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ABSTRACT. We construct a sampling operator with the property that the smoother a function is, the faster its ap-
proximation is. We establish a direct estimate and a weak converse estimate of its rate of approximation in the uniform
norm by means of a modulus of smoothness and a K-functional. The case of weighted approximation is also con-
sidered. The weights are positive and power-type with non-positive exponents at infinity. This sampling operator
preserves every algebraic polynomial.
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1. INTRODUCTION

The general form of the sampling series or operator of the function f : R → R is given for
w > 0 by

(1.1) (Gχ
wf)(x) :=

∑
k∈Z

f

(
k

w

)
χ(wx− k), x ∈ R.

Here χ : R → R is referred to as the kernel of the operator. Under certain assumptions on χ,
we have that Gχ

wf is well-defined for any f in a given function class and Gχ
wf converges to f

either point-wise, or in norm, as w tends to infinity. For example, if χ is continuous on R, has
compact support and

(1.2)
∑
k∈Z

χ(u− k) = 1, u ∈ R,

then (see [10, Theorem 1])
lim

w→∞
Gχ

wf(x) = f(x)

at any point x ∈ R at which f is continuous, as, moreover, the convergence is uniform on R
provided that f is bounded and uniformly continuous on R. More general conditions on the
kernel, which provide such approximation, can be found e.g. in [5, 6, 9, 14, 15, 17].

Clearly, (1.2) implies that Gχ
w reproduces the constant functions. Given any positive integer

r, Butzer and Stens [10, pp. 165–168] constructed a kernel of compact support such that the
corresponding sampling operator reproduces the algebraic polynomials up to degree r − 1.
Another approach to achieve the same goal is given in [6, Section 3.2]. The purpose of the
present paper is to introduce a sampling operator which reproduces all algebraic polynomials.
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As a consequence, this sampling operator has the property that the smoother the function is, the
faster its approximation is. We estimate the rate of approximation in unweighted and weighted
uniform norm on the real line. The weights are of power-type with non-positive exponents at
infinity.

The contents of the paper are organized as follows. In the next section, we construct the
kernel of the sampling operator. We will consider and show that this sampling operator is
well-defined for a certain broad class of continuous functions. Then, in Section 3, we state our
main results about estimating its rate of approximation by a modulus of smoothness. Section
4 contains basic properties of the sampling operator, from which the main results are derived.
In the last section, we provide proofs of the main results.

2. THE DEFINITION OF THE SAMPLING OPERATOR

Let C(R) denote the space of the continuous (not necessarily bounded) functions on R and
CB(R) the space of the continuous bounded functions on R. Further, let ∥ ◦ ∥ stand for the
uniform norm in CB(R). Let Cr(R) and C∞(R) be the spaces of the functions that are r-times
and infinitely many times, respectively, continuously differentiable on R. Also, as usual, let
L(R) denote the space of the Lebesgue summable functions on R.

Let the function η : R → R be defined by

η(v) :=



1, v = 0,

e
− 1

e1/v2 − e , |v| < 1, v ̸= 0,

0, |v| ≥ 1.

Lemma 2.1. We have that η ∈ C∞(R).

Proof. The assertion of the lemma is established by elementary calculus. For the sake of com-
pleteness, we include it.

Clearly, η(v) is continuous on R and, for any j ∈ N+, η(j)(v) exists and is continuous on
R\{0,±1}. It remains to demonstrate that η(j)(v) exists and is continuous at v = 0,±1. We set

ξ(v) :=
1

e1/v2 − e
, v ∈ (−1, 1)\{0}.

First, by means of Faà di Bruno’s formula we get

η(j)(v) = η(v)
∑

m1,m2,...,mj

j! (−1)m1+m2···+mj

(m1! 1!m1)(m2! 2!m2) · · · (mj ! j!mj )
(2.1)

×
j∏

n=1

(
ξ(n)(v)

)mn

, v ∈ (−1, 1)\{0},

where the sum is over all non-negative integers m1,m2, . . . ,mj such that

1m1 + 2m2 + · · ·+ jmj = j.

