

Certain Curvature Conditions on (k, μ) -Paracontact Metric Spaces

Pakize Uygun¹*, Süleyman Dirik², Mehmet Atçeken³, Tuğba Mert⁴

Abstract

The aim of this paper is to classify (k, μ) -paracontact metric spaces satisfying certain curvature conditions. We present the curvature tensors of (k, μ) -Paracontact manifold satisfying the conditions $R \cdot W_6 = 0$, $R \cdot W_7 = 0$, $R \cdot W_8 = 0$ and $R \cdot W_9 = 0$. According these cases, (k, μ) -Paracontact manifolds have been characterized. Also, several results are obtained.

Keywords: (k, μ) -Paracontact Manifold, η -Einstein manifold, Riemannian curvature tensor **2010 AMS:** 53C15, 53C25

¹Department of Mathematics, Faculty of Arts and Sciences, Aksaray University, 68100, Aksaray, Turkey, ORCID: 0000-0001-8226-4269 ²Department of Mathematics, Faculty of Arts and Sciences, Amasya University, 05100, Amasya, Turkey, ORCID: 0000-0001-9093-1607 ³Department of Mathematics, Faculty of Arts and Sciences, Aksaray University, 68100, Aksaray, Turkey, ORCID: 0000-0002-1242-4359 ⁴Department of Mathematics, Faculty of Sciences, Sivas Cumhuriyet University, 58140, Sivas, Turkey, ORCID: 0000-0001-8258-8298 ***Corresponding author**: pakizeuygun@hotmail.com

Received: 6 September 2022, Accepted: 15 November 2022, Available online: 30 December 2022

1. Introduction

Paracontact manifolds are smooth manifolds of dimension (2n+1) equipped with a 1-form η , a vector field ξ and a field of endomorphisms of tangent spaces ϕ such that $\eta(\xi) = 1$, $\phi^2 = I - \eta \otimes \xi$ and ϕ induces an almost paracomplex structure by kernel of η [1]. On the other hand, if the manifold is equipped with a pseudo-Riemannian metric g of signature (n+1,n) satisfying

 $g(\phi X, \phi Y) = -g(X, Y) + \eta(X)\eta(Y), \ d\eta(X, Y) = g(X, \phi Y),$

 (M, η) becomes a contact manifold and (ϕ, ξ, η, g) is said to be a paracontact metric structure on *M*. In 1985, Kaneyuki and Williams initiated the perspective of paracontact geometry [5]. Zamkovoy performed a thorough study of paracontact metric Manifolds. [15]. Recently, B. Cappeletti-Montano, I. Küpeli Erken and C. Murathan introduced a new type of paracontact geometry so-called paracontact metric (k, μ) -space, where *k* and μ are constant [4].

M. M. Tripathi and P. Gupta studied T-curvature tensors in semi-Riemannian manifolds. They defined T-conservative semi-Riemannian manifolds and give necessary and sufficient tensor on a Riemannian manifolds to be T-conservative. They proved that every T-flat semi-Riemannian manifold is Einstein. They also gave the conditions for semi-Riemannian manifold to be T-flat [8]. Since then several geometers studied curvature conditions and obtain various important properties [2, 6], [9]-[13].

The object of this paper is to study properties of the some certain curvature tensor in a (k, μ) -paracontact metric manifold. In the present paper we survey $R \cdot W_6 = 0$, $R \cdot W_7 = 0$, $R \cdot W_8 = 0$ and $R \cdot W_9 = 0$, where W_6 , W_7 , W_8 and W_9 denote curvature tensors of manifold, respectively.

2. Preliminaries

An (2n+1)-dimensional manifold *M* is called to have an paracontact structure if it admits a (1,1)-tensor field ϕ , a vector field ξ and a 1-form η satisfying the following conditions [5]:

(*i*) $\phi^2 X = X - \eta(X)\xi$, for any vector field $X \in \chi(M)$, the set of all differential vector fields on M,

