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Abstract
This article studies a discrete-time Leslie-Gower two predator-one prey system with Michaelis-Menten type prey
harvesting. Positivity and boundedness of the model solution are investigated. Existence and stability of fixed
points are examined. Using an iteration scheme and the comparison principle of difference equations, we find
out the sufficient condition for global stability of the positive fixed point. It is shown that the sufficient criterion for
Neimark-Sacker bifurcation can be developed. It is observed that the system behaves in a chaotic manner when
a specific set of system parameters is chosen, which are regulated by a hybrid control method. Examples are
provided to illustrate our conclusions.
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1. Introduction
In the real world, the interaction between prey and their predator create a major interest to the researchers to explore the
dynamics of the system. Most of the existing predator-prey models come from the Lotka-Volterra system. The Lotka-Volterra
models cannot justify all the predator-prey interaction. For example, when the size of the prey decreases, then the predator will
search for other prey. This fact motivated Leslie to form an appropriate model known as Leslie-Gower predator-prey system to
investigate the behaviour of the system. Several studies have been done on modified Leslie-Gower model with various aspects
[1]-[3].
In spite of the vast research over the last few years, the knowledge about the effect of non-linear Michaelis-Menten type of
harvest on one prey-two predator models is insufficient. We observe that the ecological system is often perturbed by the growing
human needs for more food and more energy. For example, the fish population has decreased due to the rapid progress of fishing
technology and substantial growth in human populations. Therefore, the exploitation of renewable resources, which associates
immediately to sustainable development. Clark [4, 5] introduced harvesting of species through mathematical models. There are
three types of harvesting namely constant rate, proportionate and Michaelis-Menten type found in the literatures [6]-[9]. Out of
these, non-linear harvesting is more realistic and exhibits saturation effects with respect to both the stock abundance and effort
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level. Das et al. [10] analysed a prey-predator model considering Michaeli-Menten type harvesting on both the populations.
They discussed boundedness, local and global stability of the proposed system. Gupta and Chandra [8] followed the similar
type of harvesting in prey and derived different bifurcations such as transcritical, saddle-node, Hopf and Bogdanov-Takens
in the Leslie-Gower prey-predator model. Hu and Cao [11] discussed stability and bifurcation for a predator-prey system
with Michaelis-Menten type predator harvesting. Ang and Safuan [12] investigated the dynamical behaviour of an intraguild
prey-predator fishery model with the non-linear harvesting of prey species.
Mathematical models followed by differential equations are reasonable for the species in which populations are overlapped. In
case of non-overlapping generations, discrete-time models governed by difference equations are more appropriate than the
differential equations. In real ecosystem, a discrete time system can be seen, for example, fish populations reproduce at specific
timed moments or for insect populations, for which non-overlapping generations are occurring. Moreover, discrete-time models
also allow more efficient computational results for numerical simulations and exhibit a rich dynamics as compared to the
continuous ones [13]-[16]. Even discrete time models can admit chaotic dynamics [13, 14]. More interesting and significant
results on discrete prey-predator models can be seen in [17]-[21]. Ajaz et al. [22] investigated the dynamical behaviour of
a modified Leslie-Gower prey-predator model with harvesting in prey population and showed the existence and directions
of period doubling and Neimark-Sacker at positive fixed point and also indicated chaos control when chaos emerge through
bifurcation. Khan et al. [23] discussed a discrete-time Michaelis-Menten type prey harvesting in the modified Leslie-Gower
predator-prey model and obtained the conditions for the existence of flip and Neimark-Sacker bifurcations. Chen et al. [24]
studied a discrete Leslie-Gower predator-prey model with Michaelis-Menten prey harvesting and observed that the system can
exhibit fold, flip and Neimark-Sacker bifurcations by the application of center manifold theorem and bifurcation theory.
The above studies are mainly confined into two species models. However, it is a common fact that several predators compete
for a prey in the real world. To our knowledge, there is limited works that highlight discrete-time non-linear harvesting in the
modified Leslie-Gower Holling type II two-predator one-prey model.
Now we first present a model which is a modified Leslie-Gower two predator- one prey system with Michaelis-Menten type
prey harvesting:

dx
dt

= x(r1−ax− c1y
h1 + x

− c2z
h2 + x

− qE
d1E +d2x

),

dy
dt

= y(r2−
f1y

h1 + x
),

dz
dt

= z(r3−
f2z

h2 + x
),

(1.1)

where x, y and z denote the densities of prey, the first predator and the second predator respectively. r1,r2,r3 stands for the
intrinsic growth rate of the prey and two predators respectively. a represents the intra-specific competition among the the prey
species. c1 and c2 denote the per-capita reduction of prey x. f1 and f2 carry the same meaning as of c1 and c2. h1 and h2
signifies the environmental protection for predator y and z respectively. In the prey harvesting term qEx

d1E+d2x , q is the catchability
coefficient, d1 and d2 are the degree of competition in the harvesting business and handling time respectively. E describes the
harvesting effort.
For qualitative analysis, including global stability, bifurcation analysis and chaos control for a discrete analogue of system (1.1),
a piecewise constant argument is introduced to describe the following exponential form of nonlinear difference equations:

xn+1 = xnexp{r1−axn−
c1yn

h1 + xn
− c2zn

h2 + xn
− qE

d1E +d2xn
},

yn+1 = ynexp{r2−
f1yn

h1 + xn
},

zn+1 = znexp{r3−
f2zn

h2 + xn
}

(1.2)

where xn, yn and zn represent the densities of prey and both the predator at generation n ∈ N respectively.
The rest of the paper is formatted as follows. Positivity and boundedness of solutions are presented in Section 2. The
existence and stability of the interior fixed point are discussed in Section 3. Global stability criterion is derived in Section 4.
Neimark-Sacker bifurcation and flip bifurcation are described in Section 5. Chaos control mechanism is presented in Section 6.
Numerical examples are given in Section 7. Section 8 concludes the paper.

2. Positivity and Boundedness of Solutions
In this section, we discuss positivity and boundedness of solutions of system (1.2). The first lemma follows immediately from
the system structure and its proof is omitted.
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Lemma 2.1. Solutions of system (1.2) with positive initial conditions remain positive.

