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Abstract
We study a nonlinear nonhomogeneous Dirichlet problem with a nonsmooth potential
which is superlinear but without satisfying the Ambrosetti-Rabinowitz condition. Using
the nonsmooth critical point theory and critical groups we prove two multiplicity theorems
producing three and five solutions respectively. In the second multiplicity theorem, we
provide sign information for all the solutions and the solutions are ordered.

Mathematics Subject Classification (2020). 35J20, 35J60, 35Q93

Keywords. hemivariational inequality, Clarke subdifferential, nonsmooth critical point
theory, critical groups, nodal solutions

1. Introduction
In this paper we study the following nonlinear, nonhomogeneous elliptic differential

inclusion {
−div a(Du(z)) ∈ ∂j(z, u(z)) in Ω,
u|∂Ω = 0. (1.1)

In this boundary value problem Ω ⊆ RN is a bounded domain with a C2-boundary ∂Ω.
The map a : RN → RN involved in the definition of the differential operator is continuous,
strictly monotone (thus maximal monotone too) and satisfies certain other regularity and
growth conditions which are listed in hypotheses H0 (see Section 2). Those conditions
are general and incorporate in our framework differential operators that we encounter
in applications such as the p-Laplacian and the (p, q)-Laplacian (double phase problems
with balanced growth). The reaction (right hand side) of (1.1) is set-valued and it is the
generalized (Clarke) subdifferential of the locally Lipschitz integrand j(z, ·) (see Section
2). So, we are dealing with a hemivariational inequality (a variational inequality with a
nonconvex superpotential). Such inequalities arise in problems of contact mechanics (see
Migórski-Ochal-Sofonea [17], Panagiotopoulos [20]).

We assume that j(z, ·) is “p-superlinear” but need not satisfy the Ambrosetti-Rabinowitz
condition, which is common in the literature when dealing with superlinear problems. The
∗Corresponding Author.
Email addresses: yunrubai@163.com (Y. Bai), leszek.gasinski@up.krakow.pl (L. Gasiński),

npapg@math.ntua.gr (N.S. Papageorgiou)
Received: 11.09.2022; Accepted: 21.02.2023

https://orcid.org/0000-0001-7235-2994
https://orcid.org/0000-0001-8692-6442
https://orcid.org/0000-0003-4800-1187


1632 Y. Bai, L. Gasiński, N.S. Papageorgiou

Ambrosetti-Rabinowitz condition is convenient in order to verify that the energy func-
tional of the problem satisfies a compactness condition which is essential in the minimax
theorems of the critical point theory. This compactness condition is the Palais-Smale
condition or the more general Cerami condition. The two are equivalent if the energy
functional is bounded below. In the case of problem (1.1) the superlinearity of the poten-
tial function j(z, ·) implies that the energy functional is not bounded from below. Here
we replace the Ambrosetti-Rabinowitz condition by a less restrictive one, which allows
also superlinear nonlinearities with slower growth as x → ±∞ that fail to satisfy the
Ambrosetti-Rabinowitz condition.

Our aim in this paper is to provide multiplicity results for problem (1.1), providing sign
information for all the solutions produced. The first multiplicity theorem for superlinear
problems was proved by Wang [30], for semilinear Dirichlet equation driven by the Lapla-
cian and with a smooth potential (hence with a single-valued right hand side). Wang [30]
obtained three nontrivial nonsmooth solutions, two of constant sign (positive and negative)
and a third of undetermined sign. Wang [30] initiated the use of Morse theory (critical
groups) in the search for multiple solutions of elliptic equations. Extensions to nonlinear
equations can be found in the papers of Aizicovici-Papageorgiou-Staicu [1], Bartsch-Liu
[3], Liu [16], Papageorgiou-Winkert [25]. For problems with a nonsmooth potential (hemi-
variational inequalities), we mention the work of Papageorgiou-Rădulescu-Repovš [22],
who obtained nodal solutions but not for superlinear equations.

2. Mathematical background - hypotheses
The main function spaces in the analysis of problem (1.1) are the Sobolev space W 1,p

0 (Ω)
(1 < p < ∞) and the Banach space

C1
0 (Ω) = {u ∈ C1(Ω) : u|∂Ω = 0}.

By ‖ · ‖ we denote the norm of W 1,p
0 (Ω). On account of the Poincaré inequality, we have

‖u‖ = ‖Du‖p ∀u ∈ W 1,p
0 (Ω).

