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Abstract:	 Flow	 simulations	 are	 performed	 to	 analyze	 the	 resin	 flow	 behavior	
through	 fibrous	 reinforcements	 to	promote	void-free	composite	manufacturing	
with	excellent	mechanical	properties.	These	flow	simulations	require	an	essential	
parameter	known	as	permeability	tensor	which	is	defined	as	the	resistance	to	the	
flow	of	resin	due	to	fibrous	reinforcement.	This	study	proposes	a	key	strategy	to	
determine	 all	 in-plane	 permeability	 components	 from	 a	 single	 rectilinear	 flow 
experiment.	The	proposed	method	is	based	on	introducing	intentional	disturbance	
to	 the	 mold	 domain,	 which	 transforms	 the	 one-dimensional	 flow	 into	 a	 two-
dimensional	 flow.	 The	 process	 is	 divided	 into	 two	 steps,	 the	 experimental	
determination	 of	 flow	 arrival	 times	 at	 designated	 locations	 within	 the	 mold	
domain	and	comparing	it	to	the	numerical	flow	arrival	times	(obtained	using	LIMS	
software)	via	the	residual	sum	of	squares	(RSS).	An	optimization	algorithm	based	
on	 particle	 swarm	 optimization	 (PSO)	 is	 established	 to	 reduce	 the	RSS	 to	 get	
accurate	permeability	predictions.	The	validation	study	of	the	proposed	strategy	
has	 been	 practiced	 for	 three	 cases.	 The	 results	 show	 that	 this	 method	 can	
effectively	 characterize	 the	 in-plane	 permeability	 components	 from	 a	 single	
rectilinear	injection	experiment.		

Parçacık	sürüsü	optimizasyonu	ile	1-boyutlu	akış	analizi	yoluyla	kompozit	kumaşların	
geçirgenlik	tensörünün	sayısal	karakterizasyonu	

Anahtar	Kelimeler	
Lifli	takviye,	
Geçirgenlik	tensörü,	
Akış	Simülasyonları,	
Parçacık	Sürü	
Optimizasyonu	

Öz:	Akış	 simülasyonları,	 yüksek mekanik	 özelliklere	 sahip	 boşluksuz	 kompozit	
üretimini	 teşvik	etmek	 için	 lifli	 takviyeler	yoluyla	reçine	akış	davranışını	analiz	
etmek	 için	gerçekleştirilir.	 Bu	akış	 simülasyonları,	 lifli	 takviye	nedeniyle	 reçine	
akışına	karşı	direnç	olarak	tanımlanan,	geçirgenlik	tensörü	olarak	bilinen	önemli	
bir	parametre	gerektirir.	Bu	çalışma,	tek	doğrusal	enjeksiyondan	tüm	düzlem	içi	
geçirgenlik	bileşenlerini	belirlemek	için	anahtar	bir	strateji	sunmaktadır.	Yöntem,	
bir-boyutlu	 akışı	 iki-boyutlu	 bir	 akışa	 dönüştüren,	 kalıp	 alanına	 kasıtlı	 bir	
düzensizlik	 bölgesinin	 tanımlanmasına	 dayanmaktadır.	 Öncelikle,	 kalıp	 alanı	
içinde	 belirlenmiş	 konumlardaki	 akış	 varış	 zamanlarının	 deneysel	 olarak	
belirlenmesi	ve	bunu,	artık	kareler	 toplamı	(RSS)	yoluyla	LIMS	yazılımı	 ile	elde	
edilmiş	 sayısal	 akış	 varış	 zamanlarıyla	 karşılaştırılmaktadır.	 Geçirgenlik	
tahminlerini	 hızlı	 ve	 yüksek	 doğrulukta	 elde	 etmek	 için	 parçacık	 sürüsü	
optimizasyonuna	 (PSO)	 dayalı	 bir	 optimizasyon	 algoritması	 kurulmuştur.	
Önerilen	stratejinin	validasyon	çalışması	üç	farklı	geçirgenlik	tensörü	durmunu	ile	
yapılmıştır.	Sonuçlar,	bu	yöntemin,	tek	bir	doğrusal	enjeksiyon	deneyi	ile	düzlem	
içi	 geçirgenlik	 bileşenlerini	 etkili	 bir	 şekilde	 karakterize	 edebildiğini	
göstermektedir.	
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1. Introduction
Liquid	 composite	 molding	 (LCM)	 is	 a	 composite	 manufacturing	 process	 widely	 adapted	 across	 numerous
industries.	In	this	process,	a	dry	fibrous	reinforcement	in	the	shape	of	the	final	part	geometry	is	placed	in	a	mold,
and	then	a	liquid	resin	system	is	allowed	to	flow	through	the	reinforcement	under	the	action	of	applied	pressure
difference.	The	liquid	resin	is	then	allowed	to	cure,	after	which	the	composite	is	demolded.	The	resin	must	fill	all
the	empty	spaces	within	the	fibrous	reinforcement	so	that	the	resulting	composite	is	void-free	and	has	excellent
mechanical	 properties.	 To	 achieve	 this,	 it	 is	 essential	 to	 analyze	 and	 control	 the	 flow	 of	 resin	 through	 the
reinforcement.	An	effective	way	to	analyze	the	resin	flow	is	to	model	it	numerically.	Mathematically,	the	flow	of
resin	through	the	fibrous	reinforcement	can	be	modeled	as	flow	through	porous	media	by	using	Darcy's	law:

where	⟨𝐮⟩	is	the	volume-averaged	flow	velocity,	µ	is	the	resin	viscosity,	∇p	is	the	applied	pressure	gradient	across	
the	gate	and	vent	locations,	and	𝐊	is	the	permeability	tensor.	Permeability	is	defined	as	the	resistance	to	flow	of	
the	resin	due	to	the	fibrous	reinforcement.	It	is	an	essential	input	parameter	for	resin	flow	simulations	to	design	
and	optimize	gate	and	vent	locations	and	other	manufacturing	parameters	for	LCM	processes	[1–3].	Permeability	
tensor	is	represented	as	a	second-order	symmetric	tensor,	and	for	fluid	flow	in	an	anisotropic	media,	it	is	given	as:	

In	composite	processing	design,	the	accuracy	of	the	permeability	tensor	plays	such	a	crucial	role	that	there	have	
been	many	attempts	to	characterize	it.	All	the	characterization	methods	presented	in	the	literature	[4]–[10]	can	
be	divided	 into	two	main	categories	based	on	their	 injection	methods:	radial	 injection	and	rectilinear	 injection	
flow.	Radial	injection	allows	the	determination	of	complete	in-plane	permeability	tensor	from	a	single	experiment,	
whereas	rectilinear	injection	requires	at	least	three	experiments.	This	fundamental	difference	between	radial	and	
rectilinear	injection	methods	makes	the	former	method	more	attractive	because	of	the	fewer	experimental	efforts.	
However,	 it	has	been	established	 that	 results	obtained	 from	 radial	 injection	have	high	variations	and	are	not	
reproducible	[10]–[12].	On	the	other	hand,	the	reproducibility	of	permeability	results	via	rectilinear	injection	has	
been	confirmed	in	an	international	benchmark	study	[13].	

There	 have	 also	 been	many	 attempts	 to	 determine	 dual	 scale	 or	 three-dimensional	 (3D)	 permeability	 using	
numerical	methods	[14].	In	3D	permeability,	through-thickness	resin	flow	behavior	is	also	considered	along	with	
the	planar	 flow;	hence,	Eq	 (2)	 can	 represent	 three	 additional	permeability	 components,	 i.e.,	Kzz,	Kxz,	 and	Kyz.	
Okonkwo	et	al.	[15]	used	the	radial	flow	method	and	optimization	routine	to	characterize	3D	permeability,	while	
Yun	et	al.	[16]	explored	a	similar	approach	to	characterize	the	3D	permeability	for	thick	preforms.	Gokce	et	al.	[17]	
used	the	rectilinear	injection	method	to	characterize	the	transverse	permeability	with	the	help	of	preform	with	
previously	known	in-plane	permeability	components.		