Next, we verify by induction that

(2.2) ξ(n)(v) =
ξn+1(v)

v3n

n∑
ℓ=1

eℓ/v
2

pn,ℓ(v
2), v ∈ (−1, 1)\{0},

where pn,ℓ(x) are algebraic polynomials of degree n− 1.
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Now, using (2.1)-(2.2), we see by induction on j ∈ N+ that η(j)(v) exists at v = 0,±1 and is
equal to 0. Here, we use that η(v) is continuous at these points and limv→0,±1∓0 η

(j)(v) = 0 for
all j ∈ N+. �

We need the Fourier transform of functions in L(R). We use it in the form

f̂(v) :=

∫
R
f(u)e−ivudu, u ∈ R.

Lemma 2.2. There exists θ ∈ L(R) such that θ̂(v) = η(v), v ∈ R. Moreover,

(2.3) θ(u) =
1

π

∫ 1

0

η(v) cosuv dv, u ∈ R,

θ ∈ C∞(R) and θ(j)(u) = O(|u|−n) as u → ±∞ for all j, n ∈ N0.

Proof. The existence of θ as well as its representation (2.3) can be established by means of e.g. [8,
Proposition 6.3.10] (see also its proof; let us note that the Fourier transform is normalized dif-
ferently in [8]). The last two assertions of the lemma are established directly from the theorem
for differentiation under the integral sign and by integration by parts, as it is more convenient
to write θ(u) in the form

θ(u) =
1

2π

∫ 1

−1

η(v) cosuv dv

and use that η(n)(±1) = 0 for all n ∈ N0. �

We will consider the sampling operator

Gw := Gθ
w,

where Gθ
w is defined in (1.1) with χ := θ given in (2.3). As we will establish now, Gwf(x),

x ∈ R, is well defined for any f ∈ C(R) of at most polynomial growth at infinity. Actually,
more is valid.

Proposition 2.1. If f ∈ C(R) is such that f(x) = O(|x|ν) as x → ±∞ with some ν ∈ N0, then
Gwf ∈ C∞(R), w > 0, as, moreover,

(2.4) (Gwf)
(j)(x) = wj

∑
k∈Z

f

(
k

w

)
θ(j)(wx− k), x ∈ R, j ∈ N0,

the series being uniformly convergent on the compact intervals of R.

Proof. Below, we will denote by c positive constants, not necessarily the same at each occur-
rence, which are independent of x ∈ R and k. We have that

(2.5) |f(x)| ≤ c(1 + |x|)ν , x ∈ R.

Let j ∈ N0. By Lemma 2.2, we have

(2.6) |θ(j)(x)| ≤ c(1 + |x|)−ν−2, x ∈ R.

Let [a, b] be an arbitrary compact subinterval of R. Let γ := wmax{|a|, |b|}. Then for all
x ∈ [a, b] and k ∈ Z such that |k| ≥ γ, we have

1 + |wx− k| ≥ 1 + |k| − γ ≥ |k|+ 1

γ + 1
;
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hence, using (2.5) and (2.6), we arrive at the estimate∣∣∣∣f ( k

w

)
θ(j)(wx− k)

∣∣∣∣ ≤ c

(
1 +

|k|
w

)ν

(1 + |wx− k|)−ν−2

≤ c

(|k|+ 1)2
, x ∈ [a, b], |k| ≥ γ.

Now, the Weierstrass M-test implies that the series∑
k∈Z

f

(
k

w

)
θ(j)(wx− k)

is uniformly convergent on [a, b] for each j ∈ N0. Consequently, Gwf ∈ C∞(R) for every w > 0
and (2.4) holds. �

Remark 2.1. As it follows from Propositions 4.2 and 4.4 below, (Gwf)
(j)(x), j ∈ N0, is at most of the

same polynomial growth at infinity as f(x).

3. ESTIMATES OF THE RATE OF APPROXIMATION OF Gw

We will consider approximation by Gw in the weighted uniform norm with the weight

ρα,β(x) :=


|x|−α, x < −1,

1, −1 ≤ x ≤ 1,

x−β , x > 1,

where α, β ≥ 0. Let us explicitly note that the results obtained include the unweighted case
ρ0,0(x) ≡ 1. In the case α = β, we can instead write ρα,α, equivalently, in the concise form

ρα,α(x) :=
1

1 + |x|α
, x ∈ R.

As we observed earlier (Proposition 2.1), Gwf is a well-defined infinitely continuously differ-
entiable function on R for any f ∈ C(R) such that ρα,βf ∈ CB(R) with some α, β ≥ 0.

