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Abstract— The use of smart technologies is gaining importance in solving the problems experienced in the field 

of agriculture. An important aim of the studies is to ensure the cultivation of agricultural products in greenhouse 

environments. In this way, growing agricultural products in greenhouses controlled by smart systems by creating 

suitable soil and climatic conditions and facilitating people’s access to these products has become an important 

research and application topic. This study aims to follow the cultivation of a product and determine suitable 

growing conditions by using image processing techniques, machine learning methods, and the Internet of Things. 
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1. Introduction 

Agriculture has an important place in the country’s economy, it has become much more than a simple way of 

feeding the ever-increasing population. The anticipated challenges when it comes to the need to double the food 

supply in agriculture now equate the importance of agricultural sustainability with ensuring food security. 

Smart agriculture is the whole of methods and technologies that aim to give higher quality products by sensing 

the control parameters of agricultural areas. By determining the control parameters, these parameters are read with 

the help of various sensors and the large amount of sensor data obtained is transferred to a central computer or 

server for processing. According to the information obtained from the processed data, it is ensured that the 

agricultural area has the resources it needs. 

Accurate data analysis on the farm plays an important role in increasing operational efficiency and productivity. 

The data consists of sensor data, audio, image, and video. Image processing methods are used in many areas such 

as disease detection on leaves, stems, fruits, fruit quality, irrigation, and weed detection. Recently, image 

processing and the Internet of Things (IoT) are used together in agriculture to obtain higher quality crops and 

reduce crop errors. 

Many negative situations such as soil erosion, intense water consumption, and the emergence of food-borne 

diseases are encountered in field agriculture practices. To minimize these negative situations, automation systems 

have been introduced in agriculture and greenhouses. Today, most of the agricultural and greenhouse automation 

work on a timer basis. Thanks to these timers, water, and nutrients are pumped into the plants at certain intervals. 

However, different parameters need to be controlled for this system to work efficiently as an intelligent 

autonomous. This study aims to create the necessary infrastructure for the autonomous operation of agricultural 

and greenhouse systems, to follow up the products with image processing methods, to process the data coming 

from the camera and other sensors, and develop a smart system by applying different artificial intelligence 

techniques. 

Technology and artificial intelligence can provide solutions to agricultural activities (w/o soil) in the following 

areas: 

 Tracking product development with IoT: Every day, large amounts of data can be generated both structured 

and unstructured forms, such as historical weather, soil reports, precipitation, and pest infestations. With 

IoT systems, these data can be perceived and processed to make predictions to increase efficiency. Both 

proximity and remote sensing technologies are used for intelligent data fusion. One of the uses of these 
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data is the soil testing. In remote sensing, the sensors are located at high locations or in satellite systems, 

while in proximity sensing, the sensors must be in contact with the ground or in very close distance. this 

makes it possible to make soil characterization at a particular location. 

 Image-based foresight generation: Precision agriculture is one of the most discussed and researched areas 

in agriculture today. Images obtained from drone based or fixed cameras; field analysis, crop monitoring, 

dredging of fields, etc. can help with issues. IoT technology and computer vision Technologies can be 

used together to make healthier and faster decisions. Fueled by data from camera images, the system can 

generate real-time alerts to accelerate precision agriculture. 

The things that can be done with image processing are:  

1. Disease detection: The obtained images are subjected to a preprocessing stage and the leaf images are divided 

into areas such as background, disease-free part, and diseased part. The diseased part is then clipped and sent to 

the server for further diagnosis. 

2. Harvest detection: To determine the ripeness of green fruits, images can be taken under white / UV-A light. It 

can create different color values and harvest levels according to the crop/fruit category. 

3. Agricultural field management: By using high-resolution images obtained from the air (drone, etc.) an area map 

can be created and real-time forecasts can be made during the growing period by determining the areas where the 

crops need water, fertilizer, etc. This greatly aids in resource optimization. 

 Identification of crops: Soil condition, weather, seed type, infestation in a particular area, etc. 

Technological solutions based on many parameters advise farmers on choosing the best quality crops and 

hybrid seeds. The recommendation can be given not only for internal factors but also for external factors. 

Examples of these external factors are market trends and prices. In this way, it can support farmers to 

make informed decisions.  

