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Abstract
The aim of this paper is to classify (k,µ)-paracontact metric spaces satisfying certain curvature conditions.
We present the curvature tensors of (k,µ)-Paracontact manifold satisfying the conditions R ·W6 = 0, R ·W7 = 0,
R ·W8 = 0 and R ·W9 = 0. According these cases, (k,µ)-Paracontact manifolds have been characterized. Also,
several results are obtained.

Keywords: (k,µ)-Paracontact Manifold, η-Einstein manifold, Riemannian curvature tensor
2010 AMS: 53C15, 53C25

1Department of Mathematics, Faculty of Arts and Sciences, Aksaray University, 68100, Aksaray, Turkey, ORCID: 0000-0001-8226-4269
2Department of Mathematics, Faculty of Arts and Sciences, Amasya University, 05100, Amasya, Turkey, ORCID: 0000-0001-9093-1607
3Department of Mathematics, Faculty of Arts and Sciences, Aksaray University, 68100, Aksaray, Turkey, ORCID: 0000-0002-1242-4359
4Department of Mathematics, Faculty of Sciences, Sivas Cumhuriyet University, 58140, Sivas, Turkey, ORCID: 0000-0001-8258-8298
*Corresponding author: pakizeuygun@hotmail.com
Received: 6 September 2022, Accepted: 15 November 2022, Available online: 30 December 2022

1. Introduction
Paracontact manifolds are smooth manifolds of dimension (2n+1) equipped with a 1-form η , a vector field ξ and a field of
endomorphisms of tangent spaces φ such that η(ξ ) = 1, φ 2 = I−η⊗ξ and φ induces an almost paracomplex structure by
kernel of η [1]. On the other hand, if the manifold is equipped with a pseudo-Riemannian metric g of signature (n+ 1,n)
satisfying

g(φX ,φY ) =−g(X ,Y )+η(X)η(Y ), dη(X ,Y ) = g(X ,φY ),

(M,η) becomes a contact manifold and (φ ,ξ ,η ,g) is said to be a paracontact metric structure on M. In 1985, Kaneyuki and
Williams initiated the perspective of paracontact geometry [5]. Zamkovoy performed a thorough study of paracontact metric
Manifolds. [15]. Recently, B. Cappeletti-Montano, I. Küpeli Erken and C. Murathan introduced a new type of paracontact
geometry so-called paracontact metric (k,µ)−space, where k and µ are constant [4].

M. M. Tripathi and P. Gupta studied T -curvature tensors in semi-Riemannian manifolds. They defined T -conservative
semi-Riemannian manifolds and give necessary and sufficient tensor on a Riemannian manifolds to be T -conservative. They
proved that every T -flat semi-Riemannian manifold is Einstein. They also gave the conditions for semi-Riemannian manifold to
be T -flat [8]. Since then several geometers studied curvature conditions and obtain various important properties [2, 6], [9]-[13].

The object of this paper is to study properties of the some certain curvature tensor in a (k,µ)−paracontact metric manifold.
In the present paper we survey R ·W6 = 0, R ·W7 = 0, R ·W8 = 0 and R ·W9 = 0, where W6, W7, W8 and W9 denote curvature
tensors of manifold, respectively.
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2. Preliminaries
An (2n+1)-dimensional manifold M is called to have an paracontact structure if it admits a (1,1)−tensor field φ , a vector field
ξ and a 1-form η satisfying the following conditions [5]:

(i) φ 2X = X−η(X)ξ , for any vector field X ∈ χ(M), the set of all differential vector fields on M,
(ii) η(ξ ) = 1, η ◦φ = 0, φξ = 0.
An almost paracontact structure is called to be normal if and only if the (1,2)−type torsion tensor Nφ = [φ ,φ ]−2dη⊗ξ

vanishes identically, where [φ ,φ ](X ,Y )= φ 2[X ,Y ]+[φX ,φY ]−φ [φX ,Y ]−φ [X ,φY ]. An almost paracontact manifold equipped
with a pseudo-Riemannian metric g so that

g(φX ,φY ) =−g(X ,Y )+η(X)η(Y ), g(X ,ξ ) = η(X) (2.1)

for all vector fields X ,Y ∈ χ(M) is said almost paracontact metric manifold, where signature of g is (n+ 1,n). An almost
paracontact structure is called to be a paracontact structure if g(X ,φY ) = dη(X ,Y ) with the associated metric g [15]. We now
define a (1,1) tensor field h by h = 1