To prove the boundedness of solutions of system (1.2), we require the following lemma:

Lemma 2.2. (see [25]) Suppose that xm satisfies x0 > 0 and xm+1 ≤ xmexp[α(1−βxm)] for m ∈ [m1,∞) where β is a positive
constant. Then limsupn→∞xm ≤ 1

αβ
exp(α−1).

We now state the theorem which ensures that every positive solution of system (1.2) is uniformly bounded.

Theorem 2.3. Every positive solution {(xn,yn,zn)} of system (1.2) is uniformly bounded.

Proof. Assume that {(xn,yn,zn)} be an arbitrary positive solution of system (1.2). From the first equation of system (1.2), we
get

xn+1 ≤ xnexp(r1−axn),n = 0,1,2, ....

Assume that x0 > 0, then following Lemma 2.2, we get limsupn→∞xn ≤ 1
a exp(r1− 1) := M1. From the second equation of

system (1.2),

yn+1 ≤ ynexp(r2−
f1

h1 +M1
yn),n = 0,1,2, ....

It follows from Lemma 2.2 that limsupn→∞yn ≤ h1+M1
f1

exp(r2−1) := M2 whenever y0 > 0. Assume that z0 > 0. From the third
equation of system (1.2), we get

zn+1 ≤ znexp(r3−
f2

h2 +M1
zn).

Applying again Lemma 2.2, we get

limsupn→∞zn ≤
h2 +M1

f2
exp(r3−1) := M3.

Then it follows that limsupn→∞(xn,yn,zn)≤M, where M = max{M1,M2,M3}.
This completes the proof.

3. Existence of Fixed Points
In this section, we determine the fixed points and their dynamics. Evidently, system (1.1) has at most twelve non-negative fixed
points E0 = (0,0,0). If q < r1d1 then the fixed point E1 = (x̄,0,0) exists uniquely where

x̄ =
r1d2−ad1E +

√
(r1d2−ad1E)2−4ad2E(q− r1d1)

2ad2
.

If q > r1d1,r1d2 > ad1E and (r1d2−ad1E)2−4ad2E(q− r1d1)> 0 then multiple fixed points exist E1± = (x̄±,0,0) where

x̄± =
r1d2−ad1E±

√
(r1d2−ad1E)2−4ad2E(q− r1d1)

2ad2
.

There always exists E2 = (0, r2h1
f1

,0) and E3 = (0,0, r3h2
f2

). If q f1 + d1c1r2 < d1r1 f1 then there exists a unique fixed point
E12 = (x̂, ŷ,0) where

x̂ =
d2(r1 f1− c1r2)−a f1d1E +

√
(d2(r1 f1− c1r2)−a f1d1E)2−4a f1d2E(q f1 +d1c1r2−d1r1 f1)

2a f1d2

and

ŷ =
r2(h1 + x̂)

f1
.

If q f1 +d1c1r2 > d1r1 f1,r1 f1d2 > c1r2d2 +a f1d1E and {d2(r1 f1− c1r2)−a f1d1E}2 > 4a f1d2E(q f1 +d1c1r2−d1r1 f1) then
there exists multiple fixed points E12± = (x̂±, ŷ±,0) where

x̂± =
d2(r1 f1− c1r2)−a f1d1E±

√
(d2(r1 f1− c1r2)−a f1d1E)2−4a f1d2E(q f1 +d1c1r2− r1 f1d1)

2a f1d2
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and

ŷ± =
r2(h1 + x̂±)

f1
.

If q f2 +d1c2r3 < d1r1 f2 then there exists a unique fixed point E13 = (x̃,0, z̃) where

x̃ =
d2(r1 f2− c2r3)−a f2d1E +

√
(d2(r1 f2− c2r3)−a f2d1E)2−4a f2d2E(q f2 +d1c2r3−d1r1 f2)

2a f2d2

and

ỹ =
r3(h2 + x̃)

f2
.

If q f2 +d1c2r3 > d1r1 f2,r1 f2d2 > c2r3d2 +a f2d1E and {d2(r1 f2− c2r3)−a f2d1E}2 > 4a f2d2E(q f2 +d1c2r3−d1r1 f2) then
there exists multiple fixed points E13± = (x̃±,0, z̃±) where

x̃± =
d2(r1 f2− c2r3)−a f2d1E±

√
(d2(r1 f2− c2r3)−a f2d1E)2−4a f2d2E(q f2 +d1c2r3− r1 f2d1)

2a f2d2

and

z̃± =
r3(h2 + x̃±)

f2
.

There exists a unique fixed point E23 = (0, r2h1
f1

, r3h2
f2

). To determine the positive fixed point E∗ = (x∗,y∗,z∗) , we have to solve
the following system of equations:

x = x(r1−ax− c1y
h1 + x

− c2z
h2 + x

− qE
d1E +d2x

), (3.1)

y = y(r2−
f1y

h1 + x
), (3.2)

z = z(r3−
f2z

h2 + x
). (3.3)

where x∗,y∗ and z∗ are the positive solutions of equations (3.1), (3.2) and (3.3). Solving (3.2) and (3.3) we get y = r2(h1+x)
f1

and

z = r3(h2+x)
f2

and substituting the value of y and z in (3.1), we obtain the following equation:

Ax2 +Bx+C = 0 (3.4)

where

A = f1 f2ad2,B = f1 f2ad2E−d2(r1 f1 f2− c1r2 f2− c2r3 f1),C = E{ f1 f2q+d1(c1r2 f2 + c2r3 f1)−d1r1 f1 f2}

If C < 0 then there exists a unique positive root x∗ of equation (3.4). In that case there exists a unique fixed point E∗ = (x∗,y∗,z∗)
where

x∗ =
−B+

√
B2−4AC

2A
,y∗ =

r2(h1 + x∗)
f1

and

z∗ =
r3(h2 + x∗)

f2
.

