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Abstract—Recently, the researchers working in the field of science and engineering have paid a considerable 

attention to the concept of the system identification to tackle with complex optimization problems. It is feasible 

to achieve more accurate models of physical plants with the infinite impulse response (IIR) models compared to 

their finite counterparts (FIR). To get the most out of the IIR models for the system identification, metaheuristic 

optimization algorithms can be used as efficient solutions. This work, therefore, aims to demonstrate more 

promising performance of a new metaheuristic algorithm named slime mould algorithm. In this regard, a 

comparative assessment is performed using different metaheuristic optimization techniques and different IIR 

model identification problems are considered. The slime mould algorithm is shown to achieve better accuracy and 

robustness in terms of IIR model identification with the help of obtained statistical results. 

Keywords: IIR adaptive filter, System identification, Slime mould algorithm, Metaheuristic algorithms.  

 

1. Introduction  

It is feasible to observe the appetite of the researchers towards one of the complex optimization problems 

known as system identification. Such an appetite is due to the significant role of the system identification in 

different fields of science and engineering (Mohammadi et al., 2019). To obtain an optimal model for the unknown 

plant, an optimizer is used in system identification which minimizes an error function (Zhao et al., 2020). 

Performing an effective minimization on the error function would help to achieve an optimal model. 

Since the infinite impulse response (IIR) models are able to mimic the physical plants more accurately 

compared to finite impulse response (FIR) models and only require fewer parameters to meet the performance 

specifications, they are widely used for the purpose of the system identification (Kumar et al., 2016). The 

metaheuristic optimizers have recently been used as promising candidates to deal with IIR modeling since such 

optimizers have so far shown to reach more accurate and robust results (Eswari et al., 2021). Therefore, different 

metaheuristic algorithm examples such as cat swarm optimization (Panda et al., 2011), harmony search algorithm 

(Saha et al., 2014), bat algorithm (Kumar et al., 2016), selfish herd optimization (Zhao et al., 2020) and average 

differential evolution algorithm (Durmuş, 2022) can be found in the literature for IIR system identification.  

In the light of the aforementioned capability of the metaheuristic optimizers, this study aims to further 

demonstrate the promise another recent metaheuristic algorithm for IIR system identification such that more 

accurate and robust results can be reached. Therefore, in this work, the promise of the slime mould algorithm (Li 

et al., 2020) is comparatively presented for IIR model identification. We have employed the latter optimizer as it 

has already been demonstrated to be a competitive candidate for several different problems such as optimizing the 

parameters of power system stabilizer (Ekinci et al., 2020), designing PID (Izci & Ekinci, 2021) and FOPID (Izci, 

Ekinci, Zeynelgil, et al., 2021) controllers, extracting optimal model parameters of the photovoltaic panel (Mostafa 

et al., 2020), monitoring structural health (Tiachacht et al., 2021), designing controller for magnetic levitation 

system (Izci, Ekinci, Eker, et al., 2021), cost-effective solution for economic load dispatch problem (Kamboj et 

al., 2022) and optimizing functions (Izci, 2021). 
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To demonstrate the performance of the slime mould algorithm reaching more accurate and robust results, three 

different cases of the IIR system examples (second-order plant with a first order IIR model, second-order plant 

with a second order IIR model and high-order plant with a high-order IIR model) were considered in this study. 

Then, the available metaheuristic optimizers-based studies of flower pollination algorithm, cuckoo search 

algorithm, electromagnetism-like algorithm, artificial bee colony algorithm and particle swarm optimization 

algorithm (Cuevas et al., 2014) were employed for comparisons. The comparative examinations confirmed that 

the slime mould algorithm can reach more promising performance for the IIR model identification. 

2. Slime Mould Algorithm 

The slime mould algorithm (SMA) employs the foraging behavior of Physarum Polycephalum (Li et al., 2020) 

in order to mathematically describe a stochastic optimizer. The first step of the SMA algorithm is the initialization 

stage which mimics the behavior of the approaching food. The following model is used in this step where �⃗� is the 

location of the slime mould and 𝑋𝑏⃗⃗ ⃗⃗⃗ is the current location with the highest odor concentration. 