Despite	 its	ability	 to	provide	accurate	permeability	predictions,	not	much	work	has	been	done	 to	 reduce	 the	
experimental	efforts	involved	in	the	rectilinear	injection	method;	therefore,	the	focus	of	this	study	is	to	utilize	this	
technique	for	in-plane	permeability	characterization	and	to	reduce	the	related	complexities.	Lundström	et	al.	[4]	
proposed	 a	multi-cavity	 rectilinear	 flow	 technique	 to	 determine	 in-plane	 permeability	 tensor	 from	 a	 single	
experiment.	Di	Fratta	et	al.	[5]	suggested	a	strategy	to	use	flow	front	angle	for	complete	determination	of	in-plane	
permeability	tensor	using	two	rectilinear	flow	measurements.	Moreover,	Lugo	et	al.	[18]	developed	an	analytical	
method	to	determine	in-plane	permeability	(in	flow	direction)	as	well	as	the	permeability	in	the	through-thickness	
direction	from	a	single	rectilinear	experiment.	The	method	depends	on	the	use	of	preform	partially	covered	with	
distribution	media	(a	highly	permeable	 layer).	The	presence	of	distribution	media	introduces	a	flow	difference	
between	 the	 top	 and	 bottom	 of	 the	preform,	 causing	 	 two-dimensional	 (2D)	 flow	 conditions	 in	 the	 through-
thickness	direction.	This	phenomenon	provides	the	means	to	estimate	the	through-thickness	permeability	from	
the	 same	 single	 experiment.	The	 aforementioned	 studies	 have	 shown	 that	 it	 is	 possible	 to	 determine	 textile	
permeability	with	fewer	experiments	than	required	when	using	the	rectilinear	 injection	method.	However,	the	
number	of	the	experiments	needed	to	determine	in-plane	permeability	via	the	rectilinear	method	can	be	further	
reduced,	and	the	process	can	be	simplified.	

This	 study	 presents	 a	 new	 and	 improved	methodology	 to	 characterize	 all	 three	 components	 of	 the	 in-plane	
permeability	tensor	(Kxx,	Kxy,	and	Kyy)	from	a	single	rectilinear	flow	experiment.	The	main	idea	of	the	proposed	
method	 is	 to	determine	all	 three	components	of	 the	 in-plane	permeability	 tensor	by	utilizing	 the	 intentionally	
introduced	disturbance	 to	 the	unidirectional	 (1D)	 resin	 flow	 in	 the	 in-plane	 space.	The	 resin	arrival	 times	at	

⟨𝐮⟩ = −
𝐊
µ ⋅ ∇p	 (1)	

𝐊 =	 ,
𝐾!! 𝐾!" 𝐾!#
𝐾!" 𝐾"" 𝐾"#
𝐾!# 𝐾"# 𝐾##

.	 (2)
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different	sensor	locations	are	recorded	during	the	resin	flow.	Then,	an	optimization	routine	is	created	using	the	
particle	 swarm	optimization	 (PSO)	method	 in	which	 the	permeability	values	 in	a	 flow	 simulation	of	a	 similar	
domain	 are	 updated	 continuously	 until	 the	 error	 between	 arrival	 times	 from	 simulation	 and	 experiment	 is	
minimized.	

2. Methodology

2.1. In-plane	Permeability	Tensor	Characterization	
The	objective	of	this	study	to	use	a	single	rectilinear	experiment	to	characterize	in-plane	permeability	components	
is	based	on	the	introduction	of	disturbance	to	the	mold	domain.	The	numerical	simulation	for	the	flow	through	
porous	media	is	performed	with	Liquid	Injection	Molding	Simulation	(LIMS).	LIMS	[19]	is	a	finite	element/control	
volume-based	method	that	uses	Darcy's	law	to	simulate	the	mold	filling	process	of	resin	transfer	molding	(RTM)	
and	other	related	processes.	LIMS	can	be	used	to	optimize	gates	and	vent	locations	in	a	mold	and	design	injection	
scheme	 which	 allows	 to	 strategically	 control	 the	 resin	 flow	 into	 the	 mold	 [20,21].	 However,	 LIMS	 needs	
permeability	tensor	values,	resin	viscosity,	fiber	volume	fraction,	and	boundary	conditions	to	simulate	the	resin	
flow	and	gives	resin	arrival	time	for	each	node	of	discretized	geometry.	