If B < 0,C > 0 and B2 > 4AC then there exists multiple fixed points E∗± = (x∗±,y
∗
±,z
∗
±) where

x∗± =
−B±

√
B2−4AC

2A
,y∗± =

r2(h1 + x∗±)
f1

and

z∗± =
r3(h2 + x∗±)

f2
.
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3.1 Stability of fixed points
To investigate the local stability of the fixed points of system (1.2), we require the following lemma.

Lemma 3.1. ([26]) Consider the cubic equation

λ
3 + p1λ

2 + p2λ + p3 = 0 (3.5)

where p1, p2 and p3 are real numbers. Then necessary and sufficient conditions that all the roots of equation (3.5) lie in an
open disk |λ |< 1 are |p1 + p3|< 1+ p2, |p1−3p3|< 3− p2 and p2

3 + p2− p3 p1 < 1.

The Jacobian matrix J(E0) for system (1.2) is given by

J(E0) =

 exp(r1− q
d1
) 0 0

0 expr2 0
0 0 expr3

 .

Then it follows from J(E0) that E0 is an unstable fixed point for system (1.2). Again

J(E1) =

 1−ax̄+ qEd2 x̄
(d1E+d2 x̄)2 − c1 x̄

h1+x̄ − c2 x̄
h2+x̄

0 expr2 0
0 0 expr3

 .

From J(E1), we conclude that that E1 is an unstable fixed point for system (1.2). Similarly, it can be shown that E1± are also
unstable. Now

J(E2) =

 exp(r1− c1r2
f1
− q

d1
) 0 0

r2
1

f1
1− r2 0

0 0 expr3

 .

It is obvious from J(E2) that E2 is an unstable fixed point for system (1.2). For E3,

J(E3) =

 exp(r1− c2r3
f2
− q

d1
) 0 0

0 expr2 0
r2
3

f2
0 1− r3

 .

Again we see that from J(E3) that E3 is an unstable fixed point for system (1.2). For E12,

J(E12) =

 1− x̂(a− c1 ŷ
(h1+x̂)2 − qEd2

(d1E+d2 x̂)2 ) − c1 x̂
h1+x̂ − c2 x̂

h2+x̂
f1 ŷ2

(h1+x̂)2 1− ŷ f1
h1+x̂ 0

0 0 expr3

 .

Again we see that from J(E12) that E12 is an unstable fixed point for system (1.2). Similarly, it can be shown that E12± are also
unstable. For E13,

J(E13) =

 1− x̃(a− c2 z̃
(h2+x̃)2 − qEd2

(d1E+d2 x̃)2 ) − c1 x̃
h1+x̃ − c2 x̃

h2+x̃

0 expr2 0
z̃2 f2

(h2+x̃)2 0 1− f2 z̃
h2+x̃

 .

It is clear from J(E13) that E13 is an unstable fixed point for system (1.2). Similarly, it can be shown that E13± are also unstable.
Now

J(E23) =


exp(r1− c1r2

f1
− c2r3

f2
− q

d1
) 0 0

r2
2

f1
1− r2 0

r2
3

f2
0 1− r3

 .

If r1 <
c1r2 f2d1+c2r2 f1d1+q f1 f2

f1 f2d1
,r2 < 2 and r3 < 2 then it follows from J(E23) that E23 is locally asymptotically stable fixed point

for system (1.2). Let E∗ = (x∗,y∗,z∗) be the unique interior fixed point of system (1.2). The Jacobian matrix for (1.2) at E∗ is
given by

J(x∗,y∗,z∗) =


a11 − c1x∗

h1+x∗ − c2x∗
h2+x∗

f1y∗2

(h1+x∗)2 1− r2 0
f2z∗2

(h2+x∗)2 0 1− r3


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where

a11 = 1−ax∗+
qEd2x∗

(d1E +d2x∗)2 +
c2x∗z∗

(h2 + x∗)2 +
c1x∗y∗

(h1 + x∗)2 .

The characteristic polynomial of J(E∗) is given by

P(λ ) = λ
3 + p1λ

2 + p2λ + p3 (3.6)

where

p1 = r2 + r3−2−a11,

p2 = a11(2− r2− r3)+(1− r2)(1− r3)+
c1 f1x∗y∗2

(h1 + x∗)3 +
c2 f2x∗z∗2

(h2 + x∗)3 ,

p3 = a11(1− r2)(r3−1)+
c1 f1x∗y∗2(r3−1)

(h1 + x∗)3 +
c2 f2x∗z∗2(r2−1)

(h2 + x∗)3 . (3.7)

We now use Lemma 3.1 to investigate stability of E∗.

Lemma 3.2. Assume that C < 0 holds. Then, the fixed point E∗ is locally asymptotically stable if and only if the following
conditions are satisfied:

|p1 + p3|< 1+ p2, |p1−3p3|< 3− p2

and p2
3 + p2− p3 p1 < 1 where p1, p2 and p3 are defined in (3.7).

Remark 3.3. In case of multiple fixed points E∗± = (x∗±,y
∗
±,z
∗
±) , we can find similar type of conditions as in Lemma 3.2.

4. Global Stability
In this section, we will utilize the process of iteration scheme and the comparison principle of difference equations to investigate
the global stability of the positive fixed point of system (1.2). To establish global stability result, we require the following
lemmas:

Lemma 4.1. ([27]) Let f (u) = uexp(δ−ηu), where δ and η are positive constants. Then f (u) is nondecreasing for u∈ (0, 1
η
].

Lemma 4.2. ([27]) Assume that the sequence un satisfies

un+1 = unexp(δ −ηun),n = 1,2,3, ...

where δ and η are positive constants and u0 > 0. Then, (i) If δ < 2, then limn→∞un =
δ

η
.

(ii) If δ ≤ 1, then un ≤ 1
η
,n = 2,3, ....

Lemma 4.3. [28] Suppose that functions f ,g : Z+× [0,∞) satisfy f (n,x)≤ g(n,x) ( f (n,x)≥ g(n,x)) for n ∈ Z+ and g(n,x)
is nondecreasing with respect to x. If un are the nonnegative solutions of the difference equations

xn+1 = f (n,xn),un+1 = g(n,un)

respectively, and x0 ≤ u0 (x0 ≥ u0) then xn ≤ un (xn ≥ un) for all n≥ 0.