𝑋(𝑡 + 1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = {
𝑋𝑏(𝑡)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝜐𝑏⃗⃗⃗⃗⃗ ⋅ (�⃗⃗⃗⃗� ⋅ 𝑋𝐴(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ − 𝑋𝐵(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) , 𝑟 < 𝑝

𝜐𝑐⃗⃗⃗⃗⃗ ⋅ 𝑋(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝑟 ≥ 𝑝
 (1) 

In here, 𝑋𝐴⃗⃗ ⃗⃗⃗ and 𝑋𝐵⃗⃗ ⃗⃗ ⃗ stand for individuals that are randomly chosen from slime mould, 𝑟 represents a random 

value (range between [0, 1]) whereas 𝜐𝑐⃗⃗⃗⃗⃗ is a parameter decreasing from 1 to 0. 𝜐𝑏⃗⃗⃗⃗⃗, on the other hand, is a parameter 

with range [−𝑎, 𝑎]. The value of 𝑎 is calculated as: 

𝑎 = 𝑎𝑟𝑐𝑡𝑎𝑛ℎ (−(
𝑡

𝑡𝑚𝑎𝑥

) + 1) (2) 

where 𝑡𝑚𝑎𝑥 is the maximum iteration. The condition of 𝑝, given in (1), is defined as: 

𝑝 = 𝑡𝑎𝑛ℎ|𝑆(𝑖) − 𝐷𝐹| (3) 

where 𝑆(𝑖) is the current fitness value (𝑖 ∈ 1,2, … 𝑛) and 𝐷𝐹 is the best fitness of all iterations. The weight, �⃗⃗⃗⃗�, of 

slime mould is calculated as follows where 𝑐𝑜𝑛𝑑 indicates the first half of the population ranked by 𝑆(𝑖). 

�⃗⃗⃗⃗�(𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥(𝑖)) = {
1 + 𝑟 ⋅ log (

𝑏𝐹 − 𝑆(𝑖)

𝑏𝐹 − 𝑤𝐹
+ 1) , 𝑐𝑜𝑛𝑑

1 − 𝑟 ⋅ log (
𝑏𝐹 − 𝑆(𝑖)

𝑏𝐹 − 𝑤𝐹
+ 1) , 𝑜𝑡ℎ𝑒𝑟𝑠

 (4) 

In (4), 𝑏𝐹 and 𝑤𝐹 respectively stand for the optimal and the worst fitness achieved in the current iteration. 

The second step of the SMA algorithm is the updating stage which considers the behavior related to the 

wrapping food, thus, the contraction mode of slime mould is mathematically simulated. That essentially means 

slime mould generates a strong wave in case of contracting a high concentration of food through the vein which 

causes a thick vein and a fast flow of cytoplasm. In case of lower concentrations, the exploration of other regions 

is performed. Such a behavior can be modeled as follows and used for the location update where 𝑟𝑎𝑛𝑑 is a random 

value ranging between [0, 1], 𝐿𝐵 is the lower bound and 𝑈𝐵 is the upper bound of the search space and 𝑧 is a 

parameter ranging between [0, 0.1]. 

𝑋∗⃗⃗ ⃗⃗ ⃗ = {

𝑟𝑎𝑛𝑑 ⋅ (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵, 𝑟𝑎𝑛𝑑 < 𝑧

𝑋𝑏(𝑡)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝜐𝑏⃗⃗⃗⃗⃗ ⋅ (�⃗⃗⃗⃗� ⋅ 𝑋𝐴(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ − 𝑋𝐵(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) , 𝑟 < 𝑝

𝜐𝑐⃗⃗⃗⃗⃗ ⋅ 𝑋(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝑟 ≥ 𝑝

 (5) 