Let f ∈ C(R) be such that ρα,βf ∈ CB(R). We will use the modulus of smoothness of order
r ∈ N+ of f , defined for t > 0 by

ωr(f, t)α,β := sup
0<h≤t

∥ρα,β∆r
hf∥,

where ∆hf(x) := f(x + h/2) − f(x − h/2), x ∈ R, h > 0, and ∆r
h := ∆h(∆

r−1
h ). Clearly,

ρα,β∆
r
hf ∈ CB(R) for every f ∈ C(R) such that ρα,βf ∈ CB(R), and every h > 0.

We will establish the following direct estimate of the rate of approximation of Gw.

Theorem 3.1. Let α, β ≥ 0 and r ∈ N+. Then for all f ∈ C(R) such that ρα,βf ∈ CB(R), and all
w ≥ 1 there holds

∥ρα,β(Gwf − f)∥ ≤ c ωr(f, 1/w)α,β .

Above c is a positive constant whose value is independent of f and w.

This theorem and basic properties of the modulus of smoothness, or more directly Proposi-
tion 4.3 below imply that if f ∈ C∞(R) and ρα,βf

(r) ∈ CB(R) for all r ∈ N0, then

∥ρα,β(Gwf − f)∥ = O(w−r) as w → ∞ ∀r ∈ N+;

in particular, if f ∈ C∞(R) and f (r) ∈ CB(R) for all r ∈ N0, then

∥Gwf − f∥ = O(w−r) as w → ∞ ∀r ∈ N+.
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Also, let us note that Theorem 3.1 yields that Gw preserves any algebraic polynomial (see
also Corollary 4.1 and Remark 4.2 below).

Estimates of the rate of approximation of general sampling operators (1.1) in spaces of con-
tinuous functions associated with the weight ρ2,2 have been recently obtained in [1]. Similar
results for integral modifications of the general sampling operator were established in [2, 3].
Also, such results were proved for an integral form of general exponential sampling operators
in function spaces equipped with a logarithmic weight in [4, Section 5].

The assertion of Theorem 3.1 in the unweighted case follows from the one-dimensional form
of the general assertion in [15, Theorem 6, (8)]. A direct estimate of a different type than the one
in Theorem 3.1 was established for a very general class of sampling operators, in particular, in
the essential supremum norm with the weight ρα,α under certain additional assumptions on
f in [13, Theorem 31 and Remark 34]. There the rate of approximation of a general class of
multivariate quasi-projection operators in weighted Lp-spaces was considered.

The direct estimate in Theorem 3.1 is essentially best possible–the following equivalence
result holds.

Theorem 3.2. Let α, β ≥ 0, r ∈ N+, 0 < λ < r and f ∈ C(R) be such that ρα,βf ∈ CB(R). Then

∥ρα,β(Gwf − f)∥ = O(w−λ) ⇐⇒ ωr(f, t)α,β = O(tλ).

We will prove these theorems in the last section.

4. BASIC RELATIONS AND ESTIMATES

We will often apply the following auxiliary result (cf. [1, Proposition 1]).

Lemma 4.3. Let α, β ≥ 0 and j, ℓ ∈ N0. Then for all x ∈ R and w ≥ 1, there holds

(4.1)
∑
k∈Z

ρα,β

(
k

w

)−1

|wx− k|ℓ|θ(j)(wx− k)| ≤ cρα,β(x)
−1.

Above c is a positive constant whose value is independent of x ∈ R and w ≥ 1.

Proof. First, let us note that it is sufficient to establish (4.1) for x ≥ 0. This readily follows from
the relations

ρα,β(x) = ρβ,α(−x), x ∈ R,
and ∑

k∈Z

ρα,β

(
k

w

)−1

|wx− k|ℓ|θ(j)(wx− k)|

=
∑
k∈Z

ρβ,α

(
k

w

)−1

|w(−x)− k|ℓ|θ(j)(w(−x)− k)|, x ∈ R.

In the latter formula, we have taken into account that θ(u) is even; hence θ(2ℓ)(u) are even too,
and θ(2ℓ+1)(u) are odd. Thus, let x ≥ 0. We will estimate the sum on the negative k. We have

(4.2) ρα,β

(
k

w

)−1

≤ 1 +

∣∣∣∣ kw
∣∣∣∣α ≤ 2|k|α ≤ 2(wx− k)α, k ≤ −1, w ≥ 1.