Theorem 4.4. Assume that C < 0, c1r2h2 f2d1(ah1+r1)+c2r3h1 f1d1(ah2+r1)+qh1h2 f1 f2
d1

< r1 < 1, f1
h1

< r2 < 1 and f2
h2

< r3 < 1 hold.
Then, the fixed point E∗(x∗,y∗,z∗) of system (1.2) is globally asymptotically stable.

Proof. Assume that (xn,yn,zn) is any solution of system (1.2) with initial values x0 > 0,y0 > 0,z0 > 0. Let

U1 = limsupn→∞xn, V1 = liminfn→∞xn,

U2 = limsupn→∞yn, V2 = liminfn→∞yn,

U3 = limsupn→∞zn, V3 = liminfn→∞zn.



Global Stability and Bifurcation Analysis in a Discrete-Time Two Predator-One Prey Model with Michaelis-Menten
Type Prey Harvesting — 7/18

In the following, we will prove that U1 =V1 = x∗,U2 =V2 = y∗,U3 =V3 = z∗.
First we show that U1 ≤Mx

1,U2 ≤My
1,U3 ≤Mz

1. From the first equation of system (1.2), we get

xn+1 ≤ xnexp(r1−axn),n = 0,1,2, ...

Considering the auxiliary equation

un+1 = unexp(r1−aun) (4.1)

by Lemma 4.2 (ii), because of r1 ≤ 1, we get un ≤ 1
a for all n ≥ 2. By Lemma 4.1, we obtain f (u) = uexp(r1− au) is

nondecreasing for u ∈ (0, 1
a ]. Thus from Lemma 4.3, we get xn ≤ un for all n≥ 2, where un is the solution of equation (4.1)

with initial value u2 = x2. By Lemma 4.2 (i), we get

U1 = limsupn→∞xn ≤ limn→∞un =
r1

a
, Mx

1.

Hence, for any sufficiently small ε > 0, there exists a n1 > 2 such that if n≥ n1, then xn ≤Mx
1 + ε. From the second equation

of system (1.2), we obtain,

yn+1 ≤ ynexp(r2−
f1

h1 +Mx
1 + ε

yn),n = 0,1,2, ...

Again considering the auxiliary equation

un+1 = unexp(r2−
f1

h1 +Mx
1 + ε

un) (4.2)

by Lemma 4.2 (ii), because of r2 ≤ 1, we get un ≤
h1+Mx

1+ε

f1
for all n≥ 2. By Lemma 4.1, we obtain f (u) = uexp(r2− f1

h1+Mx
1+ε

u)

is nondecreasing for u ∈ (0, h1+Mx
1+ε

f1
]. Thus from Lemma 4.3, we get xn ≤ un for all n≥ 2, where un is the solution of Eq. (4.2)

with initial value u2 = x2. By Lemma 4.2 (i), we get

U2 = limsupn→∞xn ≤ limn→∞un =
r2(h1 +Mx

1 + ε)

f1
, My

1.

Hence, for any sufficiently small ε > 0, there exists a n2 > n1 such that if n≥ n2, then yn ≤My
1 + ε. Similarly, from the third

equation of system (1.2) for r3 < 1, we obtain

U3 = limsupn→∞zn ≤ limn→∞un =
r3(h2 +Mx

1 + ε)

f2
, Mz

1.

Hence, for any sufficiently small ε > 0, there exists n3 > n2 such that for n≥ n3,zn ≤Mz
1 +ε. Next we show that V1 ≥ Nx

1 ,V2 ≥
Ny

1 ,V3 ≥ Nz
1. From the first equation of system (1.2), we have

xn+1 ≥ xnexp[a−axn−
c1(M

y
1 + ε)

h1
−

c2(Mz
1 + ε)

h2
− q

d1
],n≥ n3.

Consider the auxiliary equation

un+1 = unexp[r1−aun−
c1(M

y
1 + ε)

h1
−

c2(Mz
1 + ε)

h2
− q

d1
]. (4.3)

Since we have r1−
c1(M

y
1+ε)

h1
− c2(M

z
1+ε)

h2
− q

d1
< 1, by Lemma 4.2 (ii), we have, un ≤ 1

a for n≥ n3. By Lemma 4.1, we obtain

f (u) = uexp(r1−
c1(M

y
1+ε)

h1
− c2(M

z
1+ε)

h2
− q

d1
−au) is nondecreasing for u ∈ (0, 1

a ]. Thus from Lemma 4.3, we get xn ≥ un for all
n≥ n3. By Lemma 4.2 (i), we get

V1 = liminfn→∞xn ≥ limn→∞un =
1
a
[r1−

c1(M
y
1 + ε)

h1
−

c2(Mz
1 + ε)

h2
− q

d1
].

From the arbitrariness of ε > 0, we have

V1 ≥ Nx
1 =

1
a
[r1−

c1(M
y
1 + ε)

h1
−

c2(Mz
1 + ε)

h2
− q

d1
].
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Hence for any sufficiently small ε > 0, there exists n4 > n3 such that for n ≥ n4,xn ≥ Nx
1 − ε. From the second equation of

system (1.2), we have

yn+1 ≥ ynexp[r2−
f1

h1
yn],n≥ n4.

By the same way, we can get

V2 = liminfn→∞yn ≥ limn→∞un =
r2h1

f1
.

From the arbitrariness of ε > 0, we have,

V2 ≥ Ny
1 =

r2h1

f1
.

Hence for any sufficiently small ε > 0, there exists n5 > n4 such that for n≥ n5,yn ≥ Ny
1− ε. Similarly, from the third equation

of system (1.2), we have

zn+1 ≥ znexp[r3−
f2

h2
zn],n≥ n5.

with

V3 = liminfn→∞zn ≥ limn→∞un =
r3h2

f2
.

From the arbitrariness of ε > 0, we have,

V3 ≥ Nz
1 =

r3h2

f2
.