The last step of the SMA algorithm is related to the oscillation. The slime mould produces a wave to search for 

the position of the food with better concentration. The slime mould approaches high concentrated food locations 

quicker. On the other hand, a slower approach is employed to reach lower concentrated food locations. Such 

behavior increases the efficiency of finding the optimal food location. Figure 1 illustrates the steps of the SMA 

algorithm. 
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Figure 1. The steps of the slime mould algorithm (Li et al., 2020) 

3. Adaptive IIR Filter Model 

It is feasible to model the problems encountered in signal processing as a system identification problem, thus, 

the adaptive IIR filter has so far been widely adopted for this purpose. The appropriate filter coefficients are 

searched by an adaptive algorithm in IIR filter design so that the output of the respective filter can be as close to 

an unknown system as possible. Figure 2 demonstrates the block diagram of an adaptive IIR system identification 

based on the proposed SMA algorithm. 

− 

+ 
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SMA optimizer  

Adaptive IIR filter
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Figure 2. Block diagram of adaptive IIR model designed by the SMA optimizer  

The IIR system’s input-output relationship can be expressed as follows (Durmuş, 2022; Karaboga, 2009) where 

the input and the output of the filter are represented by 𝑥(𝑛) and 𝑦(𝑛), respectively. 

𝑦(𝑛) +∑𝑎𝑖𝑦(𝑛 − 𝑖)

𝑀

𝑖=1

=∑𝑏𝑖𝑥(𝑛 − 𝑖)

𝑁

𝑖=0

 (6) 

In here, 𝑀 (≥ 𝑁) represents the filter order. The following general form can then be obtained to describe the 

transfer function of this IIR filter. 

𝐻(𝑧) =
𝐵(𝑧)

𝐴(𝑧)
=

∑ 𝑏𝑖
𝑁
𝑖=0 𝑧−𝑖

1 + ∑ 𝑎𝑖𝑧
−𝑖𝑀

𝑖=1

 (7) 

As shown in Figure 2, the terms of the 𝐻𝑃(𝑧) and 𝐻𝑀(𝑧), in the design method, are respectively representing 

the transfer functions of the unknown plant and the IIR model. Besides, the desired response of the unknown IIR 

plant is represented by 𝑑(𝑛) whereas 𝑒(𝑛) = 𝑑(𝑛) − 𝑦(𝑛) is the error signal. The main aim of the identification 
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is to describe a cost function (𝐽(𝜃)), as given below, for minimization where 𝐿 stands for the number of input 

samples which are utilized for calculating the respective cost function. 

𝐽(𝜃) = 𝑀𝑆𝐸 =
1

𝐿
∑𝑒2(𝑛)

𝐿

𝑛=1

 (8) 

The mean square error (MSE) equals to 𝐽(𝜃) and produces the coefficient vectors of the IIR model. In here, 

𝜃 = [𝑏0, 𝑏1, … , 𝑏𝑁 , 𝑎1, 𝑎2, … , 𝑎𝑀]
𝑇. The SMA algorithm in here attempts to minimize the MSE through adjusting 

coefficient vector 𝜃 of transfer function 𝐻𝑀(𝑧). 

4. Simulation Results  

In this study we considered three different cases to demonstrate the superiority of the SMA algorithm for the 

IIR model identification. For those cases, the parameters of the SMA algorithm were set as follows: 

- z= 0.03, 

- number of slime mould colony (population size) = 25, 

- maximum iteration number = 3000 and number of runs = 30.  

For all simulations, the input signal, 𝑥(𝑛), was taken as 𝐿 = 100 samples of Gaussian white noise with zero 

mean and 0.1 variance (Cuevas et al., 2014). For the comparisons in the considered three cases of the IIR system 

examples, flower pollination algorithm (FPA) (Cuevas et al., 2014), cuckoo search (CS) algorithm (Cuevas et al., 

2014), electromagnetism-like (EM) algorithm (Cuevas et al., 2014), artificial bee colony (ABC) algorithm (Cuevas 

et al., 2014) and particle swarm optimization (PSO) algorithm (Cuevas et al., 2014) were employed. For the latter 

algorithms, the population size was taken as 25 and the maximum iteration number was set to 3000. 

