http://communications.science.ankara.edu.tr

Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat. Volume 72, Number 2, Pages 429–437 (2023) DOI:10.31801/cfsuasmas.1171026 ISSN 1303-5991 E-ISSN 2618-6470

Research Article; Received: September 6, 2022; Accepted: December 9, 2022

ON SOME DIFFERENTIAL PROPERTIES OF FUNCTIONS IN GENERALIZED GRAND SOBOLEV-MORREY SPACES

Alik M. NAJAFOV^{1,2}, Ahmet EROGLU³ and Firide MUSTAFAYEVA⁴

¹Azerbaijan University of Architecture and Construction, Baku, AZERBAIJAN
²Institute of Mathematics and Mechanics of NAS of Azerbaijan, Baku, AZERBAIJAN
³Department of Mathematics, Nigde Omer Halisdemir University, Niğde, TÜRKİYE
⁴Shamakhi Branch of Azerbaijan State Pedagogical University, Shamakhi, AZERBAIJAN

ABSTRACT. In this paper we introduce a generalized grand Sobolev-Morrey spaces. Some differential and differential-difference properties of functions from this spaces are proved by means of the integral representation.

1. INTRODUCTION AND PRELIMINARY NOTES

Note that the grand Lebesgue spaces $L_{p}(G)$ $(|G| < \infty)$ introduced in [4] by T. Iwaniec and C. Sbordone. After a vast amount of research about grand Lebesgue, small Lebesgue, grand Lebesgue-Morrey, grand grand Lebesgue-Morrey, grand grand Sobolev-Morrey, small small Sobolev-Morrey, grand grand Nikolskii Morrey and generalized grand Lebesgue-Morrey spaces has been introduced and studied by many mathematicians (see, e.g. [2,3], [5]- [14]) etc.

In this paper we construct a generalized grand Sobolev-Morrey spaces $W_{p),\phi}^{l}(G)$ and we study some differential properties with help of the method of integral representation of functions in view of embedding theory. Let $G \subset \mathbb{R}^{n}$ and $B \subset G$ be any Lebesgue measurable set, $l \in \mathbb{N}^{n}$, $p \in [1, \infty)$, and let $\phi(\cdot, |B|)$ be a function on [0, p - 1) which is a positive bounded and satisfies $\phi(0, |B|) = \phi(|B|)$. And also $\phi(\varepsilon, \cdot)$ is a positive bounded function defined on $(0, h_0]$ and h_0 is a fixed positive number.

©2023 Ankara University Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics

²⁰²⁰ Mathematics Subject Classification. 46E35, 35A31.

Keywords. Generalized grand Sobolev-Morrey spaces, integral representation, flexible-horn condition, Hölder condition.

^{1,2} aliknajafov@gmail.com-Corresponding author; ⁰0000-0002-4289-9056

³ aeroglu@ohu.edu.tr; 00000-0002-2642-3154

 $^{^{4}}$ \square mustafayevafiride@gmail.com; 00000-0002-0738-4911.

Definition 1. Denote by $W_{p),\phi}^{l}(G)$ a space of locally summable functions f on G having the generalized derivatives $D_{i}^{l_{i}}f(l_{i} > 0 \text{ are integers } i = 1, 2, ..., n)$ with the finite norm

$$\|f\|_{W_{p),\phi}^{l}(G)} = \|f\|_{p),\phi,G} + \sum_{i=1}^{n} \left\|D_{i}^{l_{i}}f\right\|_{p),\phi,G},$$
(1)

where

$$\|f\|_{p),\phi;G} = \|f\|_{L_{p),\phi}(G)} = \sup_{\substack{0 \le \varepsilon < p-1, \\ B \subset G}} \phi(\varepsilon,|B|) \left(\int_{B} |f(x)|^{p-\varepsilon} dx\right)^{\frac{1}{p-\varepsilon}}.$$
 (2)

Here |B| is the Lebesgue measure of B.

Note that

- (1) If $\phi(\varepsilon, |B|) = \left(\frac{\varepsilon^{\theta}}{|B|^{\lambda+n}}\right)^{\frac{1}{p-\varepsilon}}, \theta > 0$, then $L_{p),\phi}(G) \equiv L_{p),\lambda}^{\theta}(G)$; in case $\theta = 1$, then $L_{p),\phi}(G) \equiv L_{p),\lambda}(G)$;
- (2) If $\phi(\varepsilon, |B|) = \left(\frac{\varepsilon^{\theta}}{|B|^{n}}\right)^{\frac{1}{p-\varepsilon}}, \theta > 0$, then $L_{p),\phi}(G) \equiv L_{p}^{\theta}(G)$; in case $\theta = 1, L_{p),\phi}(G) \equiv L_{p}(G)$; $(B \equiv B(x, r))$;
- (3) If $\phi(\varepsilon, |B|) = \left(\frac{\varepsilon^{\theta}}{r^{|\chi|a+|\chi|}}\right)^{\frac{1}{p-\varepsilon}}, \theta > 0$, then $L_{p,\phi}(G) \equiv L_{p,\chi,a}^{\theta}(G)$; in case $\theta = 1$, then $L_{p,\phi}(G) \equiv L_{p,\chi,a}(G)$;

