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Abstract: Artificial neural networks (ANN) have emerged as a promising tool for estimating hydrogen 

production process variables for reaction condition optimization. The objective of the study was to predict 

complex nonlinear systems using ANN for modeling hydrogen production by water electrolysis and to evaluate 

the common challenges encountered. To estimate the effect of different electrolyzer systems input parameters 

such as electrolyte material, electrolyte type, supplied power (voltage and current), temperature, and time on 

hydrogen production, a predictive model was developed. The percentage contributions of the input parameters to 

hydrogen production and the best network architecture to minimize computation time and maximize network 

accuracy were shown. The results show that the hydrogen production parameters from electrolysis and the 

predicted safety explosive limit are 7% of the average Root Mean Square Error (RMSE). Furthermore, the 

coefficient of determination value was found 0.93. This predicted value is very close to the observed values. The 

neural network algorithm developed in this study could be used to make critical decisions in the electrolysis 

process for parameters affecting hydrogen production. 
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1. Introduction 

 

Hydrogen production has become more and more important to meet the increasing demand for 

renewable energy. Hydrogen is a non-toxic fuel that fuel cells can easily convert into electricity. 

When compared to conventional fuels, hydrogen has the highest energy content per unit mass and 

can be used in place of hydrocarbons [1]. Hydrogen has an energy density of 140 MJ/kg, which is 

2.75 times that of hydrocarbon fuels (50 MJ/kg) [2]. The combustion process is non-polluting to the 

environment and can be used in fuel cells to generate both electricity and valuable heat. In nature, 

hydrogen does not exist as a single element but must be synthesized from the compounds that make 

it up. Hydrocarbon pyrolysis, hydrocarbon reforming, biomass processing, and water splitting are 

the four primary methods for producing hydrogen [3]. 

 

One of the most appealing features of hydrogen is its ease of production from water, which is 

abundant in nature. For hydrogen production from water splitting, there are water electrolysis (WE) 

processes available, including alkaline WE, proton exchange membrane WE, solid oxide WE, and 

alkaline anion exchange membrane WE [4]. Typically hydrogen production via WE is the process 

of converting water into hydrogen and oxygen by passing a direct current from the cathode and 

anode electrodes in the electrolyte to each other [4,5,6,7].  
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Figure 1. Production process of hydrogen 

 

Water is the reactant in the WE process, and under the influence of a direct current, it is dissociated 

into hydrogen and oxygen. During alkaline WE, the anode releases oxygen, and the cathode emits 

hydrogen [8]. The following reaction couples are listed; 

 

Cathodic reaction:     H    e
-  H    H

-
              (1) 

Anodic reaction:    H       
-
  H    e

-            (2) 

Overall reaction:   H    H   
 
                       (3) 

 

 
Figure 2. Systematic view of the water electrolysis process 

 
Water is basically broken down into hydrogen and hydroxyl ions (H+ and OH-). By picking up 

electrons and forming hydrogen molecules, hydrogen ions migrate towards the cathode, the 

negative electrode. Water electrolysis is a great and practical way to get high-purity hydrogen. WE-

generated hydrogen has a high purity (99.9%) and can be used as a reactant in a variety of industrial 

processes [9]. WE, on the other hand, is not widely used due to its low efficiency in comparison to 

fossil fuel reforming [3].  

 



Bilgiç, G., Öztürk, B. ECJSE 2023 (1) 137-146   

 

139 

 

ANN systems are increasingly being used in fields that require output prediction based on input 

parameter specifications that are limited or incomplete. ANN is a modeling system that simulates 

the human brain's learning process by mathematically modeling the network structure of 

interconnected nerve cells [10]. ANNs are data-driven systems that have no prior knowledge of the 

events that govern the process. These data-driven systems examine existing relationships between 

input and output parameters in an attempt to identify the influences governing process output. An 

input layer, one or more hidden layers, and an output layer are the three layers that make them up 

[11]. The hidden layer neurons aid the network in creating the complex connections between the 

parameters of input and output. [12]. ANNs are a nonlinear statistical model and an effective tool 

for representing complex nonlinear systems, as opposed to traditional modeling tools [10, 11].  

 

In recent years, ANN has received much attention for predicting hydrogen production because it has 

several advantages like efficiency, generalization, and simplicity [13]. The papers are separated into 

four groups: studies on the applications of ANN to modeling the hydrogen generation process, 

evaluation of ANNs in comparison to other modeling approaches, consideration of hybrid ANN-

optimization approaches, and lastly hardware-implemented ANN models [14]. The fundamental 

benefit of utilizing ANNs in the production of hydrogen is that they are composed of numerous 

processing components connected by multiple weighted couplings. There are many neurons 

carrying a specific piece of information in these connections, which are scattered representations of 

input and output data from hydrogen synthesis. These neurons are able to handle and correct data 

with great computational power due to their batch behaviour. 