The Banach space C1
0 (Ω) is ordered with positive (order) cone

C+ = {u ∈ C1
0 (Ω) : u(z) ⩾ 0 ∀z ∈ Ω}.

This cone has a nonempty interior given by

intC+ =
{
u ∈ C+ : u(z) > 0 ∀z ∈ Ω, ∂u

∂n

∣∣∣∣
∂Ω

< 0
}
,

where ∂u
∂n = (Du, n)RN with n being the outward unit normal on ∂Ω.

Consider a function η ∈ C1(0,∞) which satisfies

0 < ĉ ⩽ tη′(t)
η(t)

⩽ c0 and c1t
p−1 ⩽ η(t) ⩽ c2(ts−1 + tp−1) ∀t ⩾ 0,

for some c1, c2 > 0 and 1 < s < p. Using η we can introduce our hypotheses on the map
a:

H0: a(y) = a0(|y|)y for all y ∈ RN with a0(t) > 0 for all t > 0 and

(i): a0 ∈ C1(0,∞), t 7→ a0(t)t is strictly increasing, lim
t→0+

a0(t)t = 0 and lim
t→0+

a′
0(t)t

a0(t) >

−1;
(ii): there exists c3 > 0 such that |∇a(y)| ⩽ c3

η(|y|)
|y| for all y ∈ RN \ {0}

(iii): we have (∇a(y)ξ, ξ)RN ⩾ η(|y|)
|y| |ξ|2 for all y ∈ RN \ {0}, all ξ ∈ RN ;
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(iv): if G0(t) =
∫ t

0 a0(s)s ds for t ⩾ 0, then

0 ⩽ pG0(t) − a0(t)t2 ∀t ⩾ 0

and there exists q ∈ (1, p] such that 0 < ĉ0 ⩽ lim inf
t→0+

qG0(t)
tq .

Remark 2.1. Hypotheses H0(i), (ii), (iii) come from the nonlinear regularity theory of
Lieberman [15] and the nonlinear maximum principle of Pucci-Serrin [27]. These are
hypotheses similar to those of problems defined on generalized Orlicz spaces. Hypothesis
H0(iv) serves the particular needs of our problem, but it is mild and it is verified in all
situations of interest (see the Examples below).

Note that the primitive G0 is strictly increasing and strictly convex. Let G(y) = G0(|y|)
for all y ∈ RN . Then G is convex and we have

∇G(y) = G′
0(|y|) y

|y|
= a0(|y|)y = a(y) ∀y ∈ RN \ {0}.

Therefore G is the primitive of a. Then from the convexity of G and since G(0) = 0, we
have

G(y) ⩽ (a(y), y)RN ∀y ∈ RN . (2.1)

Hypotheses H0(i), (ii), (iii) lead to the following properties of the map a (see Papageor-
giou-Rădulescu [21]).

Lemma 2.2. If hypotheses H0(i), (ii), (iii) hold, then
(a) the map y 7→ a(y) is maximal monotone and strictly monotone;
(b) |a(y)| ⩽ c4(|y|s−1 + |y|p−1) for some c4 > 0, all y ∈ RN ;
(c) (a(y), y)RN ⩾ c1

p−1 |y|p for all y ∈ RN .

Using this lemma and (2.1), we infer the following bilateral growth condition for the
primitive G.

Corollary 2.3. If hypotheses H0(i), (ii), (iii) hold, then
c1

p(p− 1)
|y|p ⩽ G(y) ⩽ c5(1 + |y|p) ∀y ∈ RN ,

for some c5 > 0.

Remark 2.4. According to this corollary G exhibits balanced growth and this leads to
a global (up to boundary of Ω) regularity theory (see Lieberman [15]). Naturally this
enriches the set of tools available for the analysis of (1.1).

Example 2.5. The following maps a : RN −→ RN satisfies hypotheses H0.
(a) a(y) = |y|p−2y with 1 < p < ∞.
This map corresponds to the p-Laplace operator defined by

∆pu = div (|Du|p−2Du) ∀u ∈ W 1,p
0 (Ω).

(b) a(y) = |y|p−2y + |y|q−2y with 1 < q < p < ∞. This map corresponds to the (p, q)-
Laplace operator (double phase problems with balanced growth) defined by

∆pu+ ∆qu = div
(
(|Du|p−2 + |Du|q−2)Du

)
∀u ∈ W 1,p

0 (Ω).

