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Abstract. In the present article, our aim is to characterize Bach flat paraSasakian
manifolds. It is established that a Bach flat paraSasakian manifold of dimen-

sion greater than three is of constant scalar curvature. Next, we prove that

if the metric of a Bach flat paraSasakian manifold is a Yamabe soliton, then
the soliton field becomes a Killing vector field. Finally, it is shown that a

3-dimensional Bach flat paraSasakian manifold is locally isometric to the hy-

perbolic space H2n+1(1).

1. Introduction

Adati and Matsumoto [1] introduced the concept of paraSasakian (briefly, P-
Sasakian) manifolds, which are considered as a specific case of an almost para-
contact manifold initiated by Sato [15]. Matsumoto and Mihai studied P -Sasakian
manifolds that admitW2 or E-Tensor fields and also some curvature conditions [17].
In ( [18], [19]) the authors investigated P -Sasakian manifolds obeying certain cur-
vature conditions. In another way, on a pseudo-Riemannian manifold M2n+1

Kaneyuki and Kozai [21] introduced the almost paracontact structure and set up
the almost paracomplex structure on M2n+1×R. The main difference between the
almost paracontact metric manifold in the sense of Sato [15] and Kaneyuki et al [20]
is the signature of the metric. In [27], Zamkovoy introduced paraSasakian manifolds
as a normal paracontact manifold whose metric is pseudo-Riemannian and acquired
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a necessary and sufficient condition for which a paracontact metric manifold is a
paraSasakian manifold. ParaSasakian manifolds have been investigated by many
geometers such as De and De [5], Erken, Dacko and Murathan ( [9], [10], [11]),
Ghosh et al. [8], Zamkovoy [27] and many others.
On the other hand in [13], Hamilton introduced the idea of Yamabe soliton. In a
complete Riemannian manifold (M2n+1, g), the metric g is named a Yamabe soliton
if it obeys

£Y g = (λ− r)g, (1)

where Y is a smooth vector field and λ, £ and r indicate a real number, the Lie-
derivative operator and the scalar curvature, respectively. For further information
about Yamabe solitons see ( [4], [6], [16], [26]).

To initiate the investigation of the conformal relativity with regards to confor-
mally Einstein spaces, Bach introduced a new tensor named Bach tensor [2]. We
know that the Bach tensor is a trace-free tensor of rank 2 and is also conformally
invariant in 4 dimensions [2]. Bach tensor was the single known conformally invari-
ant tensor before 1968 which was algebraically independent of the Weyl tensor [25].
Therefore, as an alternative of the Hilbert-Einstein functional, one chooses the
functional

W(g) =

∫
M

∥ W ∥2g dµg, (2)

for 4-dimensional manifolds, where W indicates the Weyl tensor defined by

W (X,Y )Z = R(X,Y )Z − 1

2n− 1
[S(Y, Z)X − S(X,Z)Y

+g(Y,Z)QX − g(X,Z)QY ]

+
r

2n(2n− 1)
[g(Y, Z)X − g(X,Z)Y ], (3)

where R and S indicate the Riemannian curvature tensor and the Ricci tensor,
respectively and Q is the Ricci operator defined by g(QX,Y ) = S(X,Y ).

Critical points of the functional (2) are characterized by the vanishing of certain
symmetric 2-tensor B, which is generally named as Bach tensor. Also, if B = 0,
then the metric is called Bach flat. In a Riemannian manifold (M2n+1, g), the Bach
tensor B is defined by

B(X,Y ) =
1

2n− 2

2n+1∑
k,j=1

((∇ek∇ejW )(X, ek)ej , Y )

+
1

2n− 1

2n+1∑
k,j=1

S(ek, ej)W (X, ek, ej , Y ), (4)
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where {ek}2n+1
k=1 is a local orthonormal basis on M . Using the expression of Cotton

tensor

C(X,Y )Z = (∇XS)(Y,Z)− (∇Y S)(X,Z)

− 1

4n
[(Xr)g(Y, Z)− (Y r)g(X,Z)], (5)

and the Weyl tensor (3), the Bach tensor can be written as

B(X,Y ) =
1

2n− 1

2n+1∑
k=1

[(∇ekC)(ek, X)Y ) + S(ek, ek)W (X, ek, ek, Y )]. (6)

In the event that the manifold M is conformally related locally with an Einstein
space, B needs to vanish. However, there exist Riemannian manifolds equipped
with B = 0, that are not conformally related with Einstein spaces [14]. From
the equation (6), it is not difficult to notice that Bach flatness is the inherent
generalization of conformal and Einstein flatness. For additional insights concerning
Bach tensor, we reffer to see ( [3], [12], [23], [24], [25]).