The	mold	domain	used	in	this	study	is	shown	in	Figure	1	along	with	its	dimensions	and	the	corresponding	mesh.	
The	dimensions	of	mold	 in	both	cases	are	0.5	m	x	0.2	m,	while	 the	dimensions	of	 the	rectangular	disturbance	
located	at	 the	 top-left	of	 the	mold	domain	are	0.1	m	 x	0.04	m.	The	dimension	and	position	of	 the	rectangular	
disturbance	will	not	have	any	effect	on	the	prediction	behavior.	A	transversely	anisotropic	preform	of	0.5	fiber	
volume	fraction	(with	Kxx	=	Kyy	=	5.65	x	10-10	m2	and	Kxy	=	0)	and	rectilinear	linear	injection	is	considered	along	
the	x-direction	for	both	cases.	Moreover,	the	left	side	of	the	mold	is	assigned	as	inlet	gate	with	1x105	Pa	pressure,	
whereas	the	right	side	is	considered	to	be	the	vent	for	the	flow	of	the	resin	having	a	viscosity	of	0.1	Pa.s.	Figure	2	
and	Figure	3	present	the	fill	time	behavior	and	pressure	distribution,	respectively,	for	both	cases	i.e.,	for	a	regular	
mold	and	a	mold	with	the	rectangular	disturbance.	Figures	2(b)	and	3(b)	demonstrate	the	changes	 in	 fill-time	
behavior	 and	 pressure	 distribution	 experienced	 by	 the	 flowing	 resin	 due	 to	 the	 presence	 of	 the	 rectangular	
disturbance	in	the	mold.	As	shown	in	Figure	2(b),	the	disturbance	in	the	mold	affects	the	fill	time	behavior	and	
results	in	two	velocity	components,	i.e.,	in	x-	and	y-direction.	Similarly,	the	pressure	distribution	in	Figure	3(b)	
shows	two	components	of	pressure	gradient,	indicating	that	the	initial	1D	flow	transformed	into	a	2D	flow.	This	
transformation	of	the	flow	is	extremely	crucial	in	determining	all	in-plane	permeability	components	from	a	single	
rectilinear	experiment.	Also,	the	proposed	methodology	is	highly	dependent	on	the	resin	fill	time.		

Figure	1.	(a)	Dimensions	and	(b)	Mesh	of	the	mold	domain	used	in	this	study.		

Figure	2.	Fill	time	(seconds)	behavior	for	transversely	anisotropic	preform	in	(a)	regular	mold	and	(b)	mold	with	rectangular	
disturbance.		
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Figure	3.	Pressure	(Pa)	distribution	for	transversely	anisotropic	preform	in	(a)	regular	mold	and	(b)	mold	with	rectangular	
disturbance.		

The	steps	involved	in	this	study	to	characterize	the	permeability	components	are	summarized	in	Figure	4.	The	first	
step	 is	 to	conduct	 the	virtual	1D	 flow	experiment	 to	record	 the	experimental	 flow	arrival	 time	 (T$,&'()	 for	 the	
assigned	in-plane	permeability	tensor.	In	the	second	step,	LIMS	is	used	to	compute	numerical	resin	arrival	time	
(T$,)*+,)	for	the	permeability	tensor	values	of	the	upper	and	lower	limits	of	the	search	domain.	The	flow	arrival	
time	 obtained	 from	 LIMS	 is	 then	 compared	 to	 experimentally	 recorded	 resin	 arrival	 time	 and	manipulated	
continuously	by	updating	 the	permeability	 tensor	guess	 to	reduce	 the	residual	sum	of	squares	(RSS).	The	RSS	
between	the	experimental	and	simulated	flow	arrival	time	is	used	as	a	parameter	to	quantify	their	difference.	RSS	
is	calculated	as	follows:	

In	Eq	(3),	N	is	the	total	number	of	nodes	in	a	discretized	geometry	and/or	corresponding	sensors	to	detect	the	
position	of	resin	in	an	experimental	setup,	T$,&'(	is	virtual	experimental	flow	arrival	time	and	T$,)*+,	is	simulated	
flow	arrival	time	at	ith	node/sensor.	