Let n ∈ N+ be such that α + ℓ − n < −1. By virtue of Lemma 2.2, for any fixed j ∈ N0 there
exists a positive constant c such that for all u ≥ 1 there holds

(4.3) |θ(j)(u)| ≤ cu−n.
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Since wx− k ≥ 1 for k ≤ −1, using (4.2) and (4.3), we get∑
k≤−1

ρα,β

(
k

w

)−1

|wx− k|ℓ|θ(j)(wx− k)| ≤ c
∑
k≤−1

(wx− k)α+ℓ−n

≤ c
∑
k≥1

kα+ℓ−n ≤ c.

(4.4)

To estimate the sum on the non-negative k, we take into account that

ρα,β

(
k

w

)−1

≤ 1 +

(
k

w

)β

≤ 1 + c

(∣∣∣∣ kw − x

∣∣∣∣β + xβ

)
≤ c(1 + |wx− k|β + xβ), k ≥ 0, w ≥ 1.

Let n ∈ N+ be such that β+ ℓ−n < −1. By virtue of Lemma 2.2, there exists a positive constant
c such that

|θ(j)(u)| ≤ c(1 + |u|)−n, u ∈ R.
Consequently, similarly as in the previous case, we arrive at∑

k≥0

ρα,β

(
k

w

)−1

|wx− k|ℓ|θ(j)(wx− k)|

≤ c
∑
k≥0

(1 + |wx− k|β + xβ)|wx− k|ℓ(1 + |wx− k|)−n

≤ c
∑
k≥0

(1 + |wx− k|)β+ℓ−n + cxβ
∑
k≥0

(1 + |wx− k|)ℓ−n

≤ c(1 + xβ)
∑
k≥0

(1 + |wx− k|)β+ℓ−n

≤ c(1 + xβ),

as at the last estimate we have taken into consideration that the series
∑

k≥0(1 + |u− k|)β+ℓ−n

is convergent for every u ≥ 0 and its sum is bounded on [0,∞). The latter can be easily
verified if we consider instead the series

∑
k∈Z(1 + |u − k|)β+ℓ−n for u ∈ R. Clearly, it is

uniformly convergent on each compact interval; hence its sum is a continuous function on R.
In addition, the sum is 1-periodic; consequently, it is bounded on R. Combining the estimates
we established above on the sums on k < 0 and k ≥ 0, we arrive at∑

k∈Z

ρα,β

(
k

w

)−1

|wx− k|ℓ|θ(j)(wx− k)| ≤ c(1 + xβ), x ≥ 0;

hence (4.1) follows for x ≥ 0. In view of the observation, we made in the beginning about the
symmetry of the cases x ≤ 0 and x ≥ 0, the proof of the lemma is complete. �

We proceed to the basic properties of the operator Gw, which we will later use to establish
estimates of its rate of approximation. We begin with showing that the family of operators
{Gw}w≥1 is uniformly bounded in the weighted spaces of continuous functions associated with
the uniform norm with the weight ρα,β .

Henceforward, c denotes positive constants, not necessarily the same at each occurrence,
which are independent of the function and the operator order w.
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Proposition 4.2. Let α, β ≥ 0. Then for all f ∈ C(R) such that ρα,βf ∈ CB(R), and all w ≥ 1 there
holds

∥ρα,βGwf∥ ≤ c ∥ρα,βf∥.

Proof. We have

|ρα,β(x)Gwf(x)| ≤ ρα,β(x)
∑
k∈Z

ρα,β

(
k

w

)−1

|θ(wx− k)| ∥ρα,βf∥, x ∈ R.

Then the assertion follows immediately from Lemma 4.3 with j = ℓ = 0. �

The discrete moment of θ of order j ∈ N0 is defined by

mj(u) :=
∑
k∈Z

(k − u)j θ(u− k), u ∈ R.

The following assertions for the discrete moments of θ holds true.

Lemma 4.4. We have m0(u) = 1 and mj(u) = 0, j ∈ N+, for all u ∈ R.