(*ii*) $\eta(\xi) = 1, \eta \circ \phi = 0, \phi \xi = 0.$

An almost paracontact structure is called to be normal if and only if the (1,2)-type torsion tensor $N_{\phi} = [\phi, \phi] - 2d\eta \otimes \xi$ vanishes identically, where $[\phi, \phi](X, Y) = \phi^2[X, Y] + [\phi X, \phi Y] - \phi[\phi X, Y] - \phi[X, \phi Y]$. An almost paracontact manifold equipped with a pseudo-Riemannian metric *g* so that

$$g(\phi X, \phi Y) = -g(X, Y) + \eta(X)\eta(Y), \quad g(X, \xi) = \eta(X)$$

$$(2.1)$$

for all vector fields $X, Y \in \chi(M)$ is said almost paracontact metric manifold, where signature of g is (n+1,n). An almost paracontact structure is called to be a paracontact structure if $g(X, \phi Y) = d\eta(X, Y)$ with the associated metric g [15]. We now define a (1,1) tensor field h by $h = \frac{1}{2}L_{\xi}\phi$, where L denotes the Lie derivative. Then h is symmetric and satisfies the conditions

$$h\phi = -\phi h, \quad h\xi = 0, \quad Trh = Tr.\phi h = 0. \tag{2.2}$$

If ∇ denotes the Levi-Civita connection of g, then we have the following relation

$$\nabla_X \xi = -\phi X + \phi h X \tag{2.3}$$

for any $X \in \chi(M)$ [15]. For a paracontact metric manifold $M^{2n+1}(\phi, \xi, \eta, g)$, if ξ is a killing vector field or equivalently, h = 0, then it is called a K-paracontact manifold.

An almost paracontact manifold is said to be para-Sasakian if and only if the following condition holds [15].

$$(\nabla_X \phi) Y = -g(X,Y)\xi + \eta(Y)X$$

for all $X, Y \in \chi(M)$ [15]. A normal paracontact metric manifold is para-Sasakian and satisfies

$$R(X,Y)\xi = -(\eta(Y)X - \eta(X)Y)$$
(2.4)

for all $X, Y \in \chi(M)$, but this is not a sufficient condition for a para-contact manifold to be para-Sasakian. It is clear that every para-Sasakian manifold is K-paracontact. But the converse is not always true[3].

A paracontact manifold *M* is said to be η -Einstein if its Ricci tensor *S* of type (0,2) is of the from $S(X,Y) = ag(X,Y) + b\eta(X)\eta(Y)$, where *a*, *b* are smooth functions on *M*. If *b* = 0, then the manifold is also called Einstein and if *a* = 0, then it is called special type of η -Einstein manifolds [14].

A paracontact metric manifold is said to be a (k, μ) -paracontact manifold if the curvature tensor \widetilde{R} satisfies

$$R(X,Y)\xi = k[\eta(Y)X - \eta(X)Y] + \mu[\eta(Y)hX - \eta(X)hY]$$

$$(2.5)$$

for all $X, Y \in \chi(M)$, where *k* and μ are real constants.

This class is very wide containing the para-Sasakian manifolds as well as the paracontact metric manifolds satisfying $R(X,Y)\xi = 0$ [16].

In particular, if $\mu = 0$, then the paracontact metric (k, μ) -manifold is called paracontact metric N(k)-manifold. Thus for a paracontact metric N(k)-manifold the curvature tensor satisfies the following relation

$$R(X,Y)\xi = k\eta(Y)X - k\eta(X)Y$$
(2.6)

for all $X, Y \in \chi(M)$. Though the geometric behavior of paracontact metric (k, μ) -spaces is different according as k < -1, or k > -1, but there are some common results for k < -1 and k > -1[4].

Lemma 2.1. There does not exist any paracontact (k,μ) -manifold of dimension greater than 3 with k > -1 which is Einstein whereas there exits such manifolds for k < -1 [4].

In a paracontact metric (k, μ) -manifold $M^{2n+1}(\phi, \xi, \eta, g), n > 1$, the following relation hold :

$$h^2 = (k+1)\phi^2$$
, for $k \neq -1$, (2.7)

$$(\overline{\nabla}_X \phi)Y = -g(X - hX, Y)\xi + \eta(Y)(X - hX), \tag{2.8}$$

$$S(X,Y) = [2(1-n) + n\mu]g(X,Y) + [2(n-1) + \mu]g(hX,Y) + [2(n-1) + n(2k-\mu)]\eta(X)\eta(Y),$$
(2.9)

$$S(X,\xi) = 2nk\eta(X), \tag{2.10}$$

$$QY = [2(1-n)+n\mu]Y + [2(n-1)+\mu]hY + [2(n-1)+n(2k-\mu)]\eta(Y)\xi, \qquad (2.11)$$

$$Q\xi = 2nk\xi, \tag{2.12}$$

$$Q\phi - \phi Q = 2[2(n-1) + \mu]h\phi$$
(2.13)

for any vector fields X, Y on M^{2n+1} , where Q and S denotes the Ricci operator and Ricci tensor of (M^{2n+1}, g) , respectively[4].