(c) a(y) = (1 + |y|2)
p−2

2 y with 1 < p < ∞.
This map corresponds to the generalized p-mean curvature operator defined by

div
(

(1 + |Du|2)
p−2

2 Du

)
∀u ∈ W 1,p

0 (Ω).

Such operators arise in problems of plasticity theory (see Roubíček [29]).
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Let V : W 1,p
0 −→ W−1,p′(Ω) = W 1,p

0 (Ω)∗ (1
p + 1

p′ = 1) be the nonlinear operator defined
by

〈V (u), h〉 =
∫

Ω
(a(Du), Dh)RN dz ∀u, h ∈ W 1,p

0 (Ω).

From Gasiński-Papageorgiou [13, Problem 2.192, p. 279], we know that this operator has
the following properties:

Proposition 2.6. If hypotheses H0(i), (ii), (iii) hold, then V : W 1,p
0 (Ω) −→ W−1,p′(Ω)

is bounded (that is, maps bounded sets to bounded sets), continuous, strictly monotone
(thus maximal monotone too) and it is of type (S)+, that is “un

w−→ u in W 1,p
0 (Ω) and

lim sup
n→+∞

〈V (un), un − u〉 ⩽ 0 imply that un → u in W 1,p
0 (Ω)”.

The nonsmoothness of the potential function requires the use of the nonsmooth critical
point theory which is based on the subdifferential theory of locally Lipschitz functions due
to Clarke [5].

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉X we denote the duality
brackets for the pair (X,X∗). A function φ : X → R is said to be “locally Lipschitz”, if
for every u ∈ X, we can find a neighbourhood U of u and a constant kU > 0 such that

|φ(y) − φ(v)| ⩽ kU ‖y − v‖X ∀y, v ∈ U.

So, let φ : X −→ R be a locally Lipschitz function. The “generalized directional derivative”
of φ at u ∈ X in the direction h, denoted by φ0(x;h) is defined by

φ0(u;h) = lim sup
u′ → u

λ → 0+

φ(u′ + λh) − φ(u′)
λ

.

This map has the following properties
(a) φ0(u; ·) is sublinear and Lipschitz continuous.
(b) (u, h) 7→ φ0(u;h) is upper semicontinuous.
(c) φ0(u; −h) = (−φ)0(u;h) for all u, h ∈ X.

From (a) above and the Hahn-Banach theorem, we see that we can define the set

∂φ(u) = {u∗ ∈ X∗ : 〈u∗, h〉X ⩽ φ0(u;h) for all h ∈ X}.
This multifunction u 7→ ∂φ(u) is known as the “generalized (or Clarke) subdifferential” of
φ. If φ ∈ C1(X), then φ is locally Lipschitz and we have

∂φ(u) = {φ′(u)}.
We know that if φ : X −→ R is continuous convex, then φ is locally Lipschitz and the
generalized subdifferential ∂φ(u) coincides with the subdifferential in the sense of convex
analysis ∂cφ(u) defined by

∂cφ(u) = {u∗ ∈ X∗ : 〈u∗, v − u〉 ⩽ φ(v) − φ(u) for all v ∈ X}.
The generalized subdifferential has the following properties:
(a) ∂φ(u) 6= ∅ and it is convex and w∗-compact.
(b) If φ,ψ : X −→ R are locally Lipschitz, then

∂(φ+ ψ)(u) ⊆ ∂φ(u) + ∂ψ(u) ∀u ∈ X

and equality holds if and only if one of them is a singleton.
(c) ∂(λφ)(u) = λ∂φ(u) for all λ ∈ R;
(d) The multifunction u 7→ ∂φ(u) is upper semicontinuous from X with the norm topology
into X∗ with the weak topology (denoted by X∗

w∗) that is, for all open sets U ⊆ X∗
w∗ , the

set ∂φ+(C) = {u ∈ X : ∂φ(u) ⊆ U} is norm open.
(e) If u is local extremum of φ, then 0 ∈ ∂φ(u) (Fermat’s law).
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Generalizing the notion of critical points, we say that u ∈ X is a critical point of the
locally Lipschitz function φ, if 0 ∈ ∂φ(u). Then Kφ denotes the set of critical points of φ,
that is, Kφ = {u ∈ X : 0 ∈ ∂φ(u)}. We set

mφ(u) = inf
{
‖u∗‖X∗ : u∗ ∈ ∂φ(u)

}
∀u ∈ X.