 

Zamaniyan et al. [15] created a three-layer ANN to model an industrial hydrogen production plant. 

The researchers created a network of four input neurons and three output neurons for the plant's 

production. Input parameters of this network; were temperature, pressure, steam-carbon ratio, and 

carbon dioxide-methane ratio, while output parameters were temperature, hydrogen mole fraction, 

and the carbon monoxide mole fraction of hydrogen product. The proposed neural network by the 

researchers was trained using gradient descent algorithm and in the hidden and output layers, the 

tangential sigmoid transfer function was used. While determining the appropriate number of 

neurons in the hidden layer, the Mean Square Error (MSE) value was taken into account and it was 

chosen as 5 because it gives the lowest calculated MSE value of 0.00045. 

 

In a continuous fermenter reactor, Nasr et al. [16] constructed an ANN with a three-layer feed-

forward back-propagation for the production of biohydrogen from the starch wastewater industry. 

Organic loading rate (OLR), pH, and volatile suspended solids (VSS) yield were the network 

inputs. The hydrogen production rate (HPR) was the network output. Using empirical data gathered 

during a six-month period when starch wastewater was utilized to power an up-flow anaerobic 

staged reactor, the model was trained, validated, and tested (UASR). The Levenberg-Marquardt 

algorithm with a 3-8-4-1 network structure was used to train the model. The weights between 

neurons were then changed at each cycle by backpropagating across the network after calculating 

the MSE between the experimental data and the corresponding predicted data. This cycle was 

repeated until the error between experimental and predicted data was minimized. The transfer 

functions between input and hidden layer-1, between hidden layer-1 and hidden layer-2, and 

between hidden layer-2 and output layer were linear, tan-sigmoid, and log-sigmoid, respectively. 

An average R
2
 of 0.945, 0.652, and 0.791 was obtained for the train, validation, and test data points, 

respectively. The researchers claim that it is possible to predict the complex nonlinear forms of 

HPR using the well-established model ANN. 

 

Nasr et al [17], established a ANN to forecast the temporal variation of hydrogen generation profile 

in batch reactors. A feed-forward neural network with backpropagation algorithm model was 

consisted of 5-6-4-1. 313 data points from 26 published experiments were used to train the model. 
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The initial pH, initial biomass concentration (Xo), initial substrate concentration (So), time (t).and 

temperature (T) were the ANN inputs. Hydrogen production is an output parameter. The log-

sigmoid transfer function was used between the input and hidden layer 1 and hidden layer 1, linear 

transfer function was used between hidden layer 2 and the output layer. For the training, validating, 

and testing data points, respectively, correlation coefficients of 0.988, 0.987, and 0.996 were 

obtained, as well as MAEs of 1.89 mL, 6.16 mL, and 4.89 mL. With a R
2
 of 0.976, the results 

demonstrated that the trained ANN was successful in predicting the hydrogen production profile 

over time for new data. 

 

Karaci et al. [18], developed a back propagation neural network (BPNN) to predict the hydrogen 

gas production from waste pyrolysis. Three different wastes were studied by the researchers: tea 

trash, olive husks, and cotton cocoon shells. Additionally, they investigated the impacts of several 

catalysts, such as ZnCl2, NaCO3, and K2CO3. The network input parameters were product type, 

catalyst type, catalyst amount, and future. The rate of creation of hydrogen-rich gas was the only 

output of the network. The researchers determined that 13 neurons were the appropriate number for 

the hidden layer based on the MSE results. They used 102 experimental data points to train the 

network, 33 for testing, and 33 more for validation. For the training, validating, and testing phases, 

their model achieved R2 values of 0.975, 0.955, and 0.905, respectively. These findings show a 

strong correlation between the model's anticipated values and the values attained through 

experimentation. 