The concept of W_6 -curvature tensor was defined by [7]. W_6 -curvature tensor, W_7 -curvature tensor, W_8 -curvature tensor and W_9 -curvature tensor, of a (2n + 1)-dimensional Riemannian manifold are, respectively, defined as

$$W_6(X,Y)Z = R(X,Y)Z - \frac{1}{2n}[S(Y,Z)X - g(X,Y)QZ],$$
(2.14)

$$W_7(X,Y)Z = R(X,Y)Z - \frac{1}{2n}[S(Y,Z)QX - g(Y,Z)QX],$$
(2.15)

$$W_8(X,Y)Z = R(X,Y)Z - \frac{1}{2n}[S(Y,Z)X - S(X,Y)Z],$$
(2.16)

$$W_{9}(X,Y)Z = R(X,Y)Z + \frac{1}{2n}[S(X,Y)Z - g(Y,Z)QX],$$
(2.17)

for all $X, Y, Z \in \chi(M)$ where, $\chi(M)$ is set of all vector spaces [7].

3. Certain Curvature Conditions on (k, μ) -Paracontact metric spaces

We will provide the significant themes of this work in this part.

Let *M* be (2n+1)-dimensional (k, μ) -paracontact metric manifold and we explain *W*₆ curvature tensor from (2.14), we have

$$W_6(X,Y)\xi = k(g(X,Y)\xi - \eta(X)Y) + \mu(\eta(Y)hX - \eta(X)hY).$$
(3.1)

Putting $X = \xi$, in (3.1), we get

$$W_{6}(\xi, Y)\xi = k(\eta(Y)\xi - Y) - \mu hY.$$
(3.2)

In (2.15) choosing $Z = \xi$ and using (2.5), we obtain

$$W_7(X,Y)\xi = k\eta(X)Y + \frac{1}{2n}\eta(Y)QX + \mu(\eta(Y)hX - \eta(X)hY).$$
(3.3)

It follows

$$W_7(\xi, Y)\xi = k(\eta(Y)\xi - Y) - \mu hY.$$
(3.4)

In the same way, putting $Z = \xi$ in (2.16) and using (2.5), we have

$$W_8(X,Y)\xi = \frac{1}{2n}S(X,Y)\xi - k\eta(X)Y + \mu(\eta(Y)hX - \eta(X)hY).$$
(3.5)

In (2.16), choosing $X = \xi$, we get

$$W_8(\xi, Y)\xi = k(\eta(Y)\xi - Y) - \mu hY.$$
(3.6)

In (2.17), choosing $Z = \xi$, we obtain

$$W_{9}(X,Y)\xi = k(\eta(Y)X - \eta(X)Y) + \mu(\eta(Y)hX - \eta(X)hY) + \frac{1}{2n}(S(X,Y)\xi - \eta(Y)QX).$$
(3.7)

In(3.7) it follows

$$W_9(\xi, Y)\xi = k(\eta(Y)\xi - Y) - \mu hY.$$
(3.8)

In (2.5), we arrive

$$R(\xi, Y)Z = k(g(Y, Z)\xi - \eta(Z)Y) + \mu(g(hY, Z)\xi - \eta(Z)hY),$$
(3.9)

choosing $Z = \xi$, in (3.9)

$$R(\xi, Y)\xi = k(\eta(Y)\xi - Y) - \mu hY.$$
(3.10)

Theorem 3.1. Let $M^{2n+1}(\phi, \xi, \eta, g)$ be a (k, μ) -paracontact space. Then M is a W_6 semi-symmetric if and only if M is an Einstein manifold.

Proof. Suppose that M is a W_6 semi-symmetric. This implies that

$$(R(X,Y)W_6)(U,W)Z = R(X,Y)W_6(U,W)Z - W_6(R(X,Y)U,W)Z - W_6(U,R(X,Y)W)Z - W_6(U,W)R(X,Y)Z = 0,$$
(3.11)

for any $X, Y, U, W, Z \in \chi(M)$. Taking $X = Z = \xi$ in (3.11), making use of (3.1) and (3.9), for $A = \frac{1}{2n}$, we have

$$(R(\xi,Y)W_{6})(U,W)\xi = R(\xi,Y)(k(g(Y,W)\xi - \eta(U)W) + \mu(\eta(W)hU - \eta(U)hW)) - W_{6}(k(g(Y,U)\xi - \eta(U)Y) + \mu(g(hY,U)\xi - \eta(U)hY),W)\xi - \eta(U)hY),W)\xi - W_{6}(U,k(g(Y,W)\xi - \eta(W)Y) + \mu(g(hY,W)\xi - \eta(W)hY)\xi - W_{6}(U,W)(k(\eta(Y)\xi - Y) - \mu hY) = 0.$$
(3.12)