 Monitoring crop health: Hyperspectral imaging is the measurement of energy reflected from surface 

materials in a narrow and contiguous multiple wavelength bands. LiDAR, on the other hand, is an 

advanced technology for detecting the distance of objects using laser light. Thanks to these two 

technologies and remote sensing techniques, crop measurements can be made in very large areas. These 

technologies can also be used to monitor crops throughout their entire lifecycle, including anomaly 

reporting. 

 Automation and irrigation: In classical agriculture, irrigation is carried out based on manpower. Machines 

trained on soil, weather, quality, and the types of crops to grow can automate irrigation and increase 

overall yields. 

Changes that can be observed by image analysis within the scope of this study are as follows: 

- The growth of the plant 

- Plant health 

- Detection of diseases in the plant 

- Detection of insects on the plant 

In this study, nutrients and water are kept in tanks, and measurement and monitoring of the values in these 

tanks are important in terms of resource use. Thus, the feeding process of the plant can be carried out according to 

the changes in the plant and the condition of the resources in the tanks. Measurements made in the tank: water 

temperature, pH, conductivity. 

It is aimed to adjust the use of resources by monitoring the plants and environmental conditions in the 

agricultural system in the same way. Measurements made for the plant and its environment: image, CO2, 

temperature, light, humidity, pH value. The automation system developed with the data obtained as a result of the 

measurements made from these 3 different points is fed.  

The plant whose development was observed within the scope of the study is lettuce. The reason why this plant 

is preferred is that the growing conditions of the lettuce can be achieved more easily, it yields in a short time (2-3 

months) and the change in it can be detected more easily with image processing. 

This paper proceeds as follows: in the 2. section, previous studies in this field are mentioned. In 3. section, the 

experimental environment and processes created in this study, are mentioned. The results are described in section 

4. In the 5th and 6th sections, the study and the results are discussed. 
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2. Related Work 

The Internet of Things has taken place in many sectors such as industry, health services, logistics, and 

education. IoT connects the real world and the virtual world over the internet and uses it as a communication and 

information exchange tool. 

It is estimated that the number of people in the world will reach 9.5 billion in 25 years. This increase in 

population is expected to increase the demand for food. This, combined with declining arable land, dwindling 

natural resources and unpredictable weather conditions, is making food security a major concern in most countries. 

The world is turning to the use of data analysis and IoT to meet food demands in the coming years (Dlodlo and 

Kalezhi, 2015). 

Wireless sensor networks (WSN) have been used for many years in the fields of precision agriculture, 

environmental monitoring and traceability for food production and smart agriculture. (Wang et al., 2006) (Amin 

et al., 2004), The ability of wireless sensor networks to configure, self-organize, diagnose and improve makes it 

preferable for food industry and smart agriculture. WSN is a system of microcontrollers, RF transceivers, sensors 

and power supplies (Wang et al., 2006). However, IoT; WSN integrates various existing Technologies such as RF 

identification, middleware, cloud computing, and end-user applications (Manrique et al., 2016). 

There are different examples of IoT applications in agriculture. These examples are crops and livestock 

(Benaissa et al., 2017), machinery (Oksanen et al., 2016), irrigation and water quality monitoring (Cheiochan et 

al., 2017) (Zhang et al., 2017), weather monitoring (Kodali et al., 2016), soil monitoring (Kodali et al., 2016) (Na 

et al., 2016), disease and pest control (Zhang et al., 2014) (Lee et al., 2017), automation (Giri et al., 2016). 

Table 1 contains IoT-based solutions developed for agriculture. 

Table 1. IoT-based solutions for agriculture 

IoT Solution Service 

OnFarm Tool which is focused on farm management that processes and analyzes data from multiple 

sources. 

Phytech Provides IoT platform for direct detection, data analytics, facility status, and 

recommendations. 

Semios IoT platform for orchards focusing on pests, cold (frost), disease, and irrigation 

EZfarm An IBM project focusing on water management, soil monitoring, and plant health. 

KAA Provides platforms for remote crop monitoring, livestock tracking, mapping, predictive 

analytics for crops and livestock, smart logistics and storage, animal feeding and 

production statistics. 