Since ‖ · ‖X∗ is w∗-lower semicontinuous and ∂φ(u) ⊆ X∗ is w∗-compact, from the
Weierstrass-Tonelli theorem, we infer that the infimum in the above definition is actu-
ally attained.

Definition 2.7. We say that the locally Lipschitz function satisfies the “nonsmooth Ce-
rami condition”, if every sequence {un}n∈N ⊆ X such that the sequence {φ(un)}n∈N ⊆ R
is bounded and

(1 + ‖un‖X)mφ(un) −→ 0 as n → ∞,

admits a strongly convergent subsequence.

Remark 2.8. Evidently, if φ ∈ C1(X), then this definition coincides with the classical
Cerami condition (see Gasiński-Papageorgiou [12, p. 611]).

This is a compactness-type condition on the functional φ which compensates for the fact
that the ambient space need not be locally compact (being infinite dimensional). It leads to
a deformation theorem from which follow the minimax theorems of the nonsmooth critical
point theory (see Chang [4], Gasiński-Papageorgiou [11]). We will need the following
nonsmooth version of the well-known mountain pass theorem of Ambrosetti-Rabinowitz
[2].

Theorem 2.9. If X is a reflexive Banach space, φ : X −→ R is locally Lipschitz which
satisfies the nonsmooth Cerami condition, there exist u0, u1 ∈ X and r > 0 such that

max{φ(u0), φ(u1)} < inf{φ(u) : ‖u− u0‖ = r} = m, ‖u1 − u0‖ > r

and
c = inf

γ∈Γ
max
0⩽t⩽1

φ(γ(t)),

with Γ = {γ ∈ C([0, 1];X) : γ(0) = u0, γ(1) = u1},
then m ⩽ c and c is a critical value of φ (that is, there exists u ∈ Kφ such that φ(u) = c).
Moreover if c = m, then

Kφ ∩ {u ∈ X : ‖u− u0‖ = r} 6= ∅.

In the analysis of (1.1) we will also use the nonsmooth Morse theory (critical groups).
This is an extension of the classical (smooth) Morse theory and can be found in Corvellec
[6]. For the smooth theory and the relevant notions from singular homology, we refer to
Papageorgiou-Rădulescu-Repovš [23, Chapter 6].

Let B ⊆ A ⊆ X and k ∈ N0. By Hk(A,B) we denote the k-th singular homology
group with real coefficient. Hence Hk(A,B) are actually linear spaces. With this choice of
coefficients we avoid torsion phenomena. Let φ : X −→ R be a locally Lipschitz functional
which satisfies the nonsmooth Cerami condition (see Definition 2.7). Let u ∈ Kφ be
isolated and let c = φ(u). We define φc = {u ∈ X : φ(u) ⩽ c}. Then the k-th critical
group of φ at u is defined by

Ck(φ, u) = Hk(φc ∩ U,φc ∩ U \ {u})
with U being the neighbourhood of u such that Kφ ∩ U = {u} (recall that u is isolated).
The excision property of singular homology implies that this definition is independent of
the choice of the isolating neighbourhood U .

As in the proof of Proposition 6.2.16 of Papageorgiou-Rădulescu-Repovš [23, p. 486],
using this time the nonsmooth second order deformation lemma of Corvellec [7], we have
the following decomposition result in terms of the critical groups.
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Proposition 2.10. If a < b ⩽ ∞, φ(Kφ) ∩ [a, b] = {c} with a < c < b and Kc
φ = {u ∈

Kφ : φ(u) = c} is finite, then for all k ∈ N0, we have

Hk(φb, φa) =
⊕

u∈Kc
φ

Ck(φ, u)

(if b = +∞, then φb = X).

This result leads to the so-called “Morse relation” (see Papageorgiou-Rădulescu-Repovš
[23, Theorem 6.2.20, p.489]). First let us introduce the critical groups of φ at infinity. We
assume that inf φ(Kφ) > −∞. Then the critical groups of φ at infinity, are defined by

Ck(φ,∞) = Hk(X,φc) ∀k ∈ N0,

with c < inf φ(Kφ). The nonsmooth second deformation theorem of Corvellec [7] guaran-
tees that this definition is independent of the choice of the level c.