2 Lξ φ , where L denotes the Lie derivative. Then h is symmetric and satisfies the conditions

hφ =−φh, hξ = 0, Trh = Tr.φh = 0. (2.2)

If ∇ denotes the Levi-Civita connection of g, then we have the following relation

∇̃X ξ =−φX +φhX (2.3)

for any X ∈ χ(M)[15]. For a paracontact metric manifold M2n+1(φ ,ξ ,η ,g), if ξ is a killing vector field or equivalently, h = 0,
then it is called a K-paracontact manifold.

An almost paracontact manifold is said to be para-Sasakian if and only if the following condition holds [15].

(∇̃X φ)Y =−g(X ,Y )ξ +η(Y )X

for all X ,Y ∈ χ(M) [15]. A normal paracontact metric manifold is para-Sasakian and satisfies

R(X ,Y )ξ =−(η(Y )X−η(X)Y ) (2.4)

for all X ,Y ∈ χ(M), but this is not a sufficient condition for a para-contact manifold to be para-Sasakian. It is clear that every
para-Sasakian manifold is K-paracontact. But the converse is not always true[3].

A paracontact manifold M is said to be η-Einstein if its Ricci tensor S of type (0,2) is of the from S(X ,Y ) = ag(X ,Y )+
bη(X)η(Y ),where a,b are smooth functions on M. If b = 0, then the manifold is also called Einstein and if a = 0, then it is
called special type of η-Einstein manifolds [14].

A paracontact metric manifold is said to be a (k,µ)−paracontact manifold if the curvature tensor R̃ satisfies

R̃(X ,Y )ξ = k [η(Y )X−η(X)Y ]+µ [η(Y )hX−η(X)hY ] (2.5)

for all X ,Y ∈ χ(M), where k and µ are real constants.
This class is very wide containing the para-Sasakian manifolds as well as the paracontact metric manifolds satisfying

R(X ,Y )ξ = 0 [16].
In particular, if µ = 0, then the paracontact metric (k,µ)−manifold is called paracontact metric N(k)-manifold . Thus for a

paracontact metric N(k)-manifold the curvature tensor satisfies the following relation

R(X ,Y )ξ = kη(Y )X− kη(X)Y (2.6)

for all X ,Y ∈ χ(M). Though the geometric behavior of paracontact metric (k,µ)−spaces is different according as k <−1, or
k >−1, but there are some common results for k <−1 and k >−1[4].

Lemma 2.1. There does not exist any paracontact (k,µ)−manifold of dimension greater than 3 with k >−1 which is Einstein
whereas there exits such manifolds for k <−1 [4].
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In a paracontact metric (k,µ)−manifold M2n+1(φ ,ξ ,η ,g), n > 1, the following relation hold :

h2 = (k+1)φ 2, for k 6=−1, (2.7)

(∇̃X φ)Y =−g(X−hX ,Y )ξ +η(Y )(X−hX), (2.8)

S(X ,Y ) = [2(1−n)+nµ]g(X ,Y )+ [2(n−1)+µ]g(hX ,Y )+ [2(n−1)+n(2k−µ)]η(X)η(Y ), (2.9)

S(X ,ξ ) = 2nkη(X), (2.10)

QY = [2(1−n)+nµ]Y +[2(n−1)+µ]hY +[2(n−1)+n(2k−µ)]η(Y )ξ , (2.11)

Qξ = 2nkξ , (2.12)

Qφ −φQ = 2[2(n−1)+µ]hφ (2.13)

for any vector fields X ,Y on M2n+1 , where Q and S denotes the Ricci operator and Ricci tensor of (M2n+1,g), respectively[4].