In 2017, Ghosh and Sharma [23] initiated the study of purely transversal Bach
tensor in Sasakian manifold. Specifically, they established that assuming a Sasakian
manifold M2n+1 admitting a purely transversal Bach tensor, g has a constant scalar
curvature ≥ 2n(2n − 1) and S has a constant norm. It is also noticed that the
previously stated equality holds if and only if the metric is Einstein. Likewise, they
studied (k, µ)-contact manifolds with B = 0 and divergence-free Cotton tensor in
[24]. The investigations of Ghosh and Sharma ( [23], [24]) revolve our concentration
to investigate Bach tensor in the context of certain classes of paracontact metric
manifolds, in particular paraSasakian manifolds.

In this paper, we consider the Bach flat (2n+1)-dimensional paraSasakian man-
ifolds and we establish the subsequent results.

Theorem 1. Let M2n+1(n > 1) be a paraSasakian manifold. If the manifold
admits a purely transversal Bach tensor, then the scalar curvature is constant.

Corollary 1. If the metric of a Bach flat paraSasakian manifold is a Yamabe
soliton, then the soliton field becomes a Killing vector field.

Theorem 2. If a 3-dimensional paraSasakian manifold M admits a purely
transversal Bach tensor, thenM is locally isometric to the hyperbolic spaceH2n+1(1).

2. ParaSasakian Manifolds

Let M2n+1 be a differentiable manifold. If there exits a triplet (φ, ξ, η) , where
φ, ξ, η indicate a tensor field, a vector field and a 1-form, respectively on M2n+1

which obey the relation [15]

φ2 = I − η ⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0, (7)

then we name the structure (φ, ξ, η) is an almost paracontact structure. Hence, M
is an almost paracontact manifold.
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Additionally, if M with the structure (φ, ξ, η) admits a pseudo-Riemannian or
semi-Riemannian metric g which obeys the equation [21]

g(X,Y ) = −g(φX,φY ) + η(X)η(Y ), (8)

then M has an almost paracontact metric structure (φ, ξ, η, g). Here, g is named a
compatible metric having signature (n+ 1, n).

In M , the fundamental 2-form is written by

Φ(X,Y ) = g(X,φY ).

An almost paracontact metric structure reduces to a paracontact metric struc-
ture if

dη(X,Y ) = g(X,φY )

for any vector fields X,Y , where

dη(X,Y ) =
1

2
[Xη(Y )− Y η(X)− η([X,Y ])].

An almost paracontact structure is named normal if and only if Nφ−2dη⊗ξ = 0
, where Nijenhuis tensor of φ is defined by: Nφ(X,Y ) = [φ,φ](X,Y ) = φ2[X,Y ] +
[φX,φY ] − φ[φX, Y ] − φ[X,φY ] [27]. A normal paracontact metric manifold is
named as paraSasakian manifold. Let ∇ be the Levi-Civita connection with respect
to the pseudo-Riemannian metric. Then from [27], it is noticed that an almost
paracontact manifold is paraSasakian manifold if and only if

(∇Xφ)Y = −g(X,Y )ξ + η(Y )X, (9)

for any X,Y . From (9), we acquire

∇Xξ = −φX. (10)

Besides, for M2n+1 ParaSasakian manifolds R and S satisfy [27]

R(X,Y )ξ = −(η(Y )X − η(X)Y ), (11)

R(ξ,X)Y = −g(X,Y ) + η(Y )X, (12)

S(X, ξ) = −2nη(X), (13)

Qξ = −2nξ. (14)

Zamkovoy [27] proved the subsequent proposition :
Proposition 2.1. In a paraSasakian manifold M2n+1, we have

S(X,φY ) = −S(φX, Y )− g(X,φY ). (15)
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3. Bach Flat ParaSasakian Manifolds

Before proving the main theorem we first present the subsequent lemma.

Lemma 1. Let M2n+1 be a paraSasakian manifold. Then
(i)

2n+1∑
k=1

g((∇XQ)φek, ek) = 0

and
(ii)

2n+1∑
k=1

g((∇ekQ)Y, φek) = (−4n2 − r)η(Y )− 1

2
(φY )r

.

Proof. From Proposition 2.1. it follows

φQX = QφX − φX. (16)

Now

g((∇XQ)φY,Z) + g((∇XQ)Y, φZ) = g((∇XQφY −Q∇XφY ), Z) (17)

+g((∇XQY −Q∇XY ), φZ).