 

Whatever method is used, some production environment parameters must be determined in order to 

maximize the hydrogen production rate. Artificial intelligence methods, particularly ANN, have 

gained attention for this purpose due to their ability to deal with unknown conditions. However, 

most ANN studies on hydrogen production in the literature focus on hydrocarbon-based hydrogen 

production. There is a significant gap in ANN research on hydrogen production via water 

electrolysis. With the motivation from this gap in the literature, in this study, hydrogen production 

prediction was made by ANN in water electrolysis. Electrolyte material, electrolyte type, time, 

surface area, temperature, and supplied power, were used as input parameters and hydrogen 

production was used as the only output. Results, the error rate and coefficient of determination (R
2
) 

were determined, and it was seen that the actual data and the estimated values matched very well 

with R
2
=0.93. It represents the initial stage of water electrolysis and provides a good idea of the 

enormous potential of such models in this area. However, more experimental data to increase the 

database will be helpful for ANN training in the future and for enhancing the created models. This 

research will make a substantial contribution to the study of hybrid solutions. Finally, the process 

can be optimized and controlled using the proposed ANN models. 
 

2. Materials Methods 

 

2.1. Experimental Data Collection 

 

The 104 data extracted from collected literature were used to develop the ANN model [19]. While 

preparing the data set, studies that produce hydrogen using the alkaline water electrolysis method 

were selected. The different inputs were selected for single output to obtain the best fit model and 

so reduce the high complexity of the model. In this work, selected independent parameters for the 

models are electrolyte material, electrolyte type, time, temperature, surface area, and supplied 

power, while the output data was total hydrogen production flow (mL/min). An ANN with an 6-8-

12-1 configuration was used as the model. The model had six input neurons and a single output 

neuron that represented the single outcome, the rate of hydrogen production. The model had two 

hidden layers. 
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2.2. Methodology of ANN architecture 

 

The Python program was used to create the ANN and train it in this case. Designing ANN models 

using Python software generally follows five steps: 1. collecting data, 2. preprocessing data 

randomizing data into training, 3. building the network, 4. training, and 5. testing the model. The 

testing, and training of ANN were executed as an electrolyte material, electrolyte type, time, surface 

area, temperature, and supplied power given to the model as inputs, and the H2 value was taken as 

output.  

  

In this model ANN, the following data were used: the 104 experimental data for the training and 20 

experimental data, which the network has never seen before, for the tests. The training set was used 

to calculate the gradient and update the network weights and biases while the test set was used to 

evaluate the model's suitability [20]. These data were distributed at random using a Python 

program. The number of neurons in the output layer should match the findings of the experiments. 

As a result, the constructed ANN model outputs the H2 ratio and has one neuron in the output layer. 

Data is always routed from the input layer to the output layer. As a result, interconnected sets of 

ANN were created using the same input data sets but mapping to different output data [21]. 

 

 
Figure 3. Schematic representation of the general topology of a multilayer structure of an ANN 

 

Figure 3 shows the ANN structure used in the model, the hidden layers, and the neurons in the 

layers. Shown are the six input variables with their neurons, were interlinked from each input to all 

hidden layer neurons along with the calculated weightings. The weighted outputs were then merged 

and fed into the output neuron to form the output values. ReLU transfer functions are used in both 

hidden layers. The purelin (linear) activation function is used in the output layer. While the number 

of epochs is 117 in the ANN model, the batch size is 5. To test the robustness and predictability of 

the models, the data sets in the ANN model were randomly divided into training (80%) and test 

(20%) subsets from the available database [15]. Because the database was small, the validation and 
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test sets were the same. The outputs of each ANN were compared to experimental data targets 

reported by references. The performance of the various ANNs was statistically measured using the 

regression coefficient (R
2
) and the experimental values and network predictions. 

 

 

3. Results and Discussion 

 

3.1.  Performance Analysis of ANN Models 

 

Figures 4 show the performance of the 6-8-12-1 Adam (learning rate=1e-3) regularization trained 

networks in terms of predicting hydrogen production from water electrolysis. The observed 

hydrogen yield for each of the experimental runs, as shown in Figure 4, is close to the predicted 

values, as indicated by the regression plot. This means that the 6-8-12-1 trained ANN model is 

capable of learning the non-linear relationship between the input and output parameters of the water 

electrolysis reaction, resulting in a well-generalized prediction. 

 

The performance of neural network models was evaluated using mean absolute percentage error 

(MAPE), root mean square error (RMSE), coefficient of correlation (R
2
), and mean square error 

(MSE). RMSE measures prediction error and provides a summary of overall model performance, 

whereas r is a commonly used model goodness of fit criterion. Lower RMSE values indicate that 

the model is working properly. A well-trained model should have an R
2
 value close to one and as 

little error as possible [22]. Table 1 shows the performance metrics of the ANN model. RMSE value 

is 0.077 in the model. 