Taking into account (3.1) and (3.2) in (3.12), we have

$$kW_{6}(U,W)Y + \mu W_{6}(U,W)hY + k\mu(\eta(W)g(Y,hU)\xi$$

$$-g(Y,W)hU) + \mu^{2}(1+k)(\eta(W)g(Y,U)\xi$$

$$-\eta(U)g(Y,W)\xi) + k\mu(g(hY,U)W - g(hY,W)hU)$$

$$+\mu k(g(hY,U)hW - g(hY,W)U) + \mu^{2}(g(hY,U)hW$$

$$-g(hY,W)hU) + k^{2}(g(Y,W)\eta(U)\xi - g(Y,W)U)$$

$$+k\mu(g(Y,U)hW + g(U,W)hY) + k^{2}(g(Y,U)W$$

$$-g(U,W)Y) = 0.$$
(3.13)

Putting (2.10), (2.14), choosing $U = \xi$ and taking inner product with $\xi \in \chi(M)$ in (3.13), we arrive

$$AkS(W,Y) + A\mu S(W,hY) + k^2 g(W,Y) + k\mu g(W,hY) = 0.$$
(3.14)

Using (2.7) and replacing hY of Y in (3.14), we get

$$AkS(W,hY) + A\mu(1+k)S(W,Y) - 2nkA(1+k)g(W,hY) + k\mu(1+k)g(W,Y) = 0.$$
(3.15)

From (3.14) and (3.15), we have

S(W,Y) = 2nkg(W,Y).

So, *M* is an Einstein manifold. Conversely, let $M^{2n+1}(\varphi, \xi, \eta, g)$ be an Einstein manifold, i.e. S(W, Y) = 2nkg(W, Y), then from equations (3.15), (3.14), (3.13), (3.12) and (3.11) we obtain *M* is a *W*₆ semi-symmetric. Which verifies our assertion.

Theorem 3.2. Let $M^{2n+1}(\phi, \xi, \eta, g)$ be a (k, μ) -paracontact space. Then M is a W_7 semi-symmetric if and only if M is an η -Einstein manifold.

Proof. Assume that M is a W_7 semi-symmetric. This yields to

$$(R(X,Y)W_7)(U,W)Z = R(X,Y)W_7(U,W)Z - W_7(R(X,Y)U,W)Z - W_7(U,R(X,Y)W)Z - W_7(U,W)R(X,Y)Z = 0,$$
(3.16)

for any $X, Y, U, W, Z \in \chi(M)$. Taking $X = Z = \xi$ in (3.16) and using (3.3), (3.9), (3.10), for $A = -\frac{1}{2n}$, we obtain

$$(R(\xi, Y)W_{7})(U, W)\xi = R(\xi, Y)(k\eta(U)W - A\eta(W)QU + \mu(\eta(W)hU - \eta(U)hW)) - W_{7}(k(g(Y, U)\xi - \eta(U)Y) + \mu(g(hY, U)\xi - \eta(U)hY), W)\xi - \eta(U)hY), W)\xi - W_{7}(U, kg(Y, W)\xi - \eta(W)Y) + \mu(g(hY, W)\xi - \eta(W)hY)\xi - W_{7}(U, W)k(\eta(Y)\xi - Y) - \mu hY) = 0.$$
(3.17)

Taking into account that (3.4) and (3.9) in (3.17), we get

$$kW_{7}(U,W)Y + \mu W_{7}(U,W)hY + k\mu(\eta(U)g(hY,W)\xi -g(Y,W)hU) + \mu^{2}(1+k)(\eta(W)g(Y,U)\xi -\eta(U)g(Y,W)\xi) - Ak(S(Y,U)\eta(W)\xi + \eta(W)\eta(U)QY) +A\mu(2nk\eta(W)\eta(U)hY - S(hY,U)\eta(W)\xi) +k^{2}(\eta(U)g(Y,W)\xi - \eta(W)g(Y,U)\xi) + k\mu(g(Y,U)hW -g(hY,W)U) + \mu^{2}(g(hY,U)hW - g(hY,W)hU) +\mu(kg(hY,U)W - A\eta(U)\eta(W)QhY) + k^{2}(g(Y,W)\eta(U)\xi +2nA\eta(U)\eta(W)Y) + k^{2}(g(Y,U)W - g(Y,W)U) = 0.$$
(3.18)