Cropx Provides adaptive irrigation software services that increase crop yields, and save water and 

energy costs. 

 

IoT studies in agriculture mainly focus on monitoring, tracking, machine control, precision agriculture, 

and greenhouse production. 

 

2.1. Monitoring: 

Various parameters can be monitored in agriculture with IoT. These parameters vary depending on the 

agricultural sector being considered. Several environmental factors affect farm production in crop farming. It helps 

to understand the farm’s patterns and processes to obtain such data. Examples of these data are, leaf wetness, 

temperature, rainfall, humidity, soil moisture, solar radiation, climate, pest movement, salinity, and human 

activities (Zhao et al., 2010). Obtaining such detailed records enables optimum decision-making to improve the 

quality of farm products, minimize risk and maximize profits. For example, solar radiation data provides 

information about plant exposure to sunlight. Here, the farmer can determine whether the plants have been properly 

exposed or overexposed. Soil moisture content provides information about soil moisture, which can help control 

soil conditions and reduce the risk of plant diseases. Accurate forecasting of climate change and precipitation can 

increase productivity, as well as timely. These estimation data obtained can reduce the labor cost and help the 

farmers in the planning phase. In addition, pest movement data can be collected in real time and shared with the 

farmer, which can advise farmers on pest control and take preventive measures (Rubala and Anitha, 2017). 
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2.2. Tracking: 

Thanks to the Internet of Things technology, the efficiency of the companies' supply chains can be increased 

by product tracking. With this technology, agricultural companies can make better decisions and thus save time 

and money. By using RFID and GPS technologies, location tracking can be done both indoors and outdoors (Li, 

2011). 

It is possible for consumers to see all movements of the product by monitoring their production and supply 

chains. The traceability of these movements gives confidence to the consumer about product safety and health. 

Thanks to this data collected by the Internet of Things, consumers can have information about the entire life cycle 

of the product, from the point of origin to the place where it reaches their hands. (Huang and Liu, 2014) (Mainetti 

et al., 2013). 

There are important factors such as soil and water that affect the growing environment of an agricultural 

product. Thanks to the tracking of the product with IoT, both harmful situations can be detected and production, 

storage and transportation conditions can be monitored. Monitoring these situations and conditions reduces the 

risks that may endanger the health of consumers. 

The quality and quantity of crops depends on the conditions of production. These conditions are affected by 

fertilizers, pesticides and pests. Monitoring production conditions and crops can help farmers and agricultural 

companies increase the efficiency of their production and supply chains. 

The most important steps in a tracking system are data entry and proper recording of this information. This 

information should be transmitted uninterruptedly and without loss at all stages of the tracking system. At the end 

of this whole process, an output is obtained. The entire life cycle of the product is associated with location and 

time information and recorded in the system (Regattieri et al., 2007). 

Monitoring and tracking systems are platforms that can be made available to everyone throughout the supply 

chain and that provide analysis on the collected data. In this study (Gan et al., 2010), the use of RFID in the process 

from production to after-sales services is mentioned. The RFID system provides the ability to quickly collect, store 

and analyze data from long distances. 

 

2.3. Agricultural Machinery: 

IoT-based machines used in agriculture can be used to increase crop productivity. With the help of accurate 

mapping and GNSS data, autonomous operation of machines can be made possible. In this way, crop loss can also 

be reduced. (Abhishesh et al., 2017). Machinery including vehicles, drones, and robots can be remotely controlled 

based on available information gathered through the IoT system to apply resources precisely and efficiently to the 

required farm areas (Tripicchio et al., 2015). Machines can also be used to collect data. These data can help farmers 

to map their fields to plan programs such as fertilization, irrigation, and feeding (Kaloxylos et al., 2012). For 

example, CLAAS, an agricultural machinery manufacturer, applied IoT to its equipment, enabling its machines to 

run in autopilot mode. 

 

2.4. Precision Agriculture: 

Precision agriculture is an innovative type of agriculture that combines agricultural production and technology, 

aiming at the principles of lower cost, maximum income expectation and environmental protection, with the aim 

of achieving high efficiency in every aspect (Lerdsuwan & Phunchongharn, 2017). 