Using the equation (9) and (16) in (17), we acquire
g((∇XQ)φY,Z)+g((∇XQ)Y, φZ) = g((∇Xφ)QY,Z)−g(Q(∇Xφ)Y, Z)+g(Q(∇Xφ)Y,Z).

Again using (9) and (13) in the above equation, we get

g((∇XQ)φY,Z) + g((∇XQ)Y, φZ) = −g(X,QY )η(Z) + η(QY )g(X,Z)(18)

−(2n+ 1)g(X,Z)η(Y )− g(QX,Z)η(Y ) + g(X,Z)η(Y ).

Putting Y = Z = ek in the foregoing equation and summing over k (1 ≤ k ≤ 2n+1),
we obtain

2n+1∑
k=1

g((∇XQ)φek, ek) +

2n+1∑
k=1

g((∇XQ)ek, φek) = 0.

That is,
2n+1∑
k=1

g((∇XQ)φek, ek) = 0.

This completes the proof of (i).
Again, substituting X = Z = ek in the equation (18) yields

2n+1∑
k=1

g((∇ekQ)Y, φek) = (−4n2 − r)η(Y )− 1

2
(φY )r

.

This completes the proof of (ii). □
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Proof of Theorem 1. Replacing ξ for Z in (5), we get

C(X,Y )ξ = g((∇XQ)Y, ξ)− g((∇Y Q)X, ξ) (19)

− 1

4n
[(Xr)g(Y, ξ)− (Y r)g(X, ξ)].

Now using (10) and (14), we have

(∇XQ)ξ = 2nφX +QφX. (20)

From the above equation it follows that

g((∇XQ)Y, ξ) = 2ng(φX, Y ) + g(QφX,Y ). (21)

Using (21) in (19) implies

C(X,Y )ξ = 2ng(φX, Y ) + g(QφX,φY )− 2ng(φY,X)− g(QφY,X) (22)

+g(QY,φX) + g(Y, φX)− 1

4n
[(Xr)η(Y )− (Y r)η(X)].

Differentiating (22) along Z, provides

(∇ZC)(X,Y )ξ = ∇ZC(X,Y )ξ − C(∇ZX,Y )ξ (23)

−C(X,∇ZY )ξ − C(X,Y )∇Zξ.

Using (10) and (22) in (23) and after some calculations, we obtain

(∇ZC)(X,Y )ξ = 2ng((∇Zφ)X,Y )− g((∇ZQ)X,φY ) (24)

−g(QX, (∇Zφ)Y )− g(X, (∇Zφ)Y )− 2ng((∇Zφ)Y,X)

+g((∇ZQ)Y, φX) + g(QY, (∇Zφ)X) + g(Y, (∇Zφ)X)

− 1

4n
[g(∇ZDr,X)η(Y )− g(∇ZDr, Y )η(X)

−g(φZ, Y )(Xr) + g(φZ,X)(Y r)].

Now we calculate the 2nd term of right hand side of (23), which follows from
(22) as

C(∇ZX,Y )ξ = 2ng(φ∇ZX,Y )− g(Q∇ZX,φY ) (25)

−g(∇ZX,φY )− 2ng(φY,∇ZX) + g(QY,φ∇ZX)

+g(Y, φ∇ZX)− 1

4n
[((∇ZX)r)η(Y )− (Y r)η(∇ZX)].

Similarly from (22), it follows that

C(X,∇ZY )ξ = 2ng(φX,∇ZY )− g(QX,φ∇ZY ) (26)

−g(X,φ∇ZY )− 2ng(φ∇ZY,X) + g(Q∇ZY, φX)

+g(∇ZY, φX)− 1

4n
[(Xr)η(∇ZY )− ((∇ZY )r)η(X)].
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Again from (5), we have

C(X,Y )∇Zξ = (∇XS)(Y, φZ)− (∇Y S)(X,φZ) (27)

− 1

4n
[(Xr)g(Y, φZ)− (Y r)g(X,φZ)].