4.1. Example 1 

We initially aimed to identify a second-order plant through a first order IIR model in the first example. For this 

reason, the following transfer functions are used for the unknown plant (𝐻𝑃) and the IIR model (𝐻𝑀). 

𝐻𝑃(𝑧) =
0.05 − 0.4𝑧−1

1 − 1.1314𝑧−1 + 0.25𝑧−2
 (9) 

𝐻𝑀(𝑧) =
𝑏0

1 − 𝑎1𝑧
−1

 (10) 

For the first example, the obtained best values for the parameters of 𝑏0 and 𝑎1 are reported in Table 1 and the 

statistical performance assessment for different algorithms are provided in Table 2. As we demonstrate in Table 2, 

the SMA algorithm outperforms the compared algorithms as it achieves far better results than the algorithms of 

FPA, CS, EM, ABC and PSO. 

Table 1. Optimized parameter values with different algorithms for the first example 

Coefficients 

Optimized value 

SMA 
FPA (Cuevas 

et al., 2014) 

CS (Cuevas et 

al., 2014) 

EM (Cuevas 

et al., 2014) 

ABC (Cuevas 

et al., 2014) 

PSO (Cuevas 

et al., 2014) 

𝑏0 −0.2903 −0.2001 −0.2382 0.3030 −0.3525 −0.3012 

𝑎1 0.9203 0.9364 0.9173 0.9034 0.1420 0.9125 

Table 2. Obtained statistical values for the first example 

Algorithms 
MSE 

Mean Standard deviation 

SMA 9.5657E−03 1.3394E−04 

FPA (Cuevas et al., 2014) 0.0105 5.103E−04 

CS (Cuevas et al., 2014) 0.0101 3.118E−04 

EM (Cuevas et al., 2014) 0.0165 0.0012 

ABC (Cuevas et al., 2014) 0.0197 0.0015 

PSO (Cuevas et al., 2014) 0.0284 0.0105 

 

4.2. Example 2 

In the second example, we attempted to identify a second-order plant through a second-order IIR model. For 

the second case, the following transfer functions are used for the unknown plant (𝐻𝑃) and the IIR model (𝐻𝑀). 
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𝐻𝑃(𝑧) =
1

1 − 1.4𝑧−1 + 0.49𝑧−2
 (11) 

𝐻𝑀(𝑧) =
𝑏0

1 + 𝑎1𝑧
−1 + 𝑎2𝑧

−2
 (12) 

For the second example, the obtained best values for the parameters of 𝑏0, 𝑎1 and 𝑎2 are reported in Table 3 

and the statistical performance assessment for different algorithms are provided in Table 4. As we demonstrate in 

Table 4, the SMA algorithm has similar performance as the CS algorithm, however, outperforms the rest of the 

compared algorithms. 

Table 3. Optimized parameter values with different algorithms for the second example 

Coefficients 
Exact 

value 

Optimized value 

SMA 

FPA 

(Cuevas et 

al., 2014) 

CS (Cuevas 

et al., 2014) 

EM 

(Cuevas et 

al., 2014) 

ABC 

(Cuevas et 

al., 2014) 

PSO 

(Cuevas et 

al., 2014) 

𝑏0 1.0000 1.0000 1.0000 1.0000 1.0091 0.2736 0.9706 

𝑎1 −1.4000 −1.4000 −1.4000 −1.4000 −1.0301 −1.2138 −1.4024 

𝑎2 0.4900 0.4900 0.4900 0.4900 0.4802 0.6850 0.4925 

Table 4. Obtained statistical values for the second example 

Algorithms 
MSE 

Mean Standard deviation 

SMA 0.0000 0.0000 

FPA (Cuevas et al., 2014) 4.6246E−32 2.7360E−31 

CS (Cuevas et al., 2014) 0.0000 0.0000 

EM (Cuevas et al., 2014) 3.9648E−05 8.7077E−05 

ABC (Cuevas et al., 2014) 0.3584 0.1987 

PSO (Cuevas et al., 2014) 4.0035E−05 1.3970E−05 

 

4.3. Example 3 

Lastly, we attempted to identify a higher-order plant through a high-order IIR model. For the third case, the 

following transfer functions are used for the unknown plant (𝐻𝑃) and the IIR model (𝐻𝑀). 