Precision farming relies on a variety of technologies including sensor nodes (Mat et al., 2016), GPS, and big 

data analytics to achieve improved crop yields. The decision taken in data analytics, irrigation systems, water, 

fertilizer, pesticides, etc. results in less wasted resources. Precision agriculture, robotics, image processing, 

meteorological data sensing, etc. presents new challenges for researchers in the field. While precision farming 

technology can increase yields, training is essential to provide solutions that are easy to use by farmers, while also 

enabling small and medium-sized farmers to benefit from the systems. 

 

2.5. Greenhouse Production: 

In greenhouse cultivation, a controlled environment is provided to the plants. This technique can be applied 

anywhere at any time, making it possible to grow crops. Wireless sensor networks can be applied in greenhouses 

to monitor production conditions (Pekoslawski et al., 2013). Studies show that IoT applications in greenhouses 

provide efficient use of resources. In this way, energy savings can also be made (Dan et al., 2015). 
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Various studies have been carried out on the use of internet of things technology in soilless agriculture. In their 

study (Ludwig and Fernandes, 2013), the characteristics of the plant such as pH and brightness were monitored 

with sensors in the soilless farming system and the data obtained were sent to a microprocessor. By processing the 

data coming to the microprocessor, the illumination of the production area was controlled with the help of a relay. 

In this way, it is ensured that the plant receives the light it may need and energy efficiency is achieved. 

In the study (Peuchpanngarm, et al. 2016), an automatic control system was developed for soilless agriculture. 

With the developed applications, data is obtained from the sensors in the environment and it is ensured that the 

conditions required by the plant can be presented both automatically and manually. Other advantages of the 

developed applications are correct planning for the product, timely management and determination of the 

appropriate harvest time. 

In addition to automating hydroponics using Internet of Things technology, some knowledge is needed to 

control the hydroponic system. Therefore, machine learning, which is a subset of artificial intelligence, can come 

into play at this point. Machine learning methods in hydroponics help automate plant growth. 

(Ferentinos and Albright 2002) used various sensors for light, conductivity, pH, humidity and water level to 

develop a hydroponic farming system. A Bayesian network was created with the data coming from the system. In 

the Bayesian network, the data obtained from the sensors are checked and predictive analysis is performed to make 

the decision for the output. 

(Pitakphongmetha et al., 2016) used an artificial neural network to predict pH and electrical conductivity results 

in a hydroponic farming system. In this neural network, plant age, light, temperature, humidity are used as input 

and it is designed as a feed-forward network. Automatic control of the system can be achieved with the pH and 

electrical conductivity presented as the output of the neural network. 

In the above-mentioned study, a high level of accuracy could not be obtained in the machine learning 

algorithms used in the environment control in the hydroponic farming system. Studies in this area aim to develop 

a smart soilless farming system based on the internet of things with higher accuracy. 

(Gosavi, 2017), pH, water conductivity, and water brightness; He developed an IoT-based hydroponic 

prototype, which he monitors using sensors such as pH, electrical conductivity, and lumen meters. This 

information, captured by the sensors, is sent to the microprocessor, where continuous monitoring is performed for 

optimum plant growth. In the hydroponic system, the plant should be under 16 hours of light and 8 hours in the 

dark. The microprocessor has a real-time clock to control the lighting with a relay switch. 

The main parameters to be controlled in hydroponic systems are: water temperature, electrical conductivity 

and pH. By keeping the pH at an optimum level, it will be ensured that the crop absorbs the nutrients in the solution 

more easily. However, it is not easy to control the pH value in the nutrient solution, as the pH usually changes 

easily due to ion absorption by the plant roots (Suhardiyanto et al., 2001). Therefore, control becomes complex 

and uncertain. There are different methods to overcome this problem. Conventional control with a threshold can 

be used to issue a command to the actuator, but it will be difficult to obtain an exact value required by the system 

as it cannot cope with uncertainty. A PID controller can be used to remove blur, but this requires a more complex 

control system. Therefore, fuzzy logic can be used to solve such problems (Abu et al., 2013). 