Putting $U = \xi$ and using (3.3) in (3.18), we get

$$AS(Y,W) + \mu S(W,hY) + 2kg(Y,W) - 2nkAg(Y,W) + \mu g(W,hY) = 0.$$
(3.19)

Replacing hY of Y in (3.19) and making use of (2.7), we have

$$AS(Y,hW) + \mu(1+k)S(Y,W) - 2nk\mu(1+k)\eta(Y)\eta(W) -2nkAg(Y,hW) + \mu(1+k)g(Y,hW) - \mu(1+k)\eta(Y)\eta(W) = 0.$$
(3.20)

From (3.19), (3.20) and by using (2.9), for the sake of brevity, we set

$$\begin{array}{lll} p_1 &=& (2nkA^2 - 2kA + \mu^2(1+k))[2(n-1) + \mu] + (A\mu + 2nkA\mu - 2k\mu)[2(1-n) + n\mu], \\ p_2 &=& (A^2 - \mu^2(1+k))[2(n-1) + \mu] + (2k\mu - 2nkA\mu - A\mu), \\ p_3 &=& (A\mu + 2nkA\mu - 2k\mu)[2(n-1) + n(2k - \mu)] - \\ & & (\mu^2(1+k)(2n+1))[2(n-1) + \mu] \end{array}$$

we conclude

$$p_2S(Y,W) = p_1g(Y,W) + p_3\eta(Y)\eta(W).$$

Thus, *M* is an η -Einstein manifold. Conversely, let $M^{2n+1}(\varphi, \xi, \eta, g)$ be an η -Einstein manifold, i.e. $p_2S(Y,W) = p_1g(Y,W) + p_3\eta(Y)\eta(W)$, then from equations (3.20), (3.19), (3.18), (3.17) and (3.16) we obtain *M* is a W_7 semi-symmetric.

Theorem 3.3. Let $M^{2n+1}(\phi, \xi, \eta, g)$ be a (k, μ) -paracontact space. Then M is a W_8 semi-symmetric if and only if M is an η -Einstein manifold.

Proof. Suppose that M is a W_8 semi-symmetric. This implies that

$$(R(X,Y)W_8)(U,W)Z = R(X,Y)W_8(U,W)Z - W_8(R(X,Y)U,W)Z - W_8(U,R(X,Y)W)Z - W_8(U,W)R(X,Y)Z = 0,$$
(3.21)

for any $X, Y, U, W, Z \in \chi(M)$. Setting $X = Z = \xi$ in (3.21) and making use of (3.5), (3.9), (3.10), for $A = -\frac{1}{2n}$, we obtain

$$(R(\xi, Y)W_{8})(U, W)\xi = R(\xi, Y)(-k\eta(U)W - AS(U, W)\xi + \mu(\eta(W)hU - \eta(U)hW)) - W_{8}(k(g(Y, U)\xi - \eta(U)Y) + \mu(g(hY, U)\xi - \eta(U)hY), W)\xi - \eta(W)H) + \mu(g(hY, W)\xi - \eta(W)H) + \mu(g(hY, W)\xi - \eta(W)hY))\xi - W_{8}(U, W)(k(\eta(Y)\xi - Y) - \mu hY) = 0.$$
(3.22)

Inner product both sides of (3.22) by $Z \in \chi(M)$ and using of (3.5), (3.6) and (3.9), we get

$$kg(W_{8}(U,W)Y,Z) + \mu g(W_{8}(U,W)hY,Z) + \mu^{2}(1+k)(\eta(W)\eta(Z)g(Y,U) -\eta(U)\eta(Z)g(Y,W)) + Ak(\eta(Y)\eta(Z)S(U,W) - \eta(Z)\eta(W)S(U,Y)) +A\mu(g(hY,Z)S(U,W) - \eta(W)\eta(Z)S(hY,U)) + Ak(S(U,W)g(Y,Z) -S(U,W)\eta(Y)\eta(Z)) + k^{2}(g(Y,U)g(W,Z) + g(Y,W)g(U,Z)) +\mu^{2}(g(hY,U)g(hW,Z) - g(hY,W)g(hU,Z)) + k\mu(g(hY,U)g(W,Z) -g(hY,W)g(U,Z)) - A(\mu S(hY,W)\eta(U)\eta(Z) + kS(Y,W)\eta(U)\eta(Z)) +k\mu(g(Y,U)g(hW,Z) - g(Y,W)g(hU,Z)) - k(\eta(W)\eta(Z)g(Y,U) +\eta(U)\eta(Z)g(Y,hW)) = 0.$$
(3.23)