 

Table 1. Performance Metrics 

R
2
 SCORE 0.9361 

MSE 0.0060 

RMSE 0.0774 

MAE 0.05631 

MAPE 0.6627 

 
 
Coefficient of determination (R

2
) 

 

A figure of merit that measures how well the model fits the data is the coefficient of determination. 

[23]. Eq. (4) provides the mathematical formula for the coefficient of determination: 

 

    - 
    easure , i-   re icte ,i 

 N
i  

    easure , i-   easure ,i
              

 N
i  

     (4) 

 

where N is the number of features, Y measured,i is the actual measured value for feature i,   easure ,i
            is 

the average of all measured values Y predicted,i is the predicted value for feature i. 

Here R
2
 is a used criterion for the goodness of fit for the model. A well-trained model should have 

an R
2
 value close to one and as little error as possible. The regression plot (R

2
) is depicted in Figure 

4. The data points in the graph from observed and predicted hydrogen production revealed that they 



Bilgiç, G., Öztürk, B. ECJSE 2023 (1) 137-146   

 

143 

 

were closely related. A high R
2
 of 0.936 indicates that the Adam (learning rate=1e

-3
) regularization-

trained multilayer perceptron ANN model can learn and generalize 93 percent of datasets. The 

performance of a training algorithm is largely determined by how well it can learn and train the 

input model and the targeted parameters. According to the graph, the actual and estimated hydrogen 

yields are very close. This demonstrated that ANN is a reliable technique for modeling a process 

with a nonlinear relationship. To estimate the hydrogen yield, a near-perfect R
2
 of 0.9361 was 

obtained (see Figure 4). 

 

 
Figure 4. Comparison of the experimental results and predicted results derived from the ANN 

model 

  

3.2. Kernel Density Estimation (KDE) 

 

A non-parametric technique for estimating the probability density function of a variable is called 

kernel density estimation (KDE) [24].  The density plot depicts how data are distributed across an 

ongoing period of time. The kernel smoothing method is used in this graph, which is a variation on 

the histogram. By removing unnecessary clutter from value projections, it enables, smoother 

transitions. The intensity graph's peaks identify the areas of concentration for the values over the 

given period of time. The density plot has one advantage over the histogram: it exhibits the 

distribution's shape more accurately. The number of columns used has no bearing on it, unlike the 

histogram, which uses one column to represent a set of data. The discrete histogram of the 

distribution of hydrogen generation parameters was replaced with KDE. It is crucial to take the 

rectangle's width and height into account while interpreting this histogram. K is often a symme 

trical oriented unimodal density function. The kernel estimate is obtained by applying a kernel 

function to each sample point. The total of the y coordinates (coordinates) of the n nuclei located at 

a given place x determines the value of the kernel function estimate for that location. For instance, 

the kernel estimate at x will be relatively high with many sample points and lower with fewer 

sample points [24]. Figure 5 shows the KDE graph. Bandwidth on the x-axis is between -0.5 and 

1.5, while on the y-axis it is between 0.7 and 0.6. As a result, the kernel estimate is relatively high. 
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From this point of view, we can say that the bandwidth and the number of sample points are 

important factors in the kernel density estimation method.  

 

The performance of the model was further assessed by comparing predicted and observed H2 

production kernel density plots. Overall, the ANN predicted H2 distribution reproduced the 

observed H2 distribution better, both as the median value and as the high-value tail. The linear 

model's predicted H2 distribution, on the other hand, was shifted to the right, indicating that the 

observed H2 median value was significantly overestimated, while the high values were 

underpredicted. 

 
Figure 5. Kernel density plot of hydrogen production rate predicted and observed by the ANN 

model 

 

4. Conclusions 

 

Water electrolysis is one of the most important methods in hydrogen production with high purity 

oxygen production and is renewable. This ANN study is the first step in water electrolysis and 

provides an excellent introduction to the enormous potential of this type of model in this field. The 

high accuracy of the ANN model for predicting hydrogen production has shown that it can be used 

in these studies. However, more experimental data to supplement the database would be beneficial 

for further ANN training and improving the developed models. Finally, the ANN models proposed 

here can be used to optimize and control the process. Systems that use hydrogen as a fuel with 

conventional and renewable energy sources will bring hydrogen energy technology one step closer 

to actual use. 

 

This research will significantly advance the field of hybrid solutions. The importance of these 

hydrogen generation techniques is further illustrated by the various ANN models of this study and 
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the proposal to develop these models with various optimization algorithms to reveal and optimize 

the importance of the input parameters, and by comparing them with other prediction models. 
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