Control and monitoring systems of plant production conditions have a fuzzy and complex structure. Fuzzy logic 

can be used to control the system (Gomez-melendez et al., 2011). This structure can adapt to manage different 

systems thanks to its learning flexibility and high control features. In their study (Morimoto and Hashimoto, 1991), 

a soilless agriculture system was established in which pH values can be controlled with fuzzy logic and artificial 

neural networks. The pH value is an important element for soilless farming systems. The pH value should be kept 

at appropriate levels for each period of the product. In the study (Fuangthong and Pramokchon, 2018), the control 

of the system was ensured by following the pH values with fuzzy logic. In the study (Munandar et al., 2017), a 

real-time monitoring system was designed with fuzzy logic in which the nutritional requirements of the plants are 

automatically met. 

3. Experimental Evaluation 

A monitoring and decision-making system is needed to increase productivity. With image processing methods, 

both the development of the plant can be followed and the negative situations (insect, disease, etc.) that may be 

encountered during this development can be detected much earlier and intervened. This study aims to develop a 

system based on monitoring, measuring, and responding to variability in crops. It is aimed that this developed 

system can work in integration with existing agricultural and greenhouse systems and thus turn these existing 

systems into autonomous systems. 
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Manual methods of tracking product development tend to be error-prone. Computer vision and image 

processing can provide accurate and efficient solutions to support agricultural activities. Machine learning methods 

and artificial intelligence algorithms will enable fast and accurate analysis of large volumes of data. 

With this study, instant changes in the products grown in the system can be followed. In this way, it is aimed 

to ensure that the harvest can be made on time by notifying the user as soon as the product grows. Thus, depending 

on the product grown, it is foreseen that new products will be placed in empty places in the system with timely 

harvest, and more crops will be obtained in the same period.  

This work is divided into three phases. The first phase is placing sensors in the system and collecting data, the 

second phase is placing cameras in the system and processing the images, and the third phase is bringing together 

all the data and controlling the agriculture/greenhouse system with this data. 

This study aims not to develop an agriculture/greenhouse system from scratch, but to make existing systems 

capable of automated product tracking. Therefore, in the first stage, a planting and irrigation area similar to the 

systems in the market was prepared. This system consists of pots, circulation motors, tanks, hoses, sensors, and 

cameras. Figure 1 and Figure 2 show the camera and sensors placed in the system. 

a) 

 
 

b) 

 

Figure 1. a) Overview of the system b) View from the cameras in the system 

 

In the first phase, sensors were added to the farming system. With the help of the microcontroller, the data 

coming from these sensors is re-transferred to a local server wirelessly. The reason why wireless communication 

is preferred here is to avoid complicated wiring in case of too many sensors. A unique name has been determined 

for each sensor and microprocessor so that it can be determined from which sensor of which product sends the 

data. Using this unique name, the sensor data is transferred to the local server and from there to the cloud. For 

example, let’s assume that there is a temperature sensor on product A and this sensor reads 220C. The data of this 

sensor will be sent to the local server as ProductATemperature: 22 and saved to the server with the time stamp. 

The information about how many seconds intervals the sensor measurements will be made can be changed 

parametrically. When working with a small number of sensors, it can be sent at very short intervals, but a decision 

should be made by calculating according to the load that many sensors will put on the server. Depending on the 

situation, the server features can also be improved and sensor data reading processes can be increased. The sensors 

in the first phase are classified into 2 different locations: sensors to be placed in/around the plant and sensors to be 

placed in the water tank. 

Sensors placed in the plant and its environment: 

- Gas sensor: CO2, checking whether green leafed plants can photosynthesize healthily by looking at the 

amount of gas in the environment. 

- Temperature sensor: Temperature of the plant and its environment. 

- Light sensor: Amount of light on and around the plant. 

- Humidity sensor: Moisture on the plant. 

- pH value sensor: pH value of the water reaching the plant. 
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Sensors placed in the water tank: 

- Temperature sensor: Temperature of the water in the tank. 

- pH value sensor: pH value of the water in the tank. 

- Conductivity sensor: Conductivity of water in the tank. 

- Dissolved oxygen sensor: Dissolved oxygen amount of the water in the tank. 

A single-board computer was used as the local server. A server with Linux operating system has been installed 

on this card. A REST service has been developed on this server, where the microcontrollers to which the sensors 

are connected, can send data wirelessly, and NoSQL technology is used to record the incoming data. Since the 

amount of data coming from the sensors will be high, the use of relational databases will lead to performance 

degradation, so NoSQL is preferred. Each sensor data is saved in this database with its unique name and time 

information. 