The	 accuracy	 of	 the	 predicted	 results	 depends	 on	 the	 minimization	 of	 RSS,	 and	 for	 this	 purpose	 different	
optimization	algorithms	can	be	used.	Okonkwo	et	al.	[15]	used	the	Golden	Section	Search	Minimization	Technique	
(G2MST),	and	Yun	et	al.	[16]	used	Simplex	Algorithm	to	characterize	3D	 fabric	permeability.	However,	 in	both	
cases,	determination	of	 the	 initial	permeability	values	was	 the	 initial	requirement	 to	execute	 the	optimization	
process.	Therefore,	 in	 this	study,	a	population-based	stochastic	 technique	named	Particle	Swarm	Optimization	
(PSO)	is	used	to	minimize	RSS,	which	does	not	require	initial	guesses	to	start	the	optimization	process.		

Figure	4.	Methodology	for	the	characterization	of	all	in-plane	permeability	components	via	single	rectilinear	injection	
experiment.	
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2.2. Particle	Swarm	Optimization	
Particle	Swarm	Optimization	(PSO)	is	a	population-based	optimization	method	initially	developed	by	Eberhart	et	
al.	[22].	The	inspiration	behind	the	development	of	PSO	was	derived	from	the	socializing	behavior	of	bird	flocking	
and	 fish	schooling.	A	key	advantage	of	using	the	PSO	algorithm	 is	that	 it	requires	 low	computational	cost.	PSO	
applies	social	laws	to	search	for	the	global	optimum	in	a	design	space.	The	optimization	process	of	PSO	starts	by	
introducing	 a	population	of	particles	randomly	distributed	at	various	 locations	 in	a	search	domain,	where	 the	
location	of	each	particle	represents	a	specific	solution.	Due	to	the	random	distribution	of	particles,	each	particle	is	
at	a	different	location	in	a	search	domain,	and	to	achieve	an	optimum,	the	particles	need	to	update	their	positions	
continuously.	The	change	 in	a	particle’s	position	changes	 its	corresponding	velocity,	resulting	 in	a	continuous	
velocity	update.	The	velocity	update	that	corresponds	to	the	best	position	of	the	particle	is	the	key	operator	behind	
the	optimization	process	of	the	PSO	algorithm.	The	best	position/location	is	defined	as	the	nearest	position	to	the	
possible	optimum	solution.	In	PSO,	the	overall	best	position	is	evaluated	by	considering	the	best	of	all	particles	
(global	best	position)	and	the	best	of	an	 individual	particle	(local	best	position)	that	 it	has	reached	during	the	
search.	This	critical	approach	of	PSO	helps	the	entire	population	of	particles	to	migrate	toward	the	global	optimum.	
Each	particle’s	velocity	and	position	are	updated	stochastically	at	each	iteration	during	the	optimization	process	
using	the	following	relationships.	