(4) If
$$\phi(\varepsilon, |B|) = \left(\frac{1}{|B|^{\lambda}}\right)^{\overline{p}}$$
, then $L_{p,\phi}(G) \equiv L_{1,\lambda}(G)$;

Observe some properties of $L_{p,\phi}(G)$ and $W_{p,\phi}^{l}(G)$.

(1) The following embedding hold:

$$L_{p),\phi}\left(G\right) \to L_{p)}\left(G\right), W_{p),\phi}^{l}\left(G\right) \to W_{p)}^{l}\left(G\right),$$

i.e.,

 $\|f\|_{p);G} \le \|f\|_{p);\phi;G} \text{ and } \|f\|_{W_{p)}^{l}(G)} \le \|f\|_{W_{p),\phi}^{l}(G)}$ where

$$\begin{split} \|f\|_{W_{p}^{l}G} &\leq \|f\|_{p),G} + \sum_{i=1}^{r} \left\|D_{i}^{l_{i}}f\right\|_{p),G} \\ \|_{p),G} &= \|f\|_{L_{p}(G)} = \sup_{0 \leq \varepsilon < p-1,} \phi\left(\varepsilon, |G|\right) \left(\int_{G} |f\left(x\right)|^{p-\varepsilon} dx\right)^{\frac{1}{p-\varepsilon}} \end{split}$$

Indeed,

 $\|f$

$$\left\|f\right\|_{p),\phi,G} = \sup_{\substack{0 \le \varepsilon < p-1 \\ B \subset G}} \phi\left(\varepsilon, |B|\right) \left(\int_{G} \left|f\left(x\right)\right|^{p-\varepsilon} dx\right)^{\frac{1}{p-\varepsilon}}$$

$$\geq \sup_{0 \leq \varepsilon < p-1} \phi\left(\varepsilon, |G|\right) \left(\int_{G} |f\left(x\right)|^{p-\varepsilon} dx \right)^{\frac{1}{p-\varepsilon}} = \|f\|_{p),G}$$

(1) $L_{p),\phi}(G)$ and $W_{p),\phi}^{l}(G)$ are complete.

The proof of completeness properties of these spaces is similar to [10].

It can be shown that, for $f \in W_{p-\varepsilon}^{l}(G)$ has the integral representation $(x \in U \subset G)$

$$D^{\nu}f(x) = f_{h}^{(\nu)}(x) + \sum_{i=1}^{n} \int_{0}^{h} \int_{\mathbb{R}^{n}} L_{i}^{(\nu)}\left(\frac{y}{\psi(v)}\right) D_{i}^{l_{i}}f(x+y) \times \\ \times \prod_{j=1}^{n} \left(\psi_{j}(v)\right)^{-1-\nu_{j}} \left(\psi_{i}(v)\right)^{-1+l_{i}} \psi_{i}'(v) \, dy dv,$$
(3)

$$f_{h}^{(\nu)}(x) = \prod_{j=1}^{n} \left(\psi_{j}(v)\right)^{-1-\nu_{j}} \int_{\mathbb{R}^{n}} f(x+y) \,\Omega^{(\nu)}\left(\frac{y}{\psi(h)}\right) dy, \tag{4}$$

where $\frac{y}{\psi(v)} = \left(\frac{y_1}{\psi_1(v)}, \frac{y_2}{\psi_2(v)}, \dots, \frac{y_n}{\psi_n(v)}\right), \psi_i(v) = i = 1, 2, \dots, n$ is arbitrary differentiable non-decreasing functions defined for $0 < v \le h \le h_0$, $\lim_{v \to +0} \psi_i(v) = 0$, $L_i(\cdot), \Omega(\cdot) \in C_0^{\infty}(\mathbb{R}^n) S(M) = \operatorname{supp} M \subset I_{\psi(h_0)} = \left\{y : |y_j| < \psi_j(h_0), j = 1, 2, \dots, n\right\}$ and the ψ horn $x + V = x + \bigcup_{0 < h \le h_0} \left\{y : \frac{y}{\psi(h)} \in S(\Omega)\right\}$ is the support of the representation (3), (4) and $\nu = (\nu_1, \dots, \nu_n), \nu_j \ge 0$ are integers $(j = 1, 2, \dots, n)$.