Records on the local server are transferred to the cloud. Therefore, structures on the local server (REST service 

and NoSQL) are installed on a remote server. Thus, as long as the system is connected to the internet, it can transfer 

its data to the remote server regardless of its location. There are 3 main reasons for transferring to a remote server: 

- Ability to distribute the workload to the remote server (data processing) 

- Remote control of the system 

- Transmission of system information to the users 

In the second phase of the study, the cameras were included in the system. The images from the cameras placed 

at an angle to see the products on the agricultural system are instantly transferred to the local server. The local 

server here and the local server used in the first phase are different from each other. This is because too much data 

is coming from both sources. A separate local server is used for the data coming from the sensors and a separate 

local server is used for the camera images. Depending on the number of cameras and sensors to be used, the number 

of servers can be increased or a single server with a higher processing capacity can be used. The local server 

containing the images is also located in the same network and has access to the remote server. In this way, if 

desired, images can be followed instantly over the Internet. 

Various image processing algorithms are implemented on the images obtained from cameras and their outputs 

are recorded both on the local server and on the remote server. Changes that can be followed by image analysis 

within the scope of this study: 

- The growth of the plant 

- Plant health 

These changes and the algorithms to be implemented can differ according to the type/structure of the product. 

While parameters such as color and volume are sufficient for some products according to the structure of the 

products, the number will be equally important for some products.  

Image processing methods are implemented on the local server. Data from each frame is recorded and 

compared with data from previous times. Thus, it can be determined how much the product has changed in the 

desired time interval. 

The first stage of the final phase of the study involved bringing together the data from the first and second 

phases. Changes are detected by matching the data from the sensors and camera images. Thus, it can be observed 

which type of changes occur in which sensor values. The second stage of the last phase includes controlling the 

system according to these changes. By determining the positive ones among the observed changes, the current 

sensor measurements will be checked and it is ensured that the agricultural system works in the conditions when 

the positive changes occur. For example, when the product reads the X value in sensor A and the Y value in sensor 

B, the product has grown by 1% compared to the previous situation and this 1% growth is the highest growth ever. 

In this case, the values in our positive case are the X and Y values. The control of the system is provided by 

processing the data from all sensors. Using this data, even a simple artificial neural network can be trained and 

output to the plant the resource it needs. All data from the sensors is given as input to the neural network and can 

be matched to the growth rate detected from the camera. In this way, a smart autonomous control system can be 

developed for the agricultural system. The system is constantly updated with incoming data and training continues. 

The parameters controlled and reported to the user at this stage are the amount of water, the number of nutrients 

in the water, temperature, and light parameters. 

The water pump engine in the agriculture/greenhouse system is switched with the help of a microprocessor and 

switch model, allowing water to pass at the desired time and amount. Water and nutrient amounts are also 

controlled by sensors in the tank. 



172 

 

When the items in the tank fall below the threshold values to be determined by the system, the system is 

activated and the necessary notifications are made to add the missing item to the tank. These threshold values are 

also determined for temperature and light and reported by the system by observing the changes. The data and 

outputs obtained in all phases are presented to the user over the cloud. All data sent to the remote server via REST 

service is kept in the NoSQL database, just like on the local server. 

Within the scope of this study, control interfaces and dashboard screens presented to the user were developed. 

Thanks to these interfaces, all sensor data and camera images can be accessed and the outputs of the system are 

presented to the user. 

 

4. Results 

     The growth rate of the lettuce plant was determined by measuring the intensity of the amount of green color. 

Figure 2 shows the detection of the green color on the image of a product and the marking of the area. 

 

a) 

 

b) 

 
 

Figure 2. a) Draw a border around the area with green color, b) Image converted to HSV space 

 

     Color detection is performed on each image coming from the camera. The size of the area with the green color 

is calculated and recorded for each image. While the area size information is being recorded, it is matched with 

the data coming from the sensors at that moment. Table 2 shows sample rows of data collected from sensors and 

product growth rates. The relationship between the temperature data, which is one of the sensor data, and the 

growth rate of the plant is shown in Figure 3. 