Hence for any sufficiently small ε > 0, there exists n6 > n5 such that for n≥ n6,zn ≥ Nz
1−ε. Now we show that U1 ≤Mx

2,U2 ≤
My

2 and U3 ≤Mz
2, where Mx

2 ≤Mx
1,M

y
2 ≤My

1 and Mz
2 ≤Mz

1 respectively. From the first equation of system (1.2) for n > n6, we
get

xn+1 ≤ xnexp[r1−axn−
c1(N

y
1− ε)

h1 +Mx
1 + ε

−
c2(Nz

1− ε)

h2 +Mx
1 + ε

− qE
d1E +d2(Mx

1 + ε)
].

Consider the auxiliary equation

un+1 = unexp[r1−aun−
c1(N

y
1− ε)

h1 +Mx
1 + ε

−
c2(Nz

1− ε)

h2 +Mx
1 + ε

− qE
d1E +d2(Mx

1 + ε)
]. (4.4)

Using the similar argument as in above, we can get

U1 = limsupn→∞xn ≤
1
a
[r1−

c1(N
y
1− ε)

h1 +Mx
1 + ε

−
c2(Nz

1− ε)

h2 +Mx
1 + ε

− qE
d1E +d2(Mx

1 + ε)
],

since

r1−
c1(N

y
1− ε)

h1 +Mx
1 + ε

)−
c2(Nz

1− ε)

h2 +Mx
1 + ε

− qE
d1E +d2(Mx

1 + ε)
≤ 1.

From the arbitrariness of ε > 0, we claim that

U1 ≤Mx
2 =

1
a
[r1−

c1(N
y
1− ε)

h1 +Mx
1 + ε

−
c2(Nz

1− ε)

h2 +Mx
1 + ε

− qE
d1E +d2(Mx

1 + ε)
].

Hence for any sufficiently small ε > 0, there exists n7 > n6 such that for n ≥ n7,xn ≤ Mx
2 + ε. Similarly, from the second

equation of system (1.2) for n > n7, we get

yn+1 ≤ ynexp[r2−
f1

h1 +Mx
2 + ε

yn].

Similarly to the above argument, we get

U2 ≤My
2 =

r2(h1 +Mx
2 + ε)

f1
.
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Hence for any sufficiently small ε > 0, there exists n8 > n7 such that for n≥ n8,yn ≤My
2 +ε. From the third equation of system

(1.2) for n > n8, we get

zn+1 ≤ znexp[r3−
f2

h2 +Mx
2 + ε

yn].

Similarly to the above argument, we get

U3 ≤Mz
2 =

r3(h2 +Mx
2 + ε)

f2
.

Hence for any sufficiently small ε > 0, there exists n9 > n8 such that for n≥ n9,zn ≤Mz
2 + ε. Now we show that V1 ≥ Nx

2 ,V2 ≥
Ny

2 and V3 ≥ Nz
2, where Nx

2 ≥ Nx
1 ,N

y
2 ≥ Ny

1 and Nz
2 ≥ Nz

1 respectively. Further, from the first equation of system (1.2) for n > n9,
we get

xn+1 ≥ xnexp[r1−axn−
c1(M

y
2 + ε)

h1 +Nx
1 − ε

−
c2(Mz

2 + ε)

h2 +Nx
1 − ε

− qE
d1E +d2(Nx

1 − ε)
].

Using a similar argument, we get

V1 = liminfn→∞xn ≥
1
a
[r1−

c1(M
y
2 + ε)

h1 +Nx
1 − ε

−
c2(Mz

2 + ε)

h2 +Nx
1 − ε

− qE
d1E +d2(Nx

1 − ε)
]≤ 1.

From the arbitrariness of ε > 0, we claim that

V1 ≥ Nx
2 =

1
a
[r1−

c1(M
y
2 + ε)

h1 +Nx
1 − ε

−
c2(Mz

2 + ε)

h2 +Nx
1 − ε

− qE
d1E +d2(Nx

1 − ε)
].

Hence for any sufficiently small ε > 0, there exists n10 > n9 such that for n ≥ n10,xn ≥ Nx
2 − ε. Similarly, from the second

equation of system (1.2) for n > n10, we have

yn+1 ≥ ynexp[r2−
f1

h1 +Nx
2 − ε

yn]

with

V2 = liminfn→∞yn ≥
r2(h1 +Nx

2 − ε)

f1
.

From the arbitrariness of ε > 0, we claim that V2 ≥ Ny
2 =

r2(h1+Nx
2−ε)

f1
. Hence for any sufficiently small ε > 0, there exists

n11 > n10 such that for n≥ n11,yn ≥ Ny
2− ε. Similarly, from the third equation of system (1.2) for n > n11, we have

zn+1 ≥ znexp[r3−
f2

h2 +Nx
2 − ε

zn].

with

V3 = liminfn→∞zn ≥
r3(h2 +Nx

2 − ε)

f2
.

From the arbitrariness of ε > 0, we conclude that V3 ≥ Nz
2 =

r3(h2+Nx
2−ε)

f2
. Hence for any sufficiently small ε > 0, there exists

n12 > n11 such that for n≥ n12,zn≥Nz
2−ε. Repeating the above process, we ultimately get six sequences {Mx

n},{M
y
n},{Mz

n},{Nx
n},



Global Stability and Bifurcation Analysis in a Discrete-Time Two Predator-One Prey Model with Michaelis-Menten
Type Prey Harvesting — 10/18

{Ny
n}, and {Nz

n} such that for all n≥ 2,

Mx
n =

1
a
[r1−

c1Ny
n−1

h1 +Mx
n−1
−

c2Nz
n−1

h2 +Mx
n−1
− qE

d1E +d2Mx
n−1

],

My
n =

r2(h1 +Mx
n)

f1
,

Mz
n =

r3(h2 +Mx
n)

f2
,

Nx
n =

1
a
[r1−

c1My
n

h1 +Nx
n−1
− c2Mz

n

h2 +Nx
n−1
− qE

d1E +d2Nx
n−1

],

Ny
n =

r2(h1 +Nx
n)

f1
,

Nz
n =

r3(h2 +Nx
n)

f2
.

(4.5)

Clearly, we have for any integer n > 0,

Nx
n ≤V1 ≤U1 ≤Mx

n,N
y
n ≤V2 ≤U2 ≤My

n,and Nz
n ≤V3 ≤U3 ≤Mz

n.