The concept of W6-curvature tensor was defined by [7]. W6-curvature tensor, W7-curvature tensor, W8-curvature tensor and
W9-curvature tensor, of a (2n+1)-dimensional Riemannian manifold are, respectively, defined as

W6(X ,Y )Z = R(X ,Y )Z− 1
2n

[S(Y,Z)X−g(X ,Y )QZ], (2.14)

W7(X ,Y )Z = R(X ,Y )Z− 1
2n

[S(Y,Z)QX−g(Y,Z)QX ], (2.15)

W8(X ,Y )Z = R(X ,Y )Z− 1
2n

[S(Y,Z)X−S(X ,Y )Z], (2.16)

W9(X ,Y )Z = R(X ,Y )Z +
1

2n
[S(X ,Y )Z−g(Y,Z)QX ], (2.17)

for all X ,Y,Z ∈ χ(M) where, χ(M) is set of all vector spaces [7].

3. Certain Curvature Conditions on (k,µ)-Paracontact metric spaces

We will provide the significant themes of this work in this part.

Let M be (2n+1)−dimensional (k,µ)−paracontact metric manifold and we explain W6 curvature tensor from (2.14), we
have

W6(X ,Y )ξ = k(g(X ,Y )ξ −η(X)Y )+µ(η(Y )hX−η(X)hY ). (3.1)

Putting X = ξ , in (3.1), we get

W6(ξ ,Y )ξ = k(η(Y )ξ −Y )−µhY. (3.2)
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In (2.15) choosing Z = ξ and using (2.5), we obtain

W7(X ,Y )ξ = kη(X)Y +
1
2n

η(Y )QX +µ(η(Y )hX−η(X)hY ). (3.3)

It follows

W7(ξ ,Y )ξ = k(η(Y )ξ −Y )−µhY. (3.4)

In the same way, putting Z = ξ in (2.16) and using (2.5), we have

W8(X ,Y )ξ =
1

2n
S(X ,Y )ξ − kη(X)Y +µ(η(Y )hX−η(X)hY ). (3.5)

In (2.16), choosing X = ξ , we get

W8(ξ ,Y )ξ = k(η(Y )ξ −Y )−µhY. (3.6)

In (2.17), choosing Z = ξ , we obtain

W9(X ,Y )ξ = k(η(Y )X−η(X)Y )+µ(η(Y )hX−η(X)hY )+
1

2n
(S(X ,Y )ξ −η(Y )QX). (3.7)

In(3.7) it follows

W9(ξ ,Y )ξ = k(η(Y )ξ −Y )−µhY. (3.8)

In (2.5), we arrive

R(ξ ,Y )Z = k(g(Y,Z)ξ −η(Z)Y )+µ(g(hY,Z)ξ −η(Z)hY ), (3.9)

choosing Z = ξ , in (3.9)

R(ξ ,Y )ξ = k(η(Y )ξ −Y )−µhY. (3.10)

Theorem 3.1. Let M2n+1(φ ,ξ ,η ,g) be a (k,µ)-paracontact space. Then M is a W6 semi-symmetric if and only if M is an
Einstein manifold.

Proof. Suppose that M is a W6 semi-symmetric. This implies that

(R(X ,Y )W6)(U,W )Z = R(X ,Y )W6(U,W )Z−W6(R(X ,Y )U,W )Z

−W6(U,R(X ,Y )W )Z−W6(U,W )R(X ,Y )Z = 0, (3.11)

for any X ,Y,U,W,Z ∈ χ(M). Taking X = Z = ξ in (3.11), making use of (3.1) and (3.9), for A = 1
2n , we have

(R(ξ ,Y )W6)(U,W )ξ = R(ξ ,Y )(k(g(Y,W )ξ −η(U)W )+µ(η(W )hU

−η(U)hW ))−W6(k(g(Y,U)ξ −η(U)Y )

+µ(g(hY,U)ξ −η(U)hY ),W )ξ

−W6(U,k(g(Y,W )ξ −η(W )Y )

+µ(g(hY,W )ξ −η(W )hY )ξ

−W6(U,W )(k(η(Y )ξ −Y )−µhY ) = 0. (3.12)

Taking into account (3.1) and (3.2) in (3.12), we have

kW6(U,W )Y +µW6(U,W )hY + kµ(η(W )g(Y,hU)ξ

−g(Y,W )hU)+µ
2(1+ k)(η(W )g(Y,U)ξ

−η(U)g(Y,W )ξ )+ kµ(g(hY,U)W −g(hY,W )hU)