 

Figure 3. Temperature - Growth Rate Relationship 
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Table 2. Product growth rate and sensor values 

Temperature 

(C) 

Humidity Level 

(Soil) 

Light Intensity CO2 pH Product Growth 

Rate 

26.4 401 422 420 4.7 0.3 

26.3 415 583 550 4.7 0.2 

26.2 422 588 446 4.7 0.4 

26.1 425 786 685 4.8 0.5 

26.0 425 632 548 4.8 0.7 

25.9 425 564 776 4.7 0.9 

25.8 434 558 675 4.9 1.1 

25.7 437 643 588 4.8 1.1 

25.6 438 773 764 4.9 1.4 

25.4 454 535 528 4.9 1.5 

25.3 465 592 761 4.7 1.5 

25.2 477 705 435 4.7 1.6 

25.1 504 756 552 4.9 1.7 

25.0 528 457 504 4.8 1.6 

24.8 544 808 519 5.0 1.8 

24.4 587 422 606 4.9 1.9 

24.2 610 743 724 4.8 2.0 

24.1 634 667 512 4.9 1.8 

24.1 655 690 501 4.7 1.8 

24.0 668 496 456 4.7 1.9 

23.9 670 713 743 4.9 2.2 

23.7 687 750 808 5.0 2.4 

23.3 687 803 618 4.9 2.5 

23.0 699 735 629 5.1 2.6 

22.9 720 476 479 4.9 2.8 

22.8 738 458 664 5.0 2.9 

22.7 743 460 567 5.1 3.2 

22.6 775 629 496 5.0 3.3 

22.5 790 466 599 5.3 3.5 

22.4 807 741 778 5.2 3.6 

22.3 808 804 748 5.3 3.8 

22.2 808 737 455 5.2 3.5 

22.1 814 606 790 5.4 3.9 

22.0 822 768 432 5.4 4.1 

 

     A dataset was created with the data obtained from the sensors and cameras. The purpose of creating this dataset 

is to predict how much growth occurs in the plant at which sensor values. In the dataset, in addition to the columns 

above, there are unique values assigned to the sensors and the time of each measurement. The average of the 

measurements made every 12 hours is taken and the growth rate of the plant is determined and calculated by image 

processing methods. 

     The neural network has been established to process this created dataset. The artificial neural network model 

generally consists of three parts: input layer, hidden layer and output layer. 20% of the dataset was reserved for 

testing and the rest was used for training. The steps of the machine learning pipeline are shown in Figure 4. 

 

Figure 4. Steps of machine learning pipeline 
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     In the study, the data to be included in the disaggregated groups of the data set, namely training and test data, 

were randomly selected from among the entire dataset. The maximum number of iterations was determined as 

5000, and the training of the network was terminated as soon as it fell below the specified error amount. 

     Since the data presented to the network is in a very wide range, in different units, and disproportionate, giving 

it directly to the network will cause the network to be trained incorrectly. At the exit of the network, it was asked 

to convert it back to its original scale and the results were evaluated in this direction. 

     The accuracy of the model obtained was 96.2%. To interpret the obtained model, the SHAP technique was used 

to evaluate the importance of each feature in determining the predicted output. 

     Figure 5 shows the importance of the features in the dataset according to the developed model. As seen in the 

figure, the most important feature according to the model, is the temperature. The next important feature is 

humidity. 

 

Figure 5. Feature importance 

5. Discussion 

     In the proposed IoT solution within the scope of this study, many sensors were used and measurements were 

made continuously. A dataset was created with the data obtained from the sensors and cameras and a neural 

network was applied to this dataset. The importance of features is listed by using the SHAP method. 

 

6. Conclusion 

     In this study, an IoT system was designed to successfully track plant growth. Thanks to this system, a dataset 

was created with the growth rate of the plant and the sensor data during this growth. Then, by training a neural 

network with this dataset, it has been seen that it can be predicted how much growth has occurred in which sensor 

values. The accuracy of the model was calculated as 96.2%. Thanks to such a system, information on the conditions 

under which plants should be grown can be obtained using different image processing and machine learning 

methods. Thus, the provision of suitable conditions for plant growth in a greenhouse can be achieved 

autonomously. 
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