𝐻𝑃(𝑧) =
1 − 0.4𝑧−2 − 0.65𝑧−4 + 0.26𝑧−6

1 − 0.77𝑧−2 − 0.8498𝑧−4 + 0.6486𝑧−6
 (13) 

𝐻𝑀(𝑧) =
𝑏0 + 𝑏1𝑧

−1 + 𝑏2𝑧
−2 + 𝑏3𝑧

−3 + 𝑏4𝑧
−4

1 + 𝑎1𝑧
−1 + 𝑎2𝑧

−2 + 𝑎3𝑧
−3 + 𝑎4𝑧

−4
 (14) 

For the last example, the obtained best values for the parameters of 𝑏0, 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑎1, 𝑎2, 𝑎3 and 𝑎4 are 

reported in Table 5 and the statistical performance assessment for different algorithms are provided in Table 6. As 

we demonstrate in Table 6, the SMA algorithm outperforms all the compared algorithms. 

Table 5. Optimized parameter values with different algorithms for the third example 

Coefficients 

Optimized value 

SMA 
FPA (Cuevas 

et al., 2014) 

CS (Cuevas et 

al., 2014) 

EM (Cuevas 

et al., 2014) 

ABC (Cuevas 

et al., 2014) 

PSO (Cuevas 

et al., 2014) 

𝑏0 0.9945 1.0171 −0.2377 1.0335 0.5214 0.9939 

𝑏1 −0.0206 0.0038 0.0031 −0.6670 −1.2703 −0.6601 

𝑏2 0.3649 0.2374 −0.3579 −0.4682 0.3520 −0.8520 

𝑏3 −0.0080 0.0259 0.0011 0.6961 1.1816 0.2275 

𝑏4 −0.3657 −0.3365 −0.5330 −0.0673 −1.9411 −1.4990 

𝑎1 −0.0115 0.0328 0.9599 −0.4950 −1.1634 0.3683 

𝑎2 0.0023 −0.1059 0.0248 −0.7049 −0.6354 −0.7043 

𝑎3 0.0018 −0.0243 0.0368 0.5656 −1.5182 0.2807 

𝑎4 −0.8522 −0.7619 −0.0002 −0.2691 0.6923 0.3818 
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Table 6. Obtained statistical values for the third example 

Algorithms 
MSE 

Mean Standard deviation 

SMA 4.9076E−05 8.5898E−07 

FPA (Cuevas et al., 2014) 0.0018 0.0020 

CS (Cuevas et al., 2014) 6.7515E−04 4.1451E−04 

EM (Cuevas et al., 2014) 0.0140 0.0064 

ABC (Cuevas et al., 2014) 7.3067 4.3194 

PSO (Cuevas et al., 2014) 5.8843 3.4812 

 

5. Conclusion 

In this work, we have presented the promise of the SMA optimizer for the IIR model identification using 

comparative assessments. To do so, we have utilized the identification task as an optimization problem. To 

demonstrate the promise, we have employed three distinct cases (second-order plant with a first-order IIR model, 

second-order plant with a second-order IIR model and high-order plant with a high-order IIR model) as problems 

with different difficulties. Different metaheuristic optimizers (FPA, CS, EM, ABC and PSO) then employed for 

performing comparative assessments. The obtained results have confirmed the highly competitive performance of 

the SMA optimizer reaching better accuracy and robustness for the IIR model identification. 
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