Lemma 1. Let $1 , <math>0 < \eta, \upsilon \le h \le h_0$, $\nu = (\nu_1, \dots, \nu_n)$, $\nu_j \ge 0$ be integers $(j = 1, 2, \dots, n)$, $\varphi \in L_{p),\phi}(G)$ and

$$R_{\eta}^{i} = \int_{0}^{\eta} \prod_{j=1}^{n} \left(\psi_{j}\left(v \right) \right)^{-\nu_{j} - \frac{1}{p-\varepsilon} + \frac{1}{q-\varepsilon}} \left(\psi_{i}\left(v \right) \right)^{-1+l_{i}} \psi_{i}'\left(v \right) dv, \tag{5}$$

$$A_{\eta}^{i}(x) = \int_{0}^{\eta} \prod_{j=1}^{n} \left(\psi_{j}(v)\right)^{-1-\nu_{j}} \left(\psi_{i}(v)\right)^{-1+l_{i}} \psi_{i}^{1}(v) \int_{R^{n}} \varphi\left(x+y\right) K\left(\frac{y}{\psi(v)}\right) dy dv,$$
(6)
$$A_{\eta,h}^{i}(x) = \int_{\eta}^{h} \prod_{j=1}^{n} \left(\psi_{j}(v)\right)^{-1-\nu_{j}} \left(\psi_{i}(v)\right)^{-1+l_{i}} \psi_{i}'(v) \int_{R^{n}} \varphi\left(x+y\right) K\left(\frac{y}{\psi(v)}\right) dy dv.$$
(7)

Then

$$\left\|A_{\eta}^{i}\right\|_{q-\varepsilon,U} \leq c_{1} \left\|\varphi\right\|_{p),\phi,G} \left(\phi\left(\varepsilon,\left|U\right|\right)\right)^{-\frac{p-\varepsilon}{q-\varepsilon}} \left(\phi\left(\varepsilon,\left|B\right|\right)\right)^{-1+\frac{p-\varepsilon}{q-\varepsilon}} \left|R_{\eta}^{i}\right| \left(R_{\eta}^{i} < \infty\right)$$
(8)

$$\left\|A_{\eta h}^{i}\right\|_{q-\varepsilon,U} \le c_{2} \left\|\varphi\right\|_{p),\phi,G} \left(\phi\left(\varepsilon,\left|U\right|\right)\right)^{-\frac{p-\varepsilon}{q-\varepsilon}} \left(\phi\left(\varepsilon,\left|B\right|\right)\right)^{-1+\frac{p-\varepsilon}{q-\varepsilon}} \left|R_{\eta,h}^{i}\right|, \quad (9)$$

where $R_{\eta,h}^{i} = \int_{\eta}^{h} \prod_{j=1}^{n} \left(\psi_{j}\left(v\right) \right)^{-\nu_{j} - \frac{1}{p-\varepsilon} + \frac{1}{q-\varepsilon}} \left(\psi_{i}\left(v\right) \right)^{-1+l_{i}} \psi_{i}'\left(v\right) dv$, and U is an open set containing in the domain G.

Proof. Applying the generalized Minkowski inequality, we deduce

$$\left\|A_{\eta}^{i}\right\|_{q-\varepsilon,U} \leq \int_{0}^{\eta} \prod_{j=1}^{n} \left(\psi_{j}\left(\upsilon\right)\right)^{-1-\nu_{j}} \left(\psi_{i}\left(\upsilon\right)\right)^{-1+l_{i}} \psi_{i}'\left(\upsilon\right) \left\|F\left(\cdot,\upsilon\right)\right\|_{q-\varepsilon,U} d\upsilon, \quad (10)$$

for every

$$F(x,v) = \int_{\mathbb{R}^n} \varphi(x+y) K\left(\frac{y}{\psi(v)}\right) dy.$$
(11)

Estimate of the norm $\left\|F\left(\cdot,v\right)\right\|_{q-\varepsilon,U}.$ From Hölders inequality $(q\leq r)$ we obtain

$$\|F(\cdot, v)\|_{q-\varepsilon, U} \le \|F(\cdot, v)\|_{r-\varepsilon, U} \|U\|_{q-\varepsilon}^{\frac{1}{q-\varepsilon} - \frac{1}{r-\varepsilon}}.$$
(12)