Proof. The proof is standard–based on the Poisson summation formula (see e.g. [16, Theo-
rem 4.2.8] or [8, Propositions 4.1.5, 5.1.28 and 5.1.29, and (3.1.22)]) and connected with certain
Strang-Fix type conditions on θ (see e.g. [10, Lemma 3]). For the readers’ convenience we in-
clude it. We apply the Poisson summation formula to the function θj(u) := ujθ(u), j ∈ N0. We
have θj ∈ L(R) by virtue of Lemma 2.2. The Fourier transform of θj is

(4.5) θ̂j(v) = ij θ̂(j)(v) = ijη(j)(v), v ∈ R,

where we have taken into account Lemma 2.2. Trivially, the series
∑

k∈Z |θ̂j(2πk)| is convergent.
Now, the Poisson summation formula, (4.5), η(j)(0) = 0 for j ≥ 1 (see Lemma 2.1) and

η(j)(v) = 0 for |v| > 1 and j ≥ 0 yield

mj(u) = (−1)j
∑
k∈Z

θj(u− k) = (−1)j
∑
k∈Z

θ̂j(2πk)e
i2πku

= (−i)j
∑
k∈Z

η(j)(2πk)ei2πku

=

{
1, u ∈ R, j = 0,

0, u ∈ R, j ∈ N+.

�

The following Jackson-type inequality holds true for Gw.

Proposition 4.3. Let α, β ≥ 0 and r ∈ N+. Then for all g ∈ Cr(R) such that ρα,βg, ρα,βg(r) ∈
CB(R), and all w ≥ 1 there holds

∥ρα,β(Gwg − g)∥ ≤ c

wr
∥ρα,βg(r)∥.

Proof. We expand g(k/w) by Taylor’s formula at the point x ∈ R to get

(4.6) g

(
k

w

)
=

r−1∑
j=0

g(j)(x)

j!

(
k

w
− x

)j

+
1

(r − 1)!

∫ k/w

x

(
k

w
− u

)r−1

g(r)(u) du.
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Then, taking into account Lemma 4.4, we get the relation

(4.7) (Gwg)(x)− g(x) =
1

(r − 1)!

∑
k∈Z

∫ k/w

x

(
k

w
− u

)r−1

g(r)(u) du θ(wx− k), x ∈ R.

Consequently,

(4.8) |(Gwg)(x)− g(x)| ≤ ∥ρα,βg(r)∥
(r − 1)!

∑
k∈Z

∣∣∣∣∣
∫ k/w

x

∣∣∣∣ kw − u

∣∣∣∣r−1

ρα,β(u)
−1du

∣∣∣∣∣ |θ(wx− k)|, x ∈ R.

The function ρα,β(u)
−1 is positive, decreasing on (−∞, 0], and increasing on [0,+∞); hence

ρα,β(u)
−1 ≤ ρα,β(x)

−1 + ρα,β

(
k

w

)−1

for u between x and
k

w
.

Therefore, we deduce from (4.8) that

|(Gwg)(x)− g(x)|

≤∥ρα,βg(r)∥
(r − 1)!

∑
k∈Z

∣∣∣∣∣
∫ k/w

x

(
k

w
− u

)r−1

du

∣∣∣∣∣
(
ρα,β(x)

−1 + ρα,β

(
k

w

)−1
)
|θ(wx− k)|

=
∥ρα,βg(r)∥

r!wr

∑
k∈Z

|wx− k|r
(
ρα,β(x)

−1 + ρα,β

(
k

w

)−1
)
|θ(wx− k)|

=
∥ρα,βg(r)∥

r!wr
ρα,β(x)

−1
∑
k∈Z

|wx− k|r|θ(wx− k)|

+
∥ρα,βg(r)∥

r!wr

∑
k∈Z

ρα,β

(
k

w

)−1

|wx− k|r|θ(wx− k)|, x ∈ R.

Now, the assertion of the proposition follows from Lemma 4.3 with j = 0 and ℓ = r, as to
estimate the sum

∑
k∈Z |wx− k|r|θ(wx− k)|, we apply it with α = β = 0. �

If p is an algebraic polynomial of degree at most n, then ρn,np ∈ CB(R) and Proposition 4.3
with r = n+ 1 implies that Gw preserves p for all w ≥ 1.

Corollary 4.1. We have Gwp = p for any algebraic polynomial p and all w ≥ 1.

Remark 4.2. Actually, as it is quite easy to see, the assertion of the corollary holds for all w > 0.

We will need a Bernstein-type inequality for Gw.

Proposition 4.4. Let α, β ≥ 0 and r ∈ N+. Then for all f ∈ C(R) such that ρα,βf ∈ CB(R), and all
w ≥ 1 there holds

∥ρα,β(Gwf)
(r)∥ ≤ cwr ∥ρα,βf∥.