In the following, we will prove that {Mx
n},{M

y
n} and {Mz

n} are monotonically decreasing and {Nx
n},{N

y
n} and {Nz

n} are
monotonically increasing, with the help of inductive method. Firstly, it is clear that

Mx
2 ≤Mx

1,M
y
2 ≤My

1,M
z
2 ≤Mz

1,N
x
2 ≥ Nx

1 ,N
y
2 ≥ Ny

1 ,and Nz
2 ≥ Nz

1.

For n = k(k ≥ 2), we assume that

Mx
k ≤Mx

k−1,M
y
k ≤My

k−1,M
z
k ≤Mx

k−1,N
x
k ≥ Nx

k−1,N
y
k ≥ Ny

k−1,and Nz
k ≥ Nz

k−1.

Now

Mx
k+1−Mx

k = −1
a
[
c1{(Ny

k Mx
k−1−Mx

k Ny
k−1)+h1(N

y
k −Ny

k−1)}
(h1 +Mx

k )(h1 +Mx
k−1)

+
c2{(Nz

kMx
k−1−Nz

k−1Mx
k )+h2(Nz

k−Nz
k−1)}

(h2 +Mx
k )(h2 +Mx

k−1)

+
qEd2(Mx

k −Mx
k−1)

(d1E +d2Mx
k )(d1E +d2Mx

k−1)
]≤ 0

My
k+1−My

k =
r2(Mx

k+1−Mx
k )

f1
≤ 0

Mz
k+1−Mz

k =
r3(Mx

k+1−Mx
k )

f2
≤ 0

Nx
k+1−Nx

k = −1
a
[
c1{(My

k+1Nx
k−1−My

k Nx
k )+h1(M

y
k+1−My

k)}
(h1 +Nx

k )(h1 +Nx
k−1)

+
c2{(Mz

k+1Nx
k−1−Mz

kNx
k )+h2(Mz

k+1−Mz
k)}

(h2 +Nx
k )(h2 +Nx

k−1)

+
qEd2(Nx

k−1−Nx
k )

(d1E +d2Nx
k )(d1E +d2Nx

k−1)
]≥ 0

Ny
k+1−Ny

k =
r2(Nx

k+1−Nx
k )

f1
≥ 0

Nz
k+1−Nz

k =
r3(Nx

k+1−Nx
k )

f2
≥ 0

This shows that {Mx
n},{M

y
n} and {Mz

n} are monotonically decreasing and {Nx
n},{N

y
n} and {Nz

n} are monotonically increasing.
Therefore, by the criterion of monotonic bounded, we have established that every one of this six sequences has a limit.
Let

limn→∞Mx
n = x1, limn→∞My

n = x2, limn→∞Mz
n = x3, limn→∞Nx

n = y1, limn→∞Ny
n = y2, limn→∞Nz

n = y3.
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Passing to the limit as n→ ∞ in (4.5), we get

x1 =
1
a
[r1−

c1y2

h1 + x1
− c2y3

h2 + x1
− qE

d1E +d2x1
],

x2 =
r2(h1 + x1)

f1
,

x3 =
r3(h2 + x1)

f2
,

y1 =
1
a
[r1−

c1x2

h1 + y1
− c2x3

h2 + y1
− qE

d1E +d2y1
]

y2 =
r2(h1 + y1)

f1
,

y3 =
r3(h2 + y1)

f2
.

(4.6)

It is clear that x1 = y1,x2 = y2 and x3 = y3. Thus we obtain x1 = x∗,x2 = y∗,x3 = z∗ as a solution of (15). Hence, the global
asymptotic stability of (x∗,y∗,z∗) is obtained. This completes the proof of the theorem.

5. Bifurcation Study
In this section, we discuss the parametric restrictions for obtaining Neimark-Sacker bifurcation at the interior fixed point E∗ of
system (1.2).

5.1 Neimark-Sacker bifurcation
To examine Neimark-Sacker bifurcation in system (1.2), we need the following result [29].

Lemma 5.1. Consider an n-dimensional discrete dynamical system Uk+1 = fm(Uk) where m ∈ R is a bifurcation parameter.
Let U∗ be fixed point of fm and the characteristic polynomial for Jacobian matrix J(U∗) = (bi j)n×n of n-dimensional map
fm(Uk) is given by

Pm(λ ) = λ
n +b1λ

n−1 + · · ·+bn−1λ +bn (5.1)

where bi = bi(m,u), i = 1,2,3, · · · ,n and u is a control parameter or another parameter to be deduced. Let ∆
±
0 (m,u) =

1,∆±1 (m,u), · · · ,∆±n (m,u) be a sequence of determinants defined by ∆
±
i (m,u) = det(M1±M2), i = 1,2,3, · · · ,n where

M1 =


1 b1 b2 · · · bi−1
0 1 b1 · · · bi−2
0 0 1 · · · bi−3
· · · · · · · · · · · · · · ·
0 0 0 · · · 1

 ,

M2 =


bn−i+1 bn−i+2 · · · bn−1 bn
bn−i+2 bn−i+3 · · · bn 0
· · · · · · · · · · · · · · ·

bn−1 bn · · · 0 0
bn 0 · · · 0 0

 .

Moreover, the following conditions hold:
A1 Eigenvalue assignment

∆
−
n−1(m0,u) = 0,∆+

n−1(m0,u)> 0,Pm0(1)> 0,(−)nPm0(−1)> 0,∆±i (m0,u)> 0, i = n−3,n−5, · · · ,1(or 2),

when n is even or odd, respectively.

A2 Transversality condition: [
d(∆−n−1(m,u))

dm ]m=m0 6= 0.
A3 Non-resonance condition:

cos(2π/ j) 6= ψ,or resonance condition cos(2π/ j) = ψ where j = 3,4,5, · · ·

and ψ = 1−0.5Pm0(1)∆
−
n−3(m0,u)/∆

+
n−2(m0,u). Then Neimark-Sacker bifurcation occurs at m0.
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Now we state bifurcation result by considering a as a bifurcation parameter of system (1.2).

