete point is approximated as a weighted linear sum of the function 
values at all discrete points in the region of that variable [42-61]. The first derivatives at point 
i, at x = xi   is given by [42] 
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where xj are the discrete points in the variable domain, )(x j  are the function values at these 
points and Aij are the weighting coefficients for the first order derivative attached to these 
function values.   As similar to the first order, the second order derivative can be written as 
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According to the DSC method, the governing equations (Eqs.1c) can be discretized into the 
following form for buckling 
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Similarly, DQ form of the above equation can also be given.  Consequently, we solve the 
remaining eigenvalue problems given below to obtain the non-dimensional buckling load, 
such as, 
 

λBXGX          (12) 
 

4. Numerical examples 
 
In numerical solutions of laminate are assumed to be of the same thickness and density. 
Linearly elastic composite material behavior is taken into consideration. In all the tables, S 
denotes simply supported while C means clamped. Following values for material parameters 
are used for numerical analysis. 
 

21312 6.0 EGG  ;  223 5.0 EG  ; 25.012 ν ; .40/ 21 EE  
 

Only example have been solved and obtained results are compared. Uniaxial buckling 
loads of a SSSS laminated (00/900/900/00) square plate is obtained by the DSC  method using 
the 13 grid points.  The results in Table 1 are compared respectively to the analytical solutions 
based on first-order shear deformation theory (FSDT) and higher-order shear deformation 
theory by Khdeir and Librescu [52], the three-dimensional linear elasticity solutions of Noor 
[53]. Compared with the data given by Khdeir and Librescu [52], it is shown that the present 
results are in close agreement using the 13 grid points.  Table 2 also listed same results for 
different grid numbers and methods.  
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Table 1. Comparisons of uniaxially buckling loads of a SSSS laminated (00/900/900/00) 

square plate (a/h=10; )/ 3
2

2 hEaNλ x  
 

E1/E2 

Sources 
Present  
study Noor [53] 

HSDT 
Khdeir and 

Librescu [52] 

FSDT 
Khdeir and 

Librescu [52]  
20 15.0191 15.418 15.351 15.352 
30 19.3040 19.813 19.757 19.759 
40 22.8807 23.489 23.453 23.456 

 
 
 
 
 

 
Table 2.  Comparison of bucking loads of Table for different methods 

 

E1/E2 

 
FSDT 

Khdeir and Librescu 
[52] 

         DSC Results                     DQ Results 

N=11 N=13 N=11 N=13 

20 15.351 15.354 15.352 15.352 15.352 
30 19.757 19.761 19.759 19.762 19.760 
40 23.453 23.456 23.456 23.454 23.454 

 
 
The method of DSC and DQ are very effective and practical methods both macro scaled 
mechanical problems [13-34] and the nano scale problems [62-68]. Nonlinear analysis of 
nano-scaled mechanical systems will also been solved via these methods and results will 
presented in the next. 
 
5. Conclusions 
 

In the present study, buckling loads of laminated composite square plates are obtained 
by the methods of DQ and DSC. The first-order shear deformation theory (FSDT) is used in 
the study with the governing differential equations transformed into a standard eigenvalue 
problem by these methods.  It is concluded that both the DQ and DSC methods give 
reasonable accurate results for buckling.  
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