+µk(g(hY,U)hW −g(hY,W )U)+µ
2(g(hY,U)hW

−g(hY,W )hU)+ k2(g(Y,W )η(U)ξ −g(Y,W )U)

+kµ(g(Y,U)hW +g(U,W )hY )+ k2(g(Y,U)W

−g(U,W )Y ) = 0. (3.13)
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Putting (2.10), (2.14), choosing U = ξ and taking inner product with ξ ∈ χ(M) in (3.13), we arrive

AkS(W,Y )+AµS(W,hY )+ k2g(W,Y )+ kµg(W,hY ) = 0. (3.14)

Using (2.7) and replacing hY of Y in (3.14), we get

AkS(W,hY )+Aµ(1+ k)S(W,Y )−2nkA(1+ k)g(W,hY )+ kµ(1+ k)g(W,Y ) = 0. (3.15)

From (3.14) and (3.15), we have

S(W,Y ) = 2nkg(W,Y ).

So, M is an Einstein manifold. Conversely, let M2n+1(ϕ,ξ ,η ,g) be an Einstein manifold, i.e. S(W,Y ) = 2nkg(W,Y ), then from
equations (3.15), (3.14), (3.13), (3.12) and (3.11) we obtain M is a W6 semi-symmetric. Which verifies our assertion.

Theorem 3.2. Let M2n+1(φ ,ξ ,η ,g) be a (k,µ)-paracontact space. Then M is a W7 semi-symmetric if and only if M is an
η−Einstein manifold.

Proof. Assume that M is a W7 semi-symmetric. This yields to

(R(X ,Y )W7)(U,W )Z = R(X ,Y )W7(U,W )Z−W7(R(X ,Y )U,W )Z

−W7(U,R(X ,Y )W )Z−W7(U,W )R(X ,Y )Z = 0, (3.16)

for any X ,Y,U,W,Z ∈ χ(M). Taking X = Z = ξ in (3.16) and using (3.3), (3.9), (3.10), for A =− 1
2n , we obtain

(R(ξ ,Y )W7)(U,W )ξ = R(ξ ,Y )(kη(U)W −Aη(W )QU +µ(η(W )hU

−η(U)hW ))−W7(k(g(Y,U)ξ −η(U)Y )

+µ(g(hY,U)ξ −η(U)hY ),W )ξ

−W7(U,kg(Y,W )ξ −η(W )Y )

+µ(g(hY,W )ξ −η(W )hY )ξ

−W7(U,W )k(η(Y )ξ −Y )−µhY ) = 0. (3.17)

Taking into account that (3.4) and (3.9) in (3.17), we get

kW7(U,W )Y +µW7(U,W )hY + kµ(η(U)g(hY,W )ξ

−g(Y,W )hU)+µ
2(1+ k)(η(W )g(Y,U)ξ

−η(U)g(Y,W )ξ )−Ak(S(Y,U)η(W )ξ +η(W )η(U)QY )

+Aµ(2nkη(W )η(U)hY −S(hY,U)η(W )ξ )

+k2(η(U)g(Y,W )ξ −η(W )g(Y,U)ξ )+ kµ(g(Y,U)hW

−g(hY,W )U)+µ
2(g(hY,U)hW −g(hY,W )hU)

+µ(kg(hY,U)W −Aη(U)η(W )QhY )+ k2(g(Y,W )η(U)ξ

+2nAη(U)η(W )Y )+ k2(g(Y,U)W −g(Y,W )U) = 0. (3.18)

Putting U = ξ and using (3.3) in (3.18), we get

AS(Y,W )+µS(W,hY )+2kg(Y,W )−2nkAg(Y,W )+µg(W,hY ) = 0. (3.19)

Replacing hY of Y in (3.19) and making use of (2.7), we have

AS(Y,hW )+µ(1+ k)S(Y,W )−2nkµ(1+ k)η(Y )η(W )

−2nkAg(Y,hW )+µ(1+ k)g(Y,hW )−µ(1+ k)η(Y )η(W ) = 0. (3.20)

From (3.19), (3.20) and by using (2.9), for the sake of brevity, we set

p1 = (2nkA2−2kA+µ
2(1+ k))[2(n−1)+µ]+ (Aµ +2nkAµ−2kµ)[2(1−n)+nµ],

p2 = (A2−µ
2(1+ k))[2(n−1)+µ]+ (2kµ−2nkAµ−Aµ),

p3 = (Aµ +2nkAµ−2kµ)[2(n−1)+n(2k−µ)]−
(µ2(1+ k)(2n+1))[2(n−1)+µ]
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we conclude

p2S(Y,W ) = p1g(Y,W )+ p3η(Y )η(W ).