Let X be the characteristic function of S(K). It is obvious that

$$\|\varphi K\| = \left(|\varphi|^{p-\varepsilon} |K|^s \right)^{\frac{1}{r-\varepsilon}} \left(|\varphi|^{p-\varepsilon} X \right)^{\frac{1}{p-\varepsilon} - \frac{1}{r-\varepsilon}} \left(|K|^s \right)^{\frac{1}{s} - \frac{1}{r-\varepsilon}},$$

where $\frac{1}{s} = 1 - \frac{1}{p-\varepsilon} + \frac{1}{r-\varepsilon}$. And applying again Hölders inequality $\left(\frac{1}{r-\varepsilon} + \left(\frac{1}{p-\varepsilon} - \frac{1}{r-\varepsilon}\right) + \left(\frac{1}{s} - \frac{1}{r-\varepsilon}\right) = 1\right)$ we have $\left\|F\left(\cdot,\upsilon\right)\right\|_{r-\varepsilon,U} \leq \sup_{x \in U} \left(\int_{R^n} \left|\varphi\left(x+y\right)\right|^{p-\varepsilon} X\left(\frac{y}{\psi}\right) dy\right)^{\frac{1}{p-\varepsilon} - \frac{1}{r-\varepsilon}}$ $\times \sup_{y \in \upsilon} \left(\int_{U} \left| \varphi \left(x + y \right) \right|^{p-\varepsilon} dx \right)^{\frac{1}{r-\varepsilon}} \left(\int_{R^{n}} \left| K \left(\frac{y}{\psi} \right) \right|^{s} dy \right)^{\frac{1}{s}}.$ (13)

For every $x \in U$ we have

$$\int_{\mathbb{R}^{n}} |\varphi(x+y)|^{p-\varepsilon} X\left(\frac{y}{\psi}\right) dy \leq \int_{I_{\psi(\psi)}} |\varphi(x+y)|^{p-\varepsilon} dy \leq \|\varphi\|_{p-\varepsilon,I_{\psi(\psi)}}^{p-\varepsilon}$$
$$\leq \|\varphi\|_{p,\phi,G}^{p-\varepsilon} \left(\phi\left(\varepsilon,\left|I_{\psi(\psi)}\right)\right)\right)^{-(p-\varepsilon)}.$$
(14)

For

$$\int_{U} |\varphi (x+y)|^{p-\varepsilon} dx \le ||\varphi||_{p-\varepsilon,U}^{p-\varepsilon} \le ||\varphi||_{p),\phi,U}^{p-\varepsilon} |\phi (\varepsilon, |U|)|^{-(p-\varepsilon)} \le ||\varphi||_{p),\phi,G}^{p-\varepsilon} (\phi (\varepsilon, |U|))^{-(p-\varepsilon)},$$
(15)

$$\int_{\mathbb{R}^n} \left| K\left(\frac{y}{\psi}\right) \right|^s dy = \prod_{j=1}^n \psi_j\left(\upsilon\right) \|K\|_s^s.$$
(16)

It follows from (12)-(16) for r = q that

$$\|F(\cdot, v)\|_{q-\varepsilon, U} \le \|\varphi\|_{p), \phi, G} \left|\phi\left(\varepsilon, \left|I_{\psi(v)}\right|\right)\right|^{-1 + \frac{p-\varepsilon}{q-\varepsilon}} \phi\left(\varepsilon, \left|U\right|\right)^{-\frac{p-\varepsilon}{q-\varepsilon}} \|K\|_{s} |\psi(v)|^{\frac{1}{s}}.$$
(17)

Unseating this inequality in (10) we have

$$\left\|A_{\eta}^{i}\right\|_{q-\varepsilon,U} \leq c \left\|\varphi\right\|_{p),\phi,G} \left(\phi\left(\varepsilon,\left|U\right|\right)\right)^{-\frac{p-\varepsilon}{q-\varepsilon}} \left(\phi\left(\varepsilon,\left|B\right|\right)\right)^{-1+\frac{p-\varepsilon}{q-\varepsilon}} \left|R_{\eta}^{i}\right| \left(R_{\eta}^{i} < \infty\right)$$
(18)

2. Main Results

Now we will prove two theorems on the properties of the functions from spaces $W_{p),\phi}^{l}(G)$.

Theorem 1. Let $G \subset \mathbb{R}^n$ be an open set such that it satisfies the horn condition, $1 \leq p < \infty, \nu = (\nu_1, \nu_2, \dots, \nu_n), \nu_j \geq 0$ be integers $(j = 1, 2, \dots, n), R_h^i < \infty$ $(i = 1, 2, \dots, n)$ and $f \in W_{p,\phi}^l(G)$.