Using (24), (25), (26) and (27) in (23) we have,

(∇ZC)(X,Y )ξ = 2ng((∇Zφ)X,Y )− g((∇ZQ)X,φY ) (28)

−g(QX, (∇Zφ)Y )− g(X, (∇Zφ)Y )− 2ng((∇Zφ)Y,X)

+g((∇ZQ)Y, φX) + g(QY, (∇Zφ)X) + g(Y, (∇Zφ)X)

− 1

4n
[g(∇ZDr,X)∇(Y )− g(∇ZDr, Y )η(X)− g(φZ, Y )(Xr)

+g(φZ,X)(Y r)]− 2ng(φ∇ZX,Y ) + g(Q∇ZX,φY )

+g(∇ZX,φY ) + 2ng(φY,∇ZX)− g(QY,φ∇ZX)− g(Y, φ∇ZX)

+
1

4n
[((∇ZX)r)η(Y )− (Y r)η(∇ZX)]− 2ng(φX,∇ZY )

+g(QX,φ∇ZY ) + g(X,φ∇ZY ) + 2ng(φ∇ZY,X)

−g(Q∇ZY, φX)− g(∇ZY, φX) +
1

4n
[(Xr)η(∇ZY )

−((∇ZY )r)η(X)]− (∇XS)(Y, φZ) + (∇Y S)(X,φZ)

+
1

4n
[(Xr)g(Y, φZ)− (Y r)g(X,φZ)].

Putting X = Z = ek in (28) and summing over k (1 ≤ k ≤ (2n+ 1)), we have,

2n+1∑
k=1

(∇ekC)(ek, Y )ξ =

2n+1∑
k=1

[2ng(ek, Y )η(ek) (29)

+g((∇ekQ)φek, Y ) + g(Qek, Y )η(ek)

− 1

4n
{g(∇ekDr, ek)η(Y )− g(∇ekDr, Y )η(ek)}.

Applying Lemma 3.1 into the foregoing equation yields

2n+1∑
k=1

(∇ekC)(ek, Y )ξ = (−4n2 − r)η(Y )− 1

2
(φY r) (30)

− 1

4n
[(divDr)η(Y )− g(∇ξDr, Y )].

Replacing Z by ξ in (3) we infer

W (X,Y )ξ = R(X,Y )ξ − 1

2n− 1
[S(Y, ξ)X − S(X, ξ)Y (31)

+η(Y )QX − η(X)QY ] +
r

2n(2n− 1)
[η(Y )X − η(X)Y ].

Using the equation (11) and (13) in (31), we acquire
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QW (X,Y )ξ = [1− 2n

2n− 1
+

r

2n(2n− 1)
](η(Y )QX − η(X)QY ) (32)

− 1

2n− 1
(η(Y )Q2X − η(X)Q2Y ).

Now taking inner product with U in (32) and then putting Y = U = ek and
summing over k(1 ≤ k ≤ 2n+ 1), we obtain

2n+1∑
k=1

g(QW (X, ek)ξ, ek) = − r2 − 4n2

2n(2n− 1)
η(X) (33)

+
1

2n− 1
[
| Q |2 −4n2

2n− 1
].

Now

g(Qek, ej)g(W (X, ek)ej), Y ) (34)

= −g(W (X, ek)Y,Qek) = −g(QW (X, ek)Y, ek).

Using (4) and (34) we have

B(X,Y ) =
1

2n− 1
[

2n+1∑
i=1

(∇ekC)(ek, X, Y )−
2n+1∑
i=1

g(QW (X, ek)Y, ek)]. (35)

By hypothesis, B(Y, ξ) = 0.
Then equation (30) and (33) together reveal

(4n− 4n2 + r)η(Y )− 1

2
(φY r)− 1

4n
[(divDr)η(Y )− g(∇ξDr, Y )] (36)

+
r2 − 4n2

2n(2n− 1)
η(Y )− 1

2n− 1
[
| Q |2 −4n2

2n− 1
]η(Y ).

Replacing Y by φY in the above equation provides

∇ξDr = 2nφDr. (37)

As ξ is a Killing vector field, we get

£ξr = 0 (38)

Taking exterior derivative d on it we can obtain

£ξdr = 0,

which implies

£ξDr = 0. (39)
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Using (10) in (39), we have

£ξDr = −φDr. (40)

Finally, using the equation (37) and (40) yields φDr = 0, that is, Dr = 0. Hence,
r, the scalar curvature is constant.

This finishes the proof. □

Proof of Corollary 1. Since r =constant, the equation (1) becomes

£Y g = 2cg,

where c = λ−r
2 = constant.

Therefore, Y , the soliton vector field becomes a homothetic vector field [7]. For
a homothetic vector field Y , we get

£Y r = −2cr. (41)

Since r =constant, it follows from the above equation c = 0. Thus the soliton fields
turn into a Killing vector field. □

Remarks: Recently Erken [11] proved that if the metric of a 3-dimensional paraSasakian
manifold is a Yamabe soliton then the soliton field is Killing and the scalar curva-
ture is constant.

Therefore, Corollary 1 is an improvement of the result of Erken.