Thus, M is an η−Einstein manifold. Conversely, let M2n+1(ϕ,ξ ,η ,g) be an η−Einstein manifold, i.e. p2S(Y,W ) =
p1g(Y,W )+ p3η(Y )η(W ), then from equations (3.20), (3.19), (3.18), (3.17) and (3.16) we obtain M is a W7 semi-symmetric.

Theorem 3.3. Let M2n+1(φ ,ξ ,η ,g) be a (k,µ)-paracontact space. Then M is a W8 semi-symmetric if and only if M is an
η−Einstein manifold..

Proof. Suppose that M is a W8 semi-symmetric. This implies that

(R(X ,Y )W8)(U,W )Z = R(X ,Y )W8(U,W )Z−W8(R(X ,Y )U,W )Z

−W8(U,R(X ,Y )W )Z−W8(U,W )R(X ,Y )Z = 0, (3.21)

for any X ,Y,U,W,Z ∈ χ(M). Setting X = Z = ξ in (3.21) and making use of (3.5), (3.9), (3.10), for A =− 1
2n , we obtain

(R(ξ ,Y )W8)(U,W )ξ = R(ξ ,Y )(−kη(U)W −AS(U,W )ξ +µ(η(W )hU

−η(U)hW ))−W8(k(g(Y,U)ξ −η(U)Y )

+µ(g(hY,U)ξ −η(U)hY ),W )ξ

−W8(U,k(g(Y,W )ξ −η(W )Y )

+µ(g(hY,W )ξ −η(W )hY ))ξ

−W8(U,W )(k(η(Y )ξ −Y )−µhY ) = 0. (3.22)

Inner product both sides of (3.22) by Z ∈ χ(M) and using of (3.5), (3.6) and (3.9), we get

kg(W8(U,W )Y,Z)+µg(W8(U,W )hY,Z)+µ
2(1+ k)(η(W )η(Z)g(Y,U)

−η(U)η(Z)g(Y,W ))+Ak(η(Y )η(Z)S(U,W )−η(Z)η(W )S(U,Y ))

+Aµ(g(hY,Z)S(U,W )−η(W )η(Z)S(hY,U))+Ak(S(U,W )g(Y,Z)

−S(U,W )η(Y )η(Z))+ k2(g(Y,U)g(W,Z)+g(Y,W )g(U,Z))

+µ
2(g(hY,U)g(hW,Z)−g(hY,W )g(hU,Z))+ kµ(g(hY,U)g(W,Z)

−g(hY,W )g(U,Z))−A(µS(hY,W )η(U)η(Z)+ kS(Y,W )η(U)η(Z))

+kµ(g(Y,U)g(hW,Z)−g(Y,W )g(hU,Z))− k(η(W )η(Z)g(Y,U)

+η(U)η(Z)g(Y,hW )) = 0. (3.23)

Making use of (2.7), (2.16) and choosing W = Y = ei, ξ , 1≤ i≤ n, for orthonormal basis of χ(M) in (3.23), we have

kS(U,Z)+µS(U,hZ)+(kAr+2nAµ(1+ k)[2(n−1)+µ]

−2nk2 +µ
2(1+ k))g(U,Z)+ kµ(1−2n)g(U,hZ)

−(2nk2A+µ
2(1+ k)(2n+1)+ k2 +Akr

+2nAµ(1+ k)[2(n−1)+µ]+2nkAµ)η(U)η(Z) = 0. (3.24)

In (3.24), hZ of Z, we arrive

kS(U,hZ)+µ(1+ k)S(U,Z)−2nkµ(1+ k)η(U)η(Z)

+(kAr+2nAµ(1+ k)[2(n−1)+µ]−2nk2

+µ
2(1+ k))g(U,hZ)+ kµ(1−2n)(1+ k)g(U,Z)