Then $D^{\nu} : W^{l}_{p),\phi}(G) \to L_{q-\varepsilon}(G)$ holds for any $\varepsilon (0 \le \varepsilon < p-1)$. Moreover, the following inequality is valid

$$\|D^{\nu}f\|_{q-\varepsilon,G} \le c\left(\varepsilon\right) \left(\|f\|_{p),\phi;G} + \sum_{i=1}^{n} \left|R_{h}^{i}\right| \left\|D_{i}^{l_{i}}f\right\|_{p),\phi;G}\right).$$

$$(19)$$

In particular, if

$$R_{h}^{i,0} = \int_{0}^{h} \prod_{j=1}^{n} \left(\psi_{j}\left(v\right) \right)^{-\nu_{j} - \frac{1}{p-\varepsilon}} \left(\psi_{i}\left(v\right) \right)^{-1+l_{i}} \psi_{i}'\left(v\right) dv < \infty,$$

 $i = 1, 2, \ldots, n$, then $D^{\nu}f(x)$ is continuous on G and

$$\sup_{x \in G} \|D^{\nu}f(x)\| \le c(\varepsilon) \left(\|f\|_{p),\phi;G} + \sum_{i=1}^{n} \left|R_{h}^{i,0}\right| \left\|D_{i}^{l_{i}}f\right\|_{p),\phi;G} \right),$$
(20)

where $0 < h \leq h_0$, h_0 is fixed positive number, $c(\varepsilon) = C \cdot (\phi(\varepsilon, |B|))^{-1 + \frac{p-\varepsilon}{q-\varepsilon}}$ and C is a constant independent of f, h and ε .

Proof. Under the conditions of our theorem, the weak derivatives $D^{\nu}f$ exists. Since p < q and $W_{p),\phi}^{l}(G) \to W_{p}^{l}(G) \to W_{p-\varepsilon}^{l}(G) \ (p-\varepsilon > 1)$. Then $D^{\nu}f$ exists on G (for all $B \subseteq I_{\psi(h_0)} \subset G$) has the integral representation

$$D^{\nu}f(x) = f_{h}^{(\nu)}(x) + \sum_{i=1}^{n} \int_{0}^{h} \int_{\mathbb{R}^{n}} L_{i}^{(\nu)}\left(\frac{y}{B}\right) \times \\ \times D_{i}^{l_{i}}f(x+y) \prod_{j=1}^{n} \left(\psi_{j}(\upsilon)\right)^{-1-\nu_{j}} \left(\psi_{i}(\upsilon)\right)^{-1-\nu_{i}} \psi_{i}^{\prime}(\upsilon) \, d\upsilon dy,$$
(21)

where

$$f_{h}^{(\nu)}(x) = \prod_{j=1}^{n} \left(\psi_{j}(h)\right)^{-1-\nu_{j}} \int_{\mathbb{R}^{n}} f(x+y) \,\Omega^{(\nu)}\left(\frac{y}{B}\right) dy, \tag{22}$$

 $0 < h \le h_0, \ L_i \text{ and } \Omega \in C_0^{\infty}(\mathbb{R}^n), \ i = 1, 2, \dots, n, \text{ and } \frac{y}{B} = \left(\frac{y_1}{|B^{(1)}|}, \frac{y_2}{|B^{(2)}|}, \dots, \frac{y_n}{|B^{(n)}|}\right), \\ B^{(i)} = \left\{x : x = \left(x_1^0, x_2^0, \dots, x_i^0, x_i, x_{i+1}^0, \dots, x_n^0\right)\right\} \text{ i.e., } B^{(i)} = proj_{x_i}B. \text{ The representation (21), (22) carrier is contained in the set } x + V \subset G. \text{ Hence, using Minkowski's}$

inequality we arrive

$$\|D^{\nu}f\|_{q-\varepsilon,G} \le \left\|f_{h}^{(\nu)}\right\|_{q-\varepsilon,G} + \sum_{i=1}^{n} \|F_{h}^{l}\|_{q-\varepsilon,G}.$$
(23)

By (17) for
$$U = G$$
, $\varphi = f$, $K = \Omega^{(v)}, I_{\psi(h)} = B$, we have

$$\left\| f_h^{(\nu)} \right\|_{q-\varepsilon,G} \le c \left\| f \right\|_{p),\phi,G} \left| \phi\left(\varepsilon, |B|\right) \right|^{-1+\frac{p-\varepsilon}{q-\varepsilon}} \left| \phi\left(\varepsilon, |U|\right) \right|^{-\frac{p-\varepsilon}{q-\varepsilon}} \le c_1\left(\varepsilon\right) \left\| f \right\|_{p),\phi,G}$$
By (8) for $U = G$, $\varphi = D_i^{l_i} f$, $K = L_i^{(\nu)}, I_{\psi(v)} = B$, $\eta = h$ we have

$$\left\|F_{h}^{i}\right\|_{q-\varepsilon,G} \leq c\left(\varepsilon\right) \left\|D_{i}^{l_{i}}f\right\|_{p\right),\phi,G}\left|R_{h}^{i}\right|.$$