In	Eq	(4)	and	Eq	(5),	V$1	and	X$1	are	velocity	vector	and	position	vector,	respectively.		P$		1 	refers	to	the	best	position	
of	an	individual	particle,	while	P31	represents	the	global	best	position	of	the	whole	population.	Eq	(4)	explains	the	
velocity	update	criteria	of	 the	PSO	algorithm.	 It	contains	 three	 terms,	the	 first	of	which	represents	 inertia,	 the	
second	term	refers	to	cognitive	behavior,	and	the	third	term	represents	the	social	behavior	of	particles.	Each	term	
has	its	respective	coefficients	ω,	C0,	and	C-	which	control	the	exploration	and	exploitation	behavior	of	the	particles.		
ω,	known	 as	 inertia	 coefficient,	defines	 the	ability	of	 the	population	 to	 change	 its	direction	and,	 as	 the	name	
suggests,	represents	the	inertia	of	the	population.	Higher	values	of	ω	encourage	exploitation	whereas	lower	values	
facilitate	exploration.	Thus,	a	suitable	value	of	ω	can	provide	a	balance	between	exploration	and	exploitation.	C0	
influences	the	 individualistic	behavior	of	the	population;	therefore,	higher	C0	makes	 it	very	difficult	to	achieve	
convergence	as	each	particle	tries	to	focus	on	 its	best	solution.	On	the	other	hand,	C-	enforces	the	 influence	of	
particles	on	each	other	and	improves	the	collective	behavior	of	the	population.		

3. Results	and	Discussion
The	 accuracy	of	 the	presented	methodology	 is	 evaluated	by	 considering	 a	 filling	of	0.5	m	 x	0.2	m	 x	0.005	m
rectangular	mold	with	a	constant	inlet	pressure	of	1	x	105	Pa	(Figure	1).	The	fiber	volume	fraction	is	0.5,	while	the
resin	viscosity	is	0.1	Pa.s.	It	is	very	challenging	to	control	the	variations	in	the	predicted	permeability	values	during
actual	experiments.	In	this	study,	to	validate	the	presented	methodology	for	permeability	characterization,	virtual
experimentations	 are	 performed.	 In	 a	 virtual	 experiment,	 a	 simulation	 is	 performed	 via	 LIMS	 by	 providing
permeability	values	(considered	as	'ground	value').	This	virtual	experiment	provides	flow	arrival	time	(T$,&'()	at
each	node	of	discretized	geometry	(Figure	1(b)).	The	position	of	these	nodes	corresponds	to	the	position	of	sensors
in	 an	 actual	 experiment.	 The	 methodology	 presented	 in	 the	 previous	 section	 is	 then	 used	 to	 predict	 the
permeability	components,	which	are	then	compared	with	ground	permeability	values.	To	assess	the	efficiency	of
the	methodology,	three	different	cases	were	tried:	(i)	predicting	permeability	components	 in	flow	direction	by
using	 regular	 mold	 domain	 with	 isotropic	 preform	 only,	 (ii)	 predicting	 all	 three	 anisotropic	 permeability
components	from	a	single	injection	by	introducing	the	disturbance	to	mold	domain,	and(iii)	predicting	all	three
anisotropic	permeability	components	from	a	single	injection	by	introducing	the	disturbance	to	mold	domain	in	the
presence	of	race	tracking	phenomena	as	it	is	the	main	drawback	of	rectilinear	injection	[23],	[24].	For	each	case,
two	different	trials	were	executed	and	for	each	trial	the	same	search	domain	size	was	used	(upper	and	lower	limits
for	search	domain),	while	the	population	of	particles	was	taken	to	be	200.	The	results	are	 listed	 in	Table	1.	As
described	earlier	as	an	advantage	of	using	PSO,	no	initial	guess	values	were	needed	to	proceed	with	the	prediction
process.	Thus,	it	can	be	concluded	from	the	results	presented	in	Table	1	that	the	proposed	methodology	is	able	to
predict	the	permeability	values	in	a	very	accurate	manner.	In	almost	all	cases,	the	error	between	the	ground	value
and	the	predicted	value	is	less	than	0.01%,	with	an	exception	in	the	second	trial	of	case	(ii),	in	which	the	maximum
error	obtained	is	3.96%.