Proof. Let us first recall that Gwf ∈ C∞(R) (see Proposition 2.1). Then, by virtue of (2.4), we
have

|ρα,β(x)(Gwf)
(r)f(x)| ≤ wrρα,β(x)

∑
k∈Z

ρα,β

(
k

w

)−1

|θ(r)(wx− k)| ∥ρα,βf∥, x ∈ R.

Now, the estimate in the proposition follows from Lemma 4.3 with j = r and ℓ = 0. �
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The last auxiliary result for Gw, we will need, is an estimate of the weighted uniform norm
of the derivatives of Gwg for smooth g. In order to establish it, we will make use of a property
of the discrete moments of the derivatives of θ, which is similar to Lemma 4.4. We set

mr,j(u) :=
∑
k∈Z

(k − u)j θ(r)(u− k), u ∈ R.

The following assertions for the discrete moments of θ(r) holds true.

Lemma 4.5. Let r ∈ N+. We have mr,j(u) = 0 for all u ∈ R, where j = 0, . . . , r − 1.

Proof. Just similarly as in the proof of Lemma 4.4, we apply the Poisson summation formula
but to the function θr,j(u) := ujθ(r)(u), j ∈ N0. Since θ̂(r)(v) = (iv)r θ̂(v) = (iv)rη(v), v ∈ R
(recall Lemma 2.2), we get

θ̂r,j(v) = ij θ̂(r)
(j)

(v) = ir+j
(
vrη(v)

)(j)
, v ∈ R.

We have for j = 0, . . . , r − 1(
vrη(v)

)(j)
=

j∑
ℓ=0

(
j

ℓ

)
r(r − 1) · · · (r − ℓ+ 1)vr−ℓη(j−ℓ)(v);

hence, we get θ̂r,j(2πk) = 0 for all k ∈ Z.
Now, the Poisson summation formula yields

mr,j(u) = (−1)j
∑
k∈Z

θr,j(u− k) = (−1)j
∑
k∈Z

θ̂r,j(2πk)e
i2πku ≡ 0.

�

Proposition 4.5. Let α, β ≥ 0 and r ∈ N+. Then for all g ∈ Cr(R) such that ρα,βg(r) ∈ CB(R), and
all w ≥ 1 there holds

∥ρα,β(Gwg)
(r)∥ ≤ c ∥ρα,βg(r)∥.

Proof. Since ρα,βg
(r) ∈ CB(R), then g(x) = O(|x|ν) as x → ±∞ with some ν ∈ N+. Then, by

(2.4), we have

(4.9) (Gwg)
(r)(x) = wr

∑
k∈Z

g

(
k

w

)
θ(r)(wx− k), x ∈ R.

We substitute g(k/w) with its Taylor’s expansion (4.6) and apply Lemma 4.5 to arrive at

(Gwg)
(r)(x) =

wr

(r − 1)!

∑
k∈Z

∫ k/w

x

(
k

w
− u

)r−1

g(r)(u) du θ(r)(wx− k), x ∈ R.

We complete the proof with the same argument, used to establish Proposition 4.3, but with θ(r)

in place of θ and we apply Lemma 4.3 with j = ℓ = r. �

5. ESTIMATES OF THE RATE OF APPROXIMATION OF Gw BY A K-FUNCTIONAL

In this section, we will establish a direct inequality and a matching weak converse inequality
for the rate of approximation of Gw in the uniform norm on R with the weight ρα,β by means
of a K-functional. These estimates follow from the basic properties of the operator given in the
preceding section by means of standard techniques (see e.g. [11, Chapter 7, §§ 3 and 5] or [12,
Chapters 9 and 10]).
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The K-functional we will use is defined for f ∈ C(R) such that ρα,βf ∈ CB(R), and t > 0
by

Kr(f, t)α,β := inf{∥ρα,β(f − g)∥+ t ∥ρα,βg(r)∥ : g ∈ Cr(R), ρα,βg, ρα,βg(r) ∈ CB(R)}.

We proceed to the direct estimate.

Theorem 5.3. Let α, β ≥ 0 and r ∈ N+. Then for all f ∈ C(R) such that ρα,βf ∈ CB(R), and all
w ≥ 1 there holds

∥ρα,β(Gwf − f)∥ ≤ cKr(f, w
−r)α,β .