Theorem 5.2. The fixed point E∗ of system (1.2) admits Neimark-Sacker bifurcation if the following conditions are satisfied:

1− p2 + p3(p1− p3) = 0,
1+ p2− p3(p1 + p3)> 0,

1+ p1 + p2 + p3 > 0,
1− p1 + p2− p3 > 0

(5.2)

where p1, p2 and p3 are defined in (3.7).

Proof. Following Lemma 4.1, we have found the following equalities and inequalities:

∆
−
2 (a

∗) = 1− p2 + p3(p1− p3) = 0,

∆
+
2 (a

∗) = 1+ p2− p3(p1 + p3)> 0,
Pa∗(1) = 1+ p1 + p2 + p3 > 0,

(−1)3Pa∗(−1) = 1− p1 + p2− p3 > 0.

(5.3)

6. Chaos Control
Here, we examine chaos control for system (1.2). It is more pertinent for model related with biological species. It is normally
seen that discrete-time models are more chaotic and complicated than the continuous systems. Thus it is justifiable to execute
control method to prevent any uncertainty. We primarily apply hybrid control process discussed in [30]. This technique takes
a single control parameter which lies in the open unit interval. Various types of methods are available for regulating chaos
in discrete systems, for example, state feed back method, pole-placement technique and hybrid control method [31]-[?] in
which, hybrid control technique is most simple to apply. We use hybrid control technique to system (1.2) for controlling chaos
developed through bifurcation. Assume that the system admits Neimark-Sacker bifurcation at its fixed point (x∗,y∗,z∗), then
the corresponding controlled system using the hybrid control method is given by:

xn+1 = ρxnexp{r1−axn−
c1yn

h1 + xn
− c2zn

h2 + xn
− qE

d1E +d2xn
}+(1−ρ)xn,

yn+1 = ρynexp{r2−
f1yn

h1 + xn
}+(1−ρ)yn,

zn+1 = ρznexp{r3−
f2yn

h2 + xn
}+(1−ρ)zn.

(6.1)

where 0 < ρ < 1 is taken as a control parameter. The Jacobian matrix of controlled system (6.1) evaluated at E∗ is given by

J(x∗,y∗,z∗) =


1−ρx∗(a− c1y∗

(h1+x∗)2 − c2z∗

(h2+x∗)2 − qEd2
(d1E+d2x∗)2 ) − ρx∗c1

h1+x∗
ρx∗c2
h2+x∗

ρy∗2 f1
(h1+x2)2 1−ρr2 0

ρz∗2 f2
(h2+x2)2 0 1−ρr3

 (6.2)

The fixed point E∗ of controlled system (6.1) is locally asymptotically stable if all the roots of the characteristic polynomial of
(6.2) lie in an unit open disk.

7. Numerical Simulations
In this section, we present some numerical computations to justify our analytical results. We show the role of the intra-specific
competition coefficient among the prey species, harvesting effort and the maximum value of per capita reduction rate of y can
attain on the discrete system visually through numerical simulations.

Example 7.1. Suppose r1 = 0.8,r2 = 0.5,r3 = 0.4,c1 = 0.01,c2 = 0.02,h1 = 1,h2 = 1,d1 = 1,d2 = 1, f1 = 0.2, f2 = 0.1,a =
0.1,q = 0.1,E = 1 for system (1.2). Then all the conditions of Theorem 4.4 are satisfied. Thus the fixed point E∗ =
(6.878,19.94,30.72) is globally asymptotically stable (see Fig. 7.1). The Fig. 7.1) shows that initially all the population
increases and eventually all the interacting populations get their steady states and finally become globally asymptotically
stable.
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Example 7.2. Suppose r1 = 3.5,r2 = 2.2,r3 = 2,c1 = 0.2,c2 = 1,h1 = 1,h2 = 1,d1 = 1,d2 = 1, f1 = 1.5, f2 = 1,a = 0.3,q =
0.2,E = 1 initial points (0.5, 0.5, 0.) for system (2). Then the conditions of Lemma 3.2 are violated. Thus the fixed
point E∗ = (3.894,7.196,9.813) is unstable. Moreover, system (1.2) admits chaotic behaviour (see 7.2(a)). In order to
show the effectiveness of hybrid control method implemented in system (6.1), we choose ρ = 0.5 and other parameters are
same as in Example 7.2. The 7.2(b) shows that the solutions initiating from (0.5,0.5,0.5) approaches to the fixed point
E∗ = (3.894,7.196,9.813). i.e., the steady state for controlled system (6.1) is a sink.

Example 7.3. Suppose r1 = 3,r2 = 2.2,r3 = 2,c1 = 0.2,c2 = 1,h1 = 1,h2 = 1,d1 = 1,d2 = 1, f1 = 1, f2 = 1,q = 0.2,E = 1
and initial points (0.5, 0.5, 0.5) and a ∈ (0.1,1.5) in system (1.2) with the initial condition (x0,y0,z0) = (0.5,0.5,0.5). When
a is considered as a bifurcation parameter, then at a = a∗ = 0.326, the interior fixed point E∗ = (1.46935,5.43257,4.9387)
becomes unstable and system (1.2) undergoes Neimark-Sacker bifurcation by Theorem 5.2. Bifurcation diagrams and maximum
Lyapunov exponents (MLE) respect to the parameter a of system (1.2) are depicted in Fig. 7.3. As a increases, we observe that
a transition from unstable to stable.

Example 7.4. Suppose r1 = 2.98,r2 = 2.2,r3 = 2,c1 = 0.2,c2 = 1,h1 = 1,h2 = 1,d1 = 1,d2 = 1, f1 = 1, f2 = 1,q= 0.2,a= 0.3
and initial points (0.5, 0.5, 0.5) and a ∈ (0.5,1.5) in system (1.2) with the initial condition (x0,y0,z0) = (0.5,0.5,0.5). When E
is considered as a bifurcation parameter, then at E = E∗ = 0.978, the interior fixed point E∗ = (1.435,5.373,4.884) becomes
unstable and system (1.2) undergoes Neimark-Sacker bifurcation by Theorem 5.2. Bifurcation diagrams and MLE respect to the
parameter E of system (1.2) are depicted in Fig. 7.4. As E increases, we observe that a transition from unstable to stable.