V$140 = ωV$1 + C0r01(P$1 − X$1) + C-r-1 3P31 − X$14	 (4)	

X$140 = X$1 + V$140	 (5)
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To	 further	 elaborate	 the	 role	of	PSO	 in	permeability	prediction	 in	 this	 study,	 an	 analysis	on	 the	 evolution	of	
particles’	population	has	been	performed.	Since	PSO	relies	on	the	convergence	of	the	population	to	a	single	global	
solution,	the	statistical	range	of	particles	in	each	variable	direction	is	plotted	against	the	iteration	to	observe	the	
population’s	behavior.	The	 statistical	 range	 represents	 the	 spread	of	particles	 from	each	other.	 If	 the	particle	
swarm	converges	to	a	single	solution,	then	the	range	in	each	variable	direction	goes	to	zero.	Otherwise,	in	some	
variable	directions,	it	remains	away	from	zero.	The	results	obtained	for	case	2(a)	of	Table	1	are	presented	in	Figure	
5. It	can	be	observed	that	since	the	beginning	of	the	optimization	process,	the	range	is	very	small,	implying	that
particles	are	already	close	to	each	other.	The	reason	for	this	can	be	the	upper	and	lower	limits	of	the	search	domain
used	in	this	study.

The	pressure	distribution	obtained	for	all	three	cases	are	presented	in	Figure	6.	For	the	first	case	in	Figure	5(a),	
the	pressure	gradient	is	parallel	as	no	anisotropy	is	assumed.	While	for	the	second	and	third	cases	in	Figures	5(b)	
and	5(c),	 the	pressure	 gradient	 is	not	parallel,	 and	 an	 inclination	 is	 observed	 (implying	 the	presence	 of	 two	
pressure	gradient	components)	due	to	the	presence	of	an	anisotropic	permeability	component.	In	Figure	5(c),	one	
can	also	observe	that	at	the	end	of	the	mold,	the	flow	at	the	lower	edge	is	distinctly	delayed	in	comparison	to	the	
flow	at	the	upper	edge	due	to	race-tracking.	

Table	1.	Comparison	of	permeability	values	predicted	by	proposed	methodology	for	three	different	cases.	

Trial	 Lower	
Limit	

Upper	
Limit	 Permeability	 Ground	

Value	(m2)	
Predicted	
Value	(m2)	

Relative	
Error	
(%)	

Number	of	
Iterations	

Elapsed	
Time	(sec.)	

Case	1.	Isotropic	preform	–	regular	mold	domain	
a.	 2.00E-11	 2.00E-09	 Kxx	 5.65	x	10-10	 5.65	x	10-10	 6.40	x	10-4	 37	 3924.407	

b.	 2.00E-11	 2.00E-09	 Kxx	 2.00	x	10-10	 2.00	x	10-10	 1.63	x	10-3	 34	 3750.131	

Case	2.	Anisotropic	preform	–	mold	domain	with	disturbance	

a.	

2.00E-11	 2.00E-09	 Kxx	 5.65	x	10-10	 5.65	x	10-10	 0	

96		 12440.06		2.50E-11	 2.50E-09	 Kyy	 6.35	x	10-10	 6.35	x	10-10	 0	

1.00E-12	 1.00E-10	 Kxy	 1.97	x	10-11	 1.97	x	10-11	 0	

b.	

2.00E-11	 2.00E-09	 Kxx	 2.00	x	10-10	 2.00	x	10-10	 0	

212		 29833.51		2.50E-11	 2.50E-09	 Kyy	 2.50	x	10-10	 2.50	x	10-10	 0	

1.00E-12	 1.00E-10	 Kxy	 2.23	x	10-11	 2.23	x	10-11	 0	

Case	3.	Anisotropic	preform	with	the	presence	of	race-tracking		–	mold	domain	with	disturbance	

a. 

2.00E-11	 2.00E-09	 Kxx	 5.65	x	10-10	 5.65	x	10-10	 1.77	x	10-3	

173	 33931.864	
2.50E-11	 2.50E-09	 Kyy	 6.35	x	10-10	 6.35	x	10-10	 2.36	x	10-2	

1.00E-12	 1.00E-10	 Kxy	 1.97	x	10-11	 1.97	x	10-11	 7.61	x	10-2	

1.00E-09	 1.00E-07	 Krt	 1.00	x	10-8	 1.00	x	10-8	 3.00	x	10-2	

b.	