−kµ(1−2n)(1+ k)η(U)η(Z) = 0. (3.25)

From (3.24), (3.25) and by using (2.9), for the sake of brevity, we set

p1 = (kAr+2nAµ(1+ k)[2(n−1)+µ]−2nk2 +µ
2(1+ k)),

p2 = kµ(1−2n),

p3 = −(2nk2A+µ
2(1+ k)(2n+1)+ k2 +Akr+2nAµ(1+ k)[2(n−1)+µ]+2nkAµ),
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we conclude

q1 = (p2µ(1+ k)− kp1)[2(n−1)+µ]+ (kp2− p1µ)[2(1−n)+nµ],

q2 = (k2−µ
2(1+ k))[2(n−1)+µ]+ (p1µ− kp2),

q3 = (kp2− p1µ)[2(n−1)+n(2k−µ)]− (p3k+2nkµ
2(1+ k)+ p2µ(1+ k))[2(n−1)+µ],

q2S(U,Z) = q1g(U,Z)+q3η(U)η(Z),

So, M is an η−Einstein manifold. Conversely, let M2n+1(ϕ,ξ ,η ,g) be an η−Einstein manifold, i.e. q2S(U,Z) = q1g(U,Z)+
q3η(U)η(Z), then from equations (3.25), (3.24), (3.23), (3.22) and (3.21) we get M is a W8 semi-symmetric.

Theorem 3.4. Let M2n+1(φ ,ξ ,η ,g) be a (k,µ)-paracontact space. Then M is a W9 semi-symmetric if and only if M is an
Einstein manifold.

Proof. Assume that M is a W9 semi-symmetric. This means that

(R(X ,Y )W9)(U,W,Z) = R(X ,Y )W9(U,W )Z−W9(R(X ,Y )U,W )Z

−W9(U,R(X ,Y )W )Z−W9(U,W )R(X ,Y )Z = 0, (3.26)

for any X ,Y,U,W,Z ∈ χ(M). Setting X = Z = ξ in (3.26) and making use of (3.9), (3.7), for A = 1
2n , we obtain

(R(ξ ,Y )W9)(U,W )ξ = R(ξ ,Y )(k(η(W )U−η(U)W )+µ(η(W )hU

−η(U)hW )+A(S(U,W )ξ −η(W )QU))

−W9(k(g(Y,U)ξ −η(U)Y )+µ(g(hY,U)ξ

−η(U)hY,W )ξ −W9(U,k(g(Y,W )ξ −η(W )Y )

+µ(g(hY,W )ξ −η(W )hY ))ξ

−W9(U,W )(k(η(Y )ξ −Y )−µhY ) = 0. (3.27)

Using (3.7), (3.8), (3.9) in (3.27), we get

kW9(U,W )Y +µW9(U,W )hY + kµ(η(W )g(Y,hU)ξ

−η(U)g(Y,hW )ξ )+µ
2(1+ k)(η(W )g(Y,U)ξ

−η(U)g(Y,W )ξ )+ k2(g(Y,U)W −g(Y,W )U)

+kA(η(U)S(Y,W )ξ −η(W )η(U)QY )

+Aµ(η(U)S(hY,W )ξ +2nkη(U)η(W )hY )

+kµ(g(Y,U)hW −g(Y,W )hU)+ kµ(g(hY,U)W

−g(hY,W )U)+Aµ(S(U,hY )η(W )ξ −η(W )η(U)QhY )

+µ
2(g(hY,U)hW +g(hY,W )hU)−Aµ(S(U,W )hY

+S(hY,U)η(W )ξ )+Ak(2nkη(W )η(U)Y −S(U,W )Y ) = 0. (3.28)

Making use of (2.17), (2.1) and choosing U = ξ , in (3.28), we have

kS(Y,W )+µS(hY,W )−2nk2g(Y,W )−2nkµg(hY,W ) = 0. (3.29)

Replacing hY of Y in (3.29) and taking into account (2.7), we arrive

kS(Y,hW )+µ(1+ k)S(Y,W )−2nkµ(1+ k)η(Y )η(W )

−2nk2g(W,hY )−2nkµ(1+ k)g(Y,W )

+2nkµ(1+ k)η(W )η(Y ) = 0. (3.30)

From (3.29), (3.30) and by using (2.7), we have

S(Y,W ) = 2nkg(Y,W ).