Proof. Let g ∈ Cr(R) be such that ρα,βg, ρα,βg(r) ∈ CB(R). Then, by virtue of Propositions 4.2
and 4.3, we get

∥ρα,β(Gwf − f)∥ ≤ ∥ρα,βGw(f − g)∥+ ∥ρα,β(Gwg − g)∥+ ∥ρα,β(g − f)∥

≤ c

(
∥ρα,β(f − g)∥+ 1

wr
∥ρα,βg(r)∥

)
.

Now, we take the infimum on g to arrive at the assertion of the theorem. �

The following weak converse inequality holds.

Theorem 5.4. Let α, β ≥ 0 and r ∈ N+. Then for all f ∈ C(R) such that ρα,βf ∈ CB(R), and all
w, v ≥ 1 there holds

Kr(f, w
−r)α,β ≤ ∥ρα,β(Gvf − f)∥+ c

( v

w

)r
Kr(f, v

−r)α,β .

Proof. By virtue of Propositions 2.1, 4.2 and 4.4, we have Gvf ∈ Cr(R) and ρα,βGvf, ρα,β(Gvf)
(r)

∈ CB(R). Then

(5.1) Kr(f, w
−r)α,β ≤ ∥ρα,β(f −Gvf)∥+

1

wr
∥ρα,β(Gvf)

(r)∥.

Let g ∈ Cr(R) be such that ρα,βg, ρα,βg(r) ∈ CB(R). Then, we use Propositions 4.4 and 4.5 to
estimate the second term on the right above as follows:

∥ρα,β(Gvf)
(r)∥ ≤ ∥ρα,β(Gv(f − g))(r)∥+ ∥ρα,β(Gvg)

(r)∥

≤ cvr
(
∥ρα,β(f − g)∥+ 1

vr
∥ρα,βg(r)∥

)
.

(5.2)

Combining (5.1) and (5.2), we arrive at

Kr(f, w
−r)α,β ≤ ∥ρα,β(Gvf − f)∥+ c

( v

w

)r (
∥ρα,β(f − g)∥+ 1

vr
∥ρα,βg(r)∥

)
.

Finally, we take the infimum on g to derive the assertion of the theorem. �

Theorems 5.3 and 5.4 yield the following characterization of the rate of the approximation
of Gw.

Corollary 5.2. Let α, β ≥ 0, r ∈ N+, 0 < λ < r and f ∈ C(R) be such that ρα,βf ∈ CB(R). Then

∥ρα,β(Gwf − f)∥ = O(w−λ) ⇐⇒ Kr(f, t)α,β = O(tλ/r).
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Proof. If Kr(f, t)α,β = O(tr/λ), then Theorem 5.3 implies ∥ρα,β(Gwf − f)∥ = O(w−λ).
To establish the inverse implication, we will use the Berens-Lorentz Lemma [7]. We will

apply it in the form given in [11, Chapter 10, Lemma 5.2]. We set ϕ(x) := Kr(f, x
2)α,β , 0 < x ≤

1, and µ := 2λ/r ∈ (0, 2). Then Theorem 5.4 implies

ϕ(x) ≤ cf

(
yµ +

x2

y2
ϕ(y)

)
, 0 < x ≤ y ≤ 1,

where cf is a positive constant whose value may depend on f , but not on x and y. Now, the
Berens-Lorentz Lemma yields

ϕ(x) ≤ c′cfx
µ, 0 < x ≤ 1,

with some positive constant c′; hence Kr(f, t)α,β = O(tλ/r). �

The K-functional above and the modulus of smoothness given in Section 3 are equivalent,
that is, there exist constants c, t0 > 0 such that for all f ∈ C(R) with ρα,βf ∈ CB(R), and all
t ∈ (0, t0] there hold (see [12, Theorem 6.1.1 with φ ≡ 1 and p = ∞])

(5.3) c−1ωr(f, t)α,β ≤ Kr(f, t
r)α,β ≤ c ωr(f, t)α,β .

Actually, it can be shown by means of the standard method to prove the above equivalence
in the unweighted case (see e.g. [11, p. 177]) that it holds for any fixed positive t0 (with c
depending on t0).

Combining Theorem 5.3 and Corollary 5.2 with relations (5.3) with t0 = 1, we immediately
get Theorems 3.1 and 3.2.
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