2.00E-11	 2.00E-09	 Kxx	 2.00	x	10-10	 1.99	x	10-10	 3.82	x	10-1	

800	 95381.674	
2.50E-11	 2.50E-09	 Kyy	 2.50	x	10-10	 2.60	x	10-10	 3.96	x	100	

1.00E-12	 1.00E-10	 Kxy	 2.23	x	10-11	 2.22	x	10-11	 4.20	x	10-1	

1.00E-09	 1.00E-07	 Krt	 1.00	x	10-8	 1.02	x	10-8	 2.06	x	100	
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Figure	5.	Evolution	of	the	population	of	particles	in	each	variable	direction	for	Case	2	(a)	of	Table	1.	

Figure	6.	Pressure	distribution	for	(a)	isotropic	preform	–	regular	mold,	(b)	anisotropic	preform	–	mold	with	disturbance,	
and	(c)	anisotropic	preform	with	presence	of	race-tracking	–	mold	with	disturbance.	

The	 discretized	 geometry	 used	 for	 the	 virtual	 experiment	 for	 case	 (iii)	 has	 1044	 nodes,	 and	 as	 previously	
mentioned,	 these	 nodes	 correspond	 to	 the	 position	 of	 sensors	 used	 in	 the	 actual	 experiment	 to	 record	
experimental	 flow	 arrival	 time.	 To	 use	 these	many	 sensors	 in	 an	 experiment	 is	 not	 efficient	 and	 requires	 a	
substantial	amount	of	effort,	which	is	contrary	to	the	objective	of	the	present	study.	Therefore,	additional	analyses	
have	been	made	to	observe	the	effect	of	the	number	of	nodes/sensors	on	the	prediction	behavior	of	the	proposed	
methodology.	 The	 aim	 of	 the	 study	 is	 to	 find	 the	 minimum	 number	 of	 nodes/sensors	 sufficient	 to	 predict	
permeability	values	with	minimum	error	in	less	time.	Hence,	time	to	get	predicted	values	along	with	an	average	of	
errors	associated	with	each	permeability	component	 is	plotted	against	different	numbers	of	nodes/sensors	for	
two	different	sets	of	permeabilities	(Figure	7).	The	observed	general	trend	for	both	cases	is	quite	similar,	i.e.,	there	
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is	a	trade-off	between	total	elapsed	time	and	average	error.	After	observing	the	elapsed	time	and	average	error	for	
each	case,	it	can	be	concluded	that	ten	nodes/sensors	give	the	best	combination	of	elapsed	time	and	average	error,	
and	it	can	be	considered	an	optimum	number	of	sensors	required	to	predict	permeability	components	in	a	time-
efficient	manner.		

Figure	7.	Effect	of	number	of	nodes/sensors	on	the	prediction	behavior	of	proposed	methodology.	

4. Conclusion
A	methodology	based	on	disturbing	a	unidirectional	resin	flow	has	been	proposed	to	predict	all	three	components
of	in-plane	permeability	tensor	from	a	single	rectilinear	flow	experiment.	The	method	depends	on	recording	the
resin	flow	arrival	times	during	the	experiment	and	minimizing	the	error	between	experimental	resin	flow	arrival
time	and	numerical	resin	flow	arrival	time	obtained	via	RTM	simulation	of	a	similar	mold	domain	in	LIMS.	The
residual	sum	of	squares	(RSS)	is	used	to	define	the	error	between	the	experimental	and	numerical	resin	arrival
time,	and	the	particle	swarm	optimization	(PSO)	algorithm	is	used	to	minimize	this	error.	Three	different	cases
were	performed,	each	containing	two	different	sets	of	permeabilities.	The	proposed	methodology	has	successfully
predicted	the	permeability	with	high	accuracy	for	all	three	cases.	An	analysis	to	determine	the	least	number	of
nodes/sensors	sufficient	for	permeability	prediction	has	been	performed	to	reduce	the	excessive	efforts	required
in	the	prediction	process.	It	is	found	that	ten	nodes/sensors	will	be	enough	to	determine	the	accurate	permeability
values	from	a	single	rectilinear	experiment,	specifically	for	the	geometry	that	used	in	this	study.
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