Consequently,

$$\left\|D^{\nu}f\right\|_{q-\varepsilon,G} \le C\left(\varepsilon\right) \left(\left\|f\right\|_{p),\phi;G} + \sum_{i=1}^{n} \left|R_{h}^{i}\right| \left\|D_{i}^{l_{i}}f\right\|_{p),\phi;G}\right).$$
(24)

Now let

$$R_{h,0}^{i} = \int_{0}^{h} \prod_{j=1}^{n} \left(\psi_{j}(v) \right)^{-\nu_{j} - \frac{1}{p-\varepsilon}} \left(\psi_{i}(v) \right)^{-1+l_{i}} \psi_{i}'(v) \, dv < \infty \, (i = 1, 2, \dots, n) \, .$$

We show that $D^{v}f$ is continuous on G. By (23) and (24) for $q = \infty$ we obtain:

$$\left\| D^{\nu}f - f_{h}^{(\nu)} \right\|_{\infty,G} \leq C\left(\varepsilon\right) \sum_{i=1}^{n} \left| R_{h}^{i} \right| \left\| D_{i}^{l_{i}}f \right\|_{p),\phi;G}.$$

It follows that the left-hand part of the last inequality tends to zero as $h \to 0$. Since $f_h^{(\nu)}$ is continuous on G, in our case the convergence in $L_{\infty}(G)$ coincides with uniform convergence; consequently, $D^{\nu}f$ is continuous on G.

Thus the theorem is proved.

Let γ be an *n* dimensional vector.

Theorem 2. Suppose that the domain G the parameters p, q and vector v satisfy the condition of Theorem 1. If $R_h^i < \infty$ (i = 1, 2, ..., n), then $D^v f$ satisfies the Hölder condition on G in the metric of $L_{q-\varepsilon}$, more exactly

$$\left\|\Delta\left(\gamma,G\right)D^{\nu}f\right\|_{q-\varepsilon,G} \le c\left(\varepsilon\right)\left\|f\right\|_{W_{p),\phi}^{l}(G)}\left|R_{h,\gamma}^{1}\right|.$$
(25)

If $R_h^i < \infty$ (i = 1, 2, ..., n), then

$$\sup_{x \in G} \left\| \Delta\left(\gamma, G\right) D^{\nu} f\left(x\right) \right\| \le c\left(\varepsilon\right) \left\| f \right\|_{W^{l}_{p),\phi}(G)} \left| R^{1,0}_{h,\gamma} \right|, \tag{26}$$

where

$$R_{h,\gamma}^{1} = \max_{i} \left\{ \left| \gamma \right|, \left| \gamma \right| \left| R_{h}^{i} \right|, \left| \gamma \right| \left| R_{h,\gamma}^{i} \right| \right\}$$

and

$$R_{h,\gamma}^{1,0} = \max_{i} \left\{ |\gamma| \,, \ |\gamma| \, |R_{h}^{i,0}|, \ |\gamma| \, |R_{h,\gamma}^{i,0}| \right\}.$$

Proof. By Lemma 8.6 of [1], there is a domain $G_{\sigma} \subset G$ ($G = \xi \rho(x), \xi > 0, \rho(x) = dist(x, \partial G), x \in G$) and $|\gamma| < \sigma$. Then, for every $x \in G_{\sigma}$ then the line segment joining the points x and $x + \gamma$ is contained in G. Identities (21), (22) are valid for all points of the segment with some kernels. After simple transformations, we have

$$\begin{aligned} |\Delta(\gamma, G) D^{\nu} f(x)| &\leq \prod_{j=1}^{n} \left(\psi_{j}(h)\right)^{-1-\nu_{j}} \int_{\mathbb{R}^{n}} |f(x+y)| \left|\Omega^{(\nu)}\left(\frac{y-\gamma}{B}\right) - \Omega^{(\nu)}\left(\frac{y}{B}\right)\right| dy \\ &+ \sum_{i=1}^{n} \left\{\int_{0}^{|\gamma|} \prod_{j=1}^{n} \left(\psi_{j}(\upsilon)\right)^{-1-\nu_{j}} \left(\psi_{j}(\upsilon)\right)^{-1+l_{i}} \int_{\mathbb{R}^{n}} \left(\left|D_{i}^{l_{i}}f(x+\gamma+y)\right| + \left|D_{i}^{l_{i}}f(x+y)\right|\right) \right. \\ &\times \left|L_{i}^{(\nu)}\left(\frac{y}{B}\right)\right| \psi_{i}'(\upsilon) dv dy + \int_{|\gamma|}^{h} \prod_{j=1}^{n} \left(\psi_{j}(\upsilon)\right)^{-1-\nu_{j}} \left(\psi_{i}(\upsilon)\right)^{-1+l_{i}} \\ &\times \int_{\mathbb{R}^{n}} \left|D_{i}^{l_{i}}f(x+y)\right| \left|L_{i}^{(\nu)}\left(\frac{y-\gamma}{B}\right) - L_{i}^{(\nu)}\left(\frac{y}{B}\right)\right| \psi_{i}'(\upsilon) dv dy \\ &= A\left(x,\gamma\right) + \sum_{i=1}^{n} \left(A_{1}\left(x,\gamma\right) + A_{2}\left(x,\gamma\right)\right), \end{aligned}$$
(27)