Making use of (2.7), (2.16) and choosing $W = Y = e_i$, ξ , $1 \le i \le n$, for orthonormal basis of $\chi(M)$ in (3.23), we have

$$kS(U,Z) + \mu S(U,hZ) + (kAr + 2nA\mu(1+k)[2(n-1) + \mu] -2nk^{2} + \mu^{2}(1+k))g(U,Z) + k\mu(1-2n)g(U,hZ) -(2nk^{2}A + \mu^{2}(1+k)(2n+1) + k^{2} + Akr +2nA\mu(1+k)[2(n-1) + \mu] + 2nkA\mu)\eta(U)\eta(Z) = 0.$$
(3.24)

In (3.24), hZ of Z, we arrive

$$kS(U,hZ) + \mu(1+k)S(U,Z) - 2nk\mu(1+k)\eta(U)\eta(Z) + (kAr + 2nA\mu(1+k)[2(n-1)+\mu] - 2nk^{2} + \mu^{2}(1+k))g(U,hZ) + k\mu(1-2n)(1+k)g(U,Z) - k\mu(1-2n)(1+k)\eta(U)\eta(Z) = 0.$$
(3.25)

From (3.24), (3.25) and by using (2.9), for the sake of brevity, we set

$$\begin{aligned} p_1 &= (kAr + 2nA\mu(1+k)[2(n-1)+\mu] - 2nk^2 + \mu^2(1+k)), \\ p_2 &= k\mu(1-2n), \\ p_3 &= -(2nk^2A + \mu^2(1+k)(2n+1) + k^2 + Akr + 2nA\mu(1+k)[2(n-1)+\mu] + 2nkA\mu), \end{aligned}$$

we conclude

$$\begin{aligned} q_1 &= (p_2\mu(1+k)-kp_1)[2(n-1)+\mu] + (kp_2-p_1\mu)[2(1-n)+n\mu], \\ q_2 &= (k^2-\mu^2(1+k))[2(n-1)+\mu] + (p_1\mu-kp_2), \\ q_3 &= (kp_2-p_1\mu)[2(n-1)+n(2k-\mu)] - (p_3k+2nk\mu^2(1+k)+p_2\mu(1+k))[2(n-1)+\mu], \\ q_2S(U,Z) &= q_1g(U,Z) + q_3\eta(U)\eta(Z), \end{aligned}$$

So, *M* is an η -Einstein manifold. Conversely, let $M^{2n+1}(\varphi, \xi, \eta, g)$ be an η -Einstein manifold, i.e. $q_2S(U,Z) = q_1g(U,Z) + q_3\eta(U)\eta(Z)$, then from equations (3.25), (3.24), (3.23), (3.22) and (3.21) we get *M* is a W_8 semi-symmetric.

Theorem 3.4. Let $M^{2n+1}(\phi, \xi, \eta, g)$ be a (k, μ) -paracontact space. Then M is a W_9 semi-symmetric if and only if M is an Einstein manifold.

Proof. Assume that M is a W_9 semi-symmetric. This means that

$$(R(X,Y)W_9)(U,W,Z) = R(X,Y)W_9(U,W)Z - W_9(R(X,Y)U,W)Z - W_9(U,R(X,Y)W)Z - W_9(U,W)R(X,Y)Z = 0,$$
(3.26)

for any $X, Y, U, W, Z \in \chi(M)$. Setting $X = Z = \xi$ in (3.26) and making use of (3.9), (3.7), for $A = \frac{1}{2n}$, we obtain

$$(R(\xi, Y)W_{9})(U, W)\xi = R(\xi, Y)(k(\eta(W)U - \eta(U)W) + \mu(\eta(W)hU - \eta(U)hW) + A(S(U, W)\xi - \eta(W)QU)) - W_{9}(k(g(Y, U)\xi - \eta(U)Y) + \mu(g(hY, U)\xi - \eta(U)hY, W)\xi - W_{9}(U, k(g(Y, W)\xi - \eta(W)Y) + \mu(g(hY, W)\xi - \eta(W)hY))\xi - W_{9}(U, W)(k(\eta(Y)\xi - Y) - \mu hY) = 0.$$
(3.27)