4. 3-Dimensional Bach Flat ParaSasakian manifolds

In a 3-dimensional paraSasakian manifold the Riemannian curvature tensor is
given by

R(X,Y )Z = g(Y,Z)QX − g(X,Z)QY + S(Y, Z)X − S(X,Z)Y

−r

2
[g(Y, Z)X − g(X,Z)Y ]. (42)

Substituting X = Z = ξ in (42) and making use of (12), (13) and (14) implies

QY = (−3− r

2
)η(Y )ξ + (1 +

r

2
)Y. (43)

From the forgoing equation it is quite clear that

Qφ = φQ. (44)

Now we establish the subsequent lemma:
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Lemma 2. Let M be a 3-dimensional paraSasakian manifold. Then
(i)

3∑
k=1

g((∇XQ)φek, ek) = 0

and
(ii)

3∑
k=1

g((∇ekQ)Y, φek) = (r − 2)η(Y )− 1

2
(φY )r

.

Proof. Using (44), we get
g((∇XQ)φY,Z) + g((∇XQ)Y, φZ) = g((∇Xφ)QY,Z) + g(Q(∇Xφ)Y,Z).
Again using (9) and (44) in the above equation yields

g((∇XQ)φY,Z) + g((∇XQ)Y, φZ) = −g(X,QY )η(Z) (45)

−2g(X,Z)η(Y ) + 2g(X,Y )η(Z) + g(QX,Z)η(Y ).

Putting Y = Z = ek in the previous equation and taking summation over k(1 ≤
k ≤ 3), we have

3∑
k=1

g((∇XQ)φek, ek) +

3∑
k=1

g((∇XQ)ek, φek) = 0.

That is,
3∑

k=1

g((∇XQ)φek, ek) = 0.

This completes the proof of (i).
On the other hand substituting X = Z = ek in (45) yields

3∑
k=1

g((∇ekQ)Y, φek) = (r − 2)η(Y )− 1

2
(φY )r.

This completes the proof of (ii).
□

Proof of Theorem 2. Using (10) and (43), we infer that

(∇XQ)ξ = QφX. (46)

From (19) and (46) we have

C(X,Y )ξ = −2g(QφX,Y )− 1

4
[(Xr)η(Y )− (Y r)η(X)]. (47)

Using (5), (9), (43) and (47) in (23) yields

(∇XC)(Y,Z)ξ = g((∇Y Q)Z,φX)− g((∇ZQ)Y, φX)

+2g((∇XQ)φY,Z) + 4g(X,Y )η(Z) + 2S(QX,Z)η(Y )
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+
1

4
[g(Z,φX)(Y r)− g(∇XDr, Y )η(Z)

−g(φX,Z)(Y )− g(∇XDr,Z)η(Y )]. (48)

Putting X = Y = ek in the equation (48) and summing over k(1 ≤ k ≤ 3), we get

(∇ekC)(ek, Z)ξ = g((∇ekQ)Z,φek)− g((∇ZQ)ek, φek)

+2g((∇ekQ)φek, Z) + 12η(Z) + 2S(Qek, Z)η(ek)

+
1

4
[g(Z,φek)(ekr)− g(∇ekDr, ek)η(Z)

−g(φek, Z)(ek)− g(∇ekDr,Z)η(ek)]. (49)

Applying Lemma 4.1 and using (43) in (49) implies

(∇ekC)(ek, Z)ξ = 3(r + 6)η(Z)− 3

2
g(φZ,Dr)

+
1

4
[(divDr)η(Z)− g(∇ξDr,Z)]. (50)

Since in a 3-dimensional paraSasakian manifold Weyl curvature tensor vanishes, so
equation (6) reduces to

B(X,Y ) =

3∑
k=1

[(∇ekC)(ek, X)Y )]. (51)

Replacing Y by ξ in (51) and use the the hypothesis, along with equation (50)
provides

3(r + 6)η(X)− 3

2
g(φX,Dr) (52)

+
1

4
[(divDr)η(X)− g(∇ξDr,X)] = 0.

Replacing X by φX in (52) implies

∇ξDr = −6(φDr). (53)

From (40) and (53), we have Dr = 0, that is r is constant. Then from (52), it
follows that r = −6. Putting r = −6 in (43) yields

QY = −2Y. (54)

Hence, the manifold is an Einstein manifold. Therefore, using r = −6 and the
equation (54) in (42), we acquire

R(X,Y )Z = −[g(Y, Z)X − g(X,Z)Y ].

Hence, the manifold is locally isometric to the hyperbolic space H2n+1(1) (p. 228,
[22]). □
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