This tell us, M is an Einstein manifold. Conversely, let M2n+1(ϕ,ξ ,η ,g) be an Einstein manifold, i.e. S(Y,W ) = 2nkg(Y,W ),
then from equations (3.26), (3.27), (3.28) and (3.30), we obtain M is a W9 semi-symmetric. Which verifies our assertion.
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Example 3.5. We consider the 3-dimensional manifold M = {(x,y,z) ∈ R3, z 6= 0}, where (x,y,z) are standart coordinates of R3. The
vector fields

e1 =
∂

∂x
, e2 = 4z2 ∂

∂x
+

∂

∂y
, e3 =

∂

∂ z
.

Let g be the Riemannian metric defined by

g(e1,e2) = g(e1,e3) = g(e2,e3) = 0,

g(e1,e1) = g(e2,e2) = 1, g(e3,e3) =−1

Let η be the 1-form defined by η(X) = g(X ,e1) for any X ∈ χ(M). Let φ be the (1,1) tensor field defined by

φ(e1) = 0, φ(e3) =−e2, φ(e2) =−e3.

Let ∇ be the Levi-Civita connection with respect to the metric tensor g. Then we get

[e3,e1] = 0, [e1,e2] = 0, [e2,e3] =−8ze1.

Then we have

η(e1) = g(e1,e1) = 1, φ
2X = X−η(X)e1, g(φX ,φY ) =−g(X ,Y )+η(X)η(Y ),

for any X ,Y ∈ χ(M). Hence, (φ ,ξ ,η ,g) defines a paracontact metric structure on M for e1 = ξ .
The Levi-Civita connection ∇ of the metric g is given by the Koszul’s formula

2g(∇XY,Z) = Xg(Y,Z)+Y g(Z,X)−Zg(X ,Y )

−g(X , [Y,Z])−g(Y, [X ,Z])+g(Z, [X ,Y ]).

Using the above formula, we obtain.

∇e1 e1 = 0, ∇e2 e1 =−4ze3, ∇e3 e1 =−4ze2,

∇e1 e2 = −4ze3, ∇e2 e2 = 0, ∇e3 e2 = 4ze1,

∇e1 e3 = −4ze2, ∇e2 e3 =−4ze1, ∇e3 e3 = 0.

Comparing the above relations with ∇X e1 =−φX +φhX , we get

he2 =−(4z+1)e2, he3 =−(4z+1)e3, he1 = 0.

Using the formula R(X ,Y )Z = ∇X ∇Y Z−∇Y ∇X Z−∇[X ,Y ]Z, we calculate the following:

R(e2,e1)e1 =

[
1

(4z−1)2 −1
]
{η(e1)e2−η(e2)e1}+

[
1

(4z−1)3 −
16z2 +1
4z+1

]
{η(e1)he2−η(e2)he1}

= −16z2e2

R(e3,e1)e1 =

[
1

(4z−1)2 −1
]
{η(e1)e3−η(e3)e1}+

[
1

(4z−1)3 −
16z2 +1
4z+1

]
{η(e1)he3−η(e3)he1}

= −16z2e3

R(e2,e3)e1 =

[
1

(4z−1)2 −1
]
{η(e3)e2−η(e2)e3}+

[
1

(4z−1)3 −
16z2 +1
4z+1

]
{η(e3)he2−η(e2)he3}

= 0.

By the above expressions of the curvature tensor and using (2.9), we conclude that M is a generalized (k,µ)−paracontact metric manifold

with k =
[

1
(4z−1)2 −1

]
and µ =

[
1

(4z−1)3 − 16z2+1
4z+1

]
.

4. Conclusion
The aim of this paper is to classify (k,µ)-paracontact metric spaces satisfying certain curvature conditions. We present the
curvature tensors of (k,µ)-Paracontact manifold satisfying the conditions R ·W6 = 0, R ·W7 = 0, R ·W8 = 0 and R ·W9 = 0.
According these cases, (k,µ)-Paracontact manifolds have been characterized. Also, several results are obtained.
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