Using (3.7), (3.8), (3.9) in (3.27), we get

$$\begin{aligned} kW_{9}(U,W)Y + \mu W_{9}(U,W)hY + k\mu(\eta(W)g(Y,hU)\xi \\ &-\eta(U)g(Y,hW)\xi) + \mu^{2}(1+k)(\eta(W)g(Y,U)\xi \\ &-\eta(U)g(Y,W)\xi) + k^{2}(g(Y,U)W - g(Y,W)U) \\ &+kA(\eta(U)S(Y,W)\xi - \eta(W)\eta(U)QY) \\ &+A\mu(\eta(U)S(hY,W)\xi + 2nk\eta(U)\eta(W)hY) \\ &+k\mu(g(Y,U)hW - g(Y,W)hU) + k\mu(g(hY,U)W \\ &-g(hY,W)U) + A\mu(S(U,hY)\eta(W)\xi - \eta(W)\eta(U)QhY) \\ &+\mu^{2}(g(hY,U)hW + g(hY,W)hU) - A\mu(S(U,W)hY \\ &+S(hY,U)\eta(W)\xi) + Ak(2nk\eta(W)\eta(U)Y - S(U,W)Y) = 0. \end{aligned}$$
(3.28)

Making use of (2.17), (2.1) and choosing $U = \xi$, in (3.28), we have

$$kS(Y,W) + \mu S(hY,W) - 2nk^2 g(Y,W) - 2nk\mu g(hY,W) = 0.$$
(3.29)

Replacing hY of Y in (3.29) and taking into account (2.7), we arrive

$$kS(Y,hW) + \mu(1+k)S(Y,W) - 2nk\mu(1+k)\eta(Y)\eta(W) -2nk^{2}g(W,hY) - 2nk\mu(1+k)g(Y,W) +2nk\mu(1+k)\eta(W)\eta(Y) = 0.$$
(3.30)

From (3.29), (3.30) and by using (2.7), we have

S(Y,W) = 2nkg(Y,W).

This tell us, *M* is an Einstein manifold. Conversely, let $M^{2n+1}(\varphi, \xi, \eta, g)$ be an Einstein manifold, i.e. S(Y,W) = 2nkg(Y,W), then from equations (3.26), (3.27), (3.28) and (3.30), we obtain *M* is a *W*₉ semi-symmetric. Which verifies our assertion.

Example 3.5. We consider the 3-dimensional manifold $M = \{(x, y, z) \in \mathbb{R}^3, z \neq 0\}$, where (x, y, z) are standard coordinates of \mathbb{R}^3 . The vector fields

$$e_1 = \frac{\partial}{\partial x}, \quad e_2 = 4z^2 \frac{\partial}{\partial x} + \frac{\partial}{\partial y}, \quad e_3 = \frac{\partial}{\partial z}.$$

Let g be the Riemannian metric defined by

$$g(e_1, e_2) = g(e_1, e_3) = g(e_2, e_3) = 0,$$

$$g(e_1, e_1) = g(e_2, e_2) = 1, \quad g(e_3, e_3) = -1$$

Let η be the 1-form defined by $\eta(X) = g(X, e_1)$ for any $X \in \chi(M)$. Let ϕ be the (1,1) tensor field defined by

 $\phi(e_1) = 0, \qquad \phi(e_3) = -e_2, \qquad \phi(e_2) = -e_3.$

Let ∇ be the Levi-Civita connection with respect to the metric tensor g. Then we get

 $[e_3, e_1] = 0, \ [e_1, e_2] = 0, \ [e_2, e_3] = -8ze_1.$

Then we have

$$\eta(e_1) = g(e_1, e_1) = 1, \ \phi^2 X = X - \eta(X)e_1, \ g(\phi X, \phi Y) = -g(X, Y) + \eta(X)\eta(Y),$$

for any $X, Y \in \chi(M)$. Hence, (ϕ, ξ, η, g) defines a paracontact metric structure on M for $e_1 = \xi$. The Levi-Civita connection ∇ of the metric g is given by the Koszul's formula

$$\begin{array}{lll} 2g(\nabla_X Y,Z) &=& Xg(Y,Z)+Yg(Z,X)-Zg(X,Y)\\ && -g(X,[Y,Z])-g(Y,[X,Z])+g(Z,[X,Y]). \end{array}$$

Using the above formula, we obtain.

Comparing the above relations with $\nabla_X e_1 = -\phi X + \phi h X$ *, we get*

$$he_2 = -(4z+1)e_2$$
, $he_3 = -(4z+1)e_3$, $he_1 = 0$.