where $0 < h \le h_0$. We also assume that $|\gamma| < h$ consequently $|\gamma| \le \min(\sigma, h)$. If $x \in G \setminus G_{\sigma}$, then by definition $\Delta(\gamma, G) D^{\nu} f(x) = 0$. By (27)

$$\begin{split} \|\Delta\left(\gamma,G\right)D^{\nu}f\|_{q-\varepsilon,G} &= \|\Delta\left(\gamma,G\right)D^{\nu}f\|_{q-\varepsilon,G_{\sigma}} \le \|A\left(\cdot,\gamma\right)\|_{q-\varepsilon,G_{\sigma}} \\ &+ \sum_{i=1}^{n} \left(\|A_{1}\left(\cdot,\gamma\right)\|_{q-\varepsilon,G_{\sigma}} + \|A_{2}\left(\cdot,\gamma\right)\|_{q-\varepsilon,G_{\sigma}}\right). \end{split}$$

Note that

$$\Omega^{(\nu)}\left(\frac{y-\gamma}{B}\right) - \Omega^{(\nu)}\left(\frac{y}{B}\right) \bigg| \le \left| \int_0^{|\gamma|} \frac{d}{d\xi} \Omega^{(\nu)}\left(\left(y-\xi\frac{\gamma}{|\gamma|}\right):B\right) d\xi \right|$$
$$\le \sum_{j=1}^n \left| B^{(j)} \right|^{-1} \int_0^{|\gamma|} \left| D_j \Omega^{(\nu)} \left((y-\xi e_\gamma):B\right) \right| d\xi, \ e_\gamma = \frac{\gamma}{|\gamma|}.$$
fore

Therefore,

$$A(x,\gamma) \leq \prod_{j=1}^{n} \left(\psi_{j}(\upsilon)\right)^{-1-\nu_{j}} \sum_{j=1}^{n} \left|B^{(j)}\right|^{-1} \times \int_{0}^{|\gamma|} d\xi \int_{\mathbb{R}^{n}} |f(x+\xi e_{j}+y)| \left|D_{j}\Omega^{(\nu)}\left(\frac{y}{B}\right)\right| dy.$$
(28)

Similarly,

$$A_{2}(x,\gamma) \leq \sum_{j=1}^{n} \left| B^{(j)} \right|^{-1} \int_{0}^{|\gamma|} d\xi \int_{|\gamma|}^{h} \prod_{j=1}^{n} \left(\psi_{j}(v) \right)^{-1-\nu_{j}} \left(\psi_{i}(v) \right)^{-1+l_{i}} \left(\psi_{i}'(v) \right) dv \\ \times \int_{R^{n}} \left| D_{i}^{l_{i}} f\left(x + \xi e_{j} + y \right) \right| \left| D_{j} L_{i}^{(\nu)} \left(\frac{y}{B} \right) \right| dy,$$
(29)

Using (17) for U = G, $\varphi = f$, $\eta = |\gamma|$, $K = \Omega^{(\nu)}$, we obtain

$$\|A(\cdot,\gamma)\|_{q-\varepsilon,G} \le c_1(\varepsilon) |\gamma| \|f\|_{p),\phi;G}, \qquad (30)$$

with the help of (8) for U = G, $\varphi = D_i^{l_i} f$, $\eta = |\gamma|$, $K = L_i^{(\nu)}$ we obtain

$$\|A_1(\cdot,\gamma)\|_{q-\varepsilon,G} \le c_2(\varepsilon) |\gamma| \left\| D_i^{l_i} f \right\|_{p),\phi;G} \left| R_h^i \right|, \tag{31}$$

and from (9) for U = G, $\varphi = D_i^{l_i} f$, $\eta = |\gamma|$, $K = L_i^{(\nu)}$ we obtain

$$\|A_2(\cdot,\gamma)\|_{q-\varepsilon,G} \le c_3(\varepsilon) R^i_{h,\gamma} \left\|D^{l_i}_i f\right\|_{p),\phi;G}.$$
(32)