Example 7.5. Suppose r1 = 2.98,r2 = 2.2,r3 = 2,c1 = 0.2,c2 = 1,h1 = 1,h2 = 1,d1 = 1,d2 = 1,E = 1, f2 = 1,q= 0.2,a= 0.3
and initial points (0.5, 0.5, 0.5) and f1 ∈ (0.6,2) in system (2) with the initial condition (x0,y0,z0) = (0.5,0.5,0.5). When f1 is
considered as a bifurcation parameter, then at f1 = f ∗1 = 0.998, the interior fixed point E∗ = (1.534,5.584,5.066) becomes
unstable and system (1.2) undergoes Neimark-Sacker bifurcation by Theorem 5.2. Bifurcation diagrams and MLE respect to the
parameter f1 of system (1.2) are depicted in Fig. 7.5. As f1 increases, we observe that a transition from stable to unstable and
then bifurcation within a limit cycle to a periodic window and finally to chaos.

Example 7.6. Suppose r1 = 5.8,r2 = 2,r3 = 3,c1 = 1,c2 = 1,h1 = 1,h2 = 1,d1 = 1,d2 = 1,E = 0.2, f1 = 1, f2 = 1,q =
1,a = 1 and initial points (0.5, 3, 4) ,we obtained two interior fixed points E∗+ = (0.523607,3.047214,4.570821) and E∗− =
(0.0763932,2.1527864,3.2291796) both are unstable (see Fig. 7.6). Fig. 7.6(b) represents the time series plot of system (2)
when E = 0.28
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Figure 7.1. Time series plots of system (1.2) with parameter values
r1 = 0.8,r2 = 0.5,r3 = 0.4,c1 = 0.01,c2 = 0.02,h1 = 1,h2 = 1,d1 = 1,d2 = 1, f1 = 0.2, f2 = 0.1,a = 0.1,q = 0.1,E = 1 and
initial points (1, 2, 1) and (5, 1, 3).
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Figure 7.2. (a) Time series plots of system (1.2) with parameter values
r1 = 3.5,r2 = 2.2,r3 = 2,c1 = 0.2,c2 = 1,h1 = 1,h2 = 1,d1 = 1,d2 = 1, f1 = 1.5, f2 = 1,a = 0.3,q = 0.2,E = 1 with initial
points (0.5, 0.5, 0.5) and (b) phase portrait of controlled system (6.1) for ρ = 0.5
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Figure 7.3. Bifurcation diagrams and MLE for system (1.2) with parameter values
r1 = 3,r2 = 2.2,r3 = 2,c1 = 0.2,c2 = 1,h1 = 1,h2 = 1,d1 = 1,d2 = 1, f1 = 1, f2 = 1,q = 0.2,E = 1,a ∈ (0.1,1.5) and initial
point (0.5, 0.5, 0.5).
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Figure 7.4. Bifurcation diagrams and MLE for system (1.2) with parameter values
r1 = 2.98,r2 = 2.2,r3 = 2,c1 = 0.2,c2 = 1,h1 = 1,h2 = 1,d1 = 1,d2 = 1, f1 = 1, f2 = 1,q = 0.2,a = 0.3,E ∈ (0.5,1.5) and
initial point (0.5, 0.5, 0.5)
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Figure 7.5. Bifurcation diagrams and MLE for system (1.2) with parameter values
r1 = 2.98,r2 = 2.2,r3 = 2,c1 = 0.2,c2 = 1,h1 = 1,h2 = 1,d1 = 1,d2 = 1,E = 1, f2 = 1,q = 0.2,a = 0.3, f1 ∈ (0.6,2) and
initial point (0.5, 0.5, 0.5)
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Figure 7.6. Time series plots of system (1.2) with parameter values
r1 = 5.8,r2 = 2,r3 = 3,c1 = 1,c2 = 1,h1 = 1,h2 = 1,d1 = 1,d2 = 1, f1 = 1, f2 = 1,a = 1,q = 1 for E = 0.2 and 0.28
respectively. initial point (0.5, 3, 4).

8. Discussion
In this article, a discrete-time Leslie-Gower two predator-one prey system with Michaelis-Menten type prey harvesting is
investigated. To our knowledge, there are a few works that address the impact of non-linear harvesting on System (1.2). It is
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shown that the system has at most twelve fixed points. Qualitative analysis shows that all the boundary fixed points, excepting
E23 are unstable. Under certain restrictions on the system parameters, E23 may be stable, which in turn implies that that the prey
population goes into extinction. As the trivial fixed point always exists and unstable, the three species cannot go to extinction
together. It is established that multiple fixed points exist due to the presence of non-linear harvesting term. It is shown that
Neimark-Sacker bifurcation occurs at the unique positive fixed point when the parameters a,E, f1 are varied. The choice of
these parameters is arbitrary, one may find similar type of bifurcations for other parameters also. Numerical simulations show
that when the parameters a and E exceed a certain critical value, the system becomes stable (see Figs. 7.3 and 7.4) whereas
the opposite holds f1 is increased. In case of multiple fixed points, chaotic behaviour is observed. In particular, we observe
when the predator population is chaotic, the prey population ultimately tends to extinct. This fact is clear when we increase
the harvest rate from 0.2 to 0.28 (see Fig. 7.6 ). The proposed model admits more rich characteristics and more complicated
dynamics than that exist in the continuous case. We have derived the condition for global stability of the positive fixed point by
applying the iteration scheme and comparison principle of difference equations. Conditions of Theorem 4.4 indicate that when
the intrinsic growth rate of the three species remains below one, the positive fixed point is globally asymptotically stable.
Sometimes bifurcation and chaotic behaviour are in fact unwanted situations in discrete dynamical systems, because there may
be an extinction of the population due to chaos. So chaos control becomes a crucial issue. To prevent chaos, we have used the
hybrid control method so that the stability of the system can be regained.
To our understanding, the dynamical study of discrete time model considering a Leslie-Gower two predator-one prey system
with Michaelis-Menten type prey harvesting has not investigated yet.
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