Using the formula $R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]}Z$, we calculate the following:

$$R(e_2, e_1)e_1 = \left[\frac{1}{(4z-1)^2} - 1\right] \{\eta(e_1)e_2 - \eta(e_2)e_1\} + \left[\frac{1}{(4z-1)^3} - \frac{16z^2 + 1}{4z+1}\right] \{\eta(e_1)he_2 - \eta(e_2)he_1\}$$

= $-16z^2e_2$

$$R(e_3, e_1)e_1 = \left[\frac{1}{(4z-1)^2} - 1\right] \{\eta(e_1)e_3 - \eta(e_3)e_1\} + \left[\frac{1}{(4z-1)^3} - \frac{16z^2 + 1}{4z+1}\right] \{\eta(e_1)he_3 - \eta(e_3)he_1\} = -16z^2e_3$$

$$R(e_2, e_3)e_1 = \left[\frac{1}{(4z-1)^2} - 1\right] \{\eta(e_3)e_2 - \eta(e_2)e_3\} + \left[\frac{1}{(4z-1)^3} - \frac{16z^2 + 1}{4z+1}\right] \{\eta(e_3)he_2 - \eta(e_2)he_3\} = 0.$$

By the above expressions of the curvature tensor and using (2.9), we conclude that *M* is a generalized (k,μ) -paracontact metric manifold with $k = \left[\frac{1}{(4z-1)^2} - 1\right]$ and $\mu = \left[\frac{1}{(4z-1)^3} - \frac{16z^2+1}{4z+1}\right]$.

4. Conclusion

The aim of this paper is to classify (k, μ) -paracontact metric spaces satisfying certain curvature conditions. We present the curvature tensors of (k, μ) -Paracontact manifold satisfying the conditions $R \cdot W_6 = 0$, $R \cdot W_7 = 0$, $R \cdot W_8 = 0$ and $R \cdot W_9 = 0$. According these cases, (k, μ) -Paracontact manifolds have been characterized. Also, several results are obtained.

Acknowledgements

The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

- D. V. Aleekseevski, C. Medori, A. Tomassini, *Maximally homogeneous para-CR manifolds*, Ann. Glob. Anal. Geom., **30** (2006), 1-27.
- [2] M. Atçeken, P. Uygun, *Characterizations for totally geodesic submanifolds of* (k, μ)-paracontact metric manifolds, Korcan J. Math., 28(2020), 555-571.
- ^[3] G. Calvaruso, *Homogeneous paracontact metric three-manifolds*, Illinois J. Math., 55 (2011), 697-718.
- [4] B. Cappelletti-Montano, I. Küpeli Erken, C. Murathan, *Nullity conditions in paracontact geometry*, Differential Geom. Appl., **30** (2012), 665-693.
- S. Kaneyuki, F. L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J., 99 (1985), 173-187.
- ^[6] B. O. Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
- [7] G. P. Pokhariyal, *Relativistic significance of curvature tensors*, Internat. J. Math. Math. Sci., **5** (1) (1982), 133-139.
- [8] M. M. Tripathi, P. Gupta, *T*-curvature tensor on a semi-Riemannian manifold, **4** (1) (2011), 117-129.
- ^[9] P. Uygun, M. Atçeken, On (k, μ) -paracontact metricspaces satisfying some conditions on the W_0^{\star} curvature tensor, New Trend Math. Sci., **9** (2) (2021), 26-37.
- ^[10] P. Uygun, S. Dirik, M. Atçeken, T. Mert, *The geometry of invariant submanifolds of a* (k, μ) -paracontact metric manifold, Int. J. Eng. Technol., **84** (1) (2022), 355-363.
- ^[11] P. Uygun, S. Dirik, M. Atçeken, T. Mert, *Some characterizations invariant submanifolds of a* (k,μ) -paracontact space, Journal of Engineering and Research and Applied Science, **11** (1), (2022), 1967-1972.
- [12] V. Venkatesha, S. Basavarajappa, Invariant submanifolds of LP-Sasakian manifolds, Khayyam J. Math., 6 (1) (2020), 16-26.
- [13] V. Venkatesha, S. Basavarajappa, W₂-Curvature tensor on generalized sasakian space forms, Cubo A Mathematical Journal, 20(1) (2018), 17-29.
- ^[14] K. Yano, M. Kon, *Structures Manifolds*, Singapore, World Scientific, 1984.
- ^[15] S. Zamkovoy, *Canonical connections on paracontact manifolds*, Ann. Global Anal. Geom., **36** (2009), 37-60.
- ^[16] S. Zamkovoy, V. Tzanov, *Non-existence of flat paracontact metric structures in dimension greater than or equal to five*, Annuaire Univ. Sofia Fac. Math. Inform., **100** (2011), 27-34.