It follows from (27), (30)-(32) that

$$\left|\Delta\left(\gamma,G\right)D^{\nu}f\right\|_{q-\varepsilon,G} \le c\left(\varepsilon\right)\left\|f\right\|_{W^{l}_{p),\phi;G}\left(G\right)}\left|R^{1}_{h,\gamma}\right|,$$

where

$$R_{h,\gamma}^{1} = \max_{i} \left\{ |\gamma|, |\gamma| |R_{h}^{i}|, |\gamma| |R_{h,\gamma}^{i}| \right\}.$$

Suppose now that $|\gamma| \geq \min(\sigma, T)$. Then

$$\left\|\Delta\left(\gamma,G\right)D^{\nu}f\right\|_{q-\varepsilon,G} \le 2\left\|D^{\nu}f\right\|_{q-\varepsilon,G} \le c\left(\sigma,h\right)\left\|D^{\nu}f\right\|_{q-\varepsilon,G}\left|R_{h,\gamma}\right|.$$

Estimating $\|D^{\nu}f\|_{q-\varepsilon,G}$ by means of (21) we obtain the sought inequality in this case as well. Thus the theorem is proved .

Author Contribution Statements The authors contributed equally to this work. All authors read and approved the final copy of this paper.

Declaration of Competing Interest The authors declare that they have no competing interest.

References

- Besov, O. V., Ilyin, V. P., Nikolskii, S. M., Integralnye Predstavleniya Funktsi i Teoremy Vlozheniya (Russian) (Integral Representations of Functions and Embedding Theorems), Fizmatlit "Nauka", Moscow, 1996.
- [2] Fiorenza, A., Formica, M., Gogatishvili, A., On grand and small Lebesgue equations and applications, *Differ. Equ. Appl.*, 10(1) (2018), 21-46. dx.doi.org/10.7153/dea-2018-10-03
- [3] He, S., Tao, Sh., Boundedness of some operators on grand generalized Morrey spaces over nonhomogeneous spaces, AIMS Mathematics, 7(1) (2022), 1000-1014. doi:10.39341 math.2022060
- [4] Iwaniec, T., Sbordone, C., On the integrability of the Jacobian under minimal hypoteses, Arch. Rational Mech. Anal., 119(2) (1992), 129-143. https://doi.org/10.1007/BF00375119

- Kokilashvili, V. M., Meskhi, A., Rafeiro, H., Riesz type potential operators in generalized grand Morrey spaces, *Georgian Math. J.*, 20(1) (2013), 43-64. https://doi.org/10.1515/gmj-2013-0009
- [6] Liu, Y., Yuan, W., Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces, *Czechoslovak Math. J.*, 67(3) (2017), 715-732. DOI: 10.21136/CMJ.2017.0081-16
- [7] Meskhi, A., Maximal functions potentials and singular integrals in grand Morrey spaces, Comp. Var. Ellip. Equations, 56(10-11) (2011), 1003-1019. https://doi.org/10.1080/17476933.2010.534793
- [8] Mizuta, Y., Ohno, T., Trudingers exponential integrability for Riesz potentials of function in generalized grand Morrey spaces, J. Math. Anal. Appl., 420(1) (2014). https://doi.org/10.1016/j.jmaa.2014.05.082
- [9] Najafov, A. M., Alekberli, S. T., On properties of functions from grand Sobolev-Morrey spaces, J. Baku Engineering Univ., 2(1) (2018), 27-36.
- [10] Najafov, A. M., Rustamova, N. R., Some differential properties of anisotropic grand Sobolev Morrey spaces, *Trans. A. Razmadze Math. Inst.*, 172(1) (2018), 82-89. https://doi.org/10.1016/j.trmi.2017.10.001
- [11] Najafov, A. M., Gasimova, A. M., On embedding theorems in grand grand Nikolski-Morrey spaces, *Eur. J. Pure Appl. Math.*, 12(4) (2019), 1602-1611. https://doi.org/10.29020/nybg.ejpam.v12i4.3567
- [12] Najafov, A. M., On some properties differential properties of small small Sobolev-Morrey spaces, Eurasian Math. J., 12(1) (2021), 57-67. https://doi.org/10.32523/2077-9879-2021-12-1-57-67
- [13] Rafeiro, H., A note on boundedness of operators in grand grand Morrey spaces, Operator Theory: Advances and Applications, 229 (2013) 349–356. DOI:10.1007/978-3-0348-0516-2_19
- [14] Umarkhadzhiev, S., The boundedness of the Riesz potential operator from generalized grand Lebesgue spaces to generalized grand Morrey spaces, Operator Theory, Operator Algebras and Applications, 363-373, Oper. Theory Adv. Appl., 242, Birkhäuser, Springer, Basel, 2014. DOI:10.1007/978-3-0348-0816-3_22