We assume that Kφ is finite and introduce the following polynomials

M(t, u) =
∑

k∈N0

dimCk(φ, u)tk ∀u ∈ Kφ,

P (t, u) =
∑

k∈N0

dimCk(φ,∞)tk.

Then the Morse relation says that∑
u∈Kφ

M(t, u) = P (t,∞) + (1 + t)Q(t) ∀t ∈ R, (2.2)

withQ(t) being a polynomial in t ∈ R with nonnegative integer coefficients (see Papageorgiou-
Rădulescu-Repovš [23, p. 492]).

We will also need some facts about the spectrum of the Dirichlet q-Laplacian (1 < q <
p). So, we consider the following nonlinear eigenvalue problem{

−∆qu(z) = λ̂|u(z)|q−2u(z) in Ω,
u|∂Ω = 0. (2.3)

We say that λ̂ ∈ R is an eigenvalue, if (2.3) has a nontrivial solution û ∈ W 1,q
0 (R) known

as an eigenfunction corresponding to the eigenvalue λ̂. Acting on (2.3) with û we see that
λ̂ ⩾ 0. In fact, (2.3) has a smallest eigenvalue λ̂1(q) such that
• λ̂1(q) > 0 and it is isolated and simple (that is, if û1, û2 are eigenfunctions corresponding
to λ̂1(q), then û1 = kû2 with k ∈ R).

• λ̂1(q) = inf
{‖Du‖q

q

‖u‖q
q

: u ∈ W 1,q
0 (Ω), u 6= 0

}
.

The infimum in the above formula is realized on the corresponding one-dimensional
eigenspace, the elements of which do not change sign. In fact λ̂1(q) > 0 is the only
eigenvalue with eigenfunctions that have a constant sign. All the other eigenvalues have
eigenfunctions which are nodal functions.

The above properties, lead to the following lemma (see Mugnai-Papageorgiou [18,
Lemma 4.11]).

Lemma 2.11. If ϑ0 ∈ L∞(Ω), ϑ0(z) ⩽ λ̂1(q) for almost all z ∈ Ω and ϑ0 6= λ̂1(q), then
there exists ĉ ∈ (0, 1) such that

ĉ‖Du‖q
q ⩽ ‖Du‖q

q −
∫

Ω
ϑ(z)|u|q dz ∀u ∈ W 1,q

0 (Ω).

Let u : Ω −→ R be a measurable function. We define
u±(z) = max{±u(z), 0} ∀z ∈ Ω.
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We have u = u+ − u−, |u| = u+ + u− and if u ∈ W 1,p
0 (Ω), then u± ∈ W 1,p

0 (Ω). If
u, v : Ω −→ R are measurable functions and u(z) ⩽ v(z) for all z ∈ Ω, then we define

[u, v] = {h ∈ W 1,p
0 (Ω) : u(z) ≤ h(z) ≤ v(z) for a.a. z ∈ Ω}.

Also by intC1
0 (Ω)[u, v] we denote the interior in C1

0 (Ω) of [u, v] ∩ C1
0 (Ω). Finally by | · |N

we denote the Lebesgue measure on RN and

p∗ =
{

Np
N−p if p < N,

+∞ if N ⩽ p.

We introduce the hypotheses on the potential function j(z, x).

H1 : j : Ω × R −→ R is a function such that for all x ∈ R, z 7→ j(z, x) is measurable, for
a.a. z ∈ Ω, x 7→ j(z, x) is locally Lipschitz, j(z, 0) = 0 for a.a. z ∈ Ω and

(i): |u∗| ⩽ a(z)(1+|x|r−1) for a.a. z ∈ Ω, all x ∈ R, all u∗ ∈ ∂j(z, x) with a ∈ L∞(Ω),
p < r < p∗;

(ii): lim
x→±∞

j(z, x)
|x|p

= +∞ uniformly for a.a. z ∈ Ω;

(iii): there exists µ ∈
(
(r − p) max

{
N
p , 1

}
, p∗)

such that

0 < β0 ⩽ lim inf
x→±∞

min
u∗∈∂j(z,x)

u∗x− pj(z, x)
|x|µ

uniformly for a.a. z ∈ Ω;
(iv): if ĉ0 > 0 and q ∈ (1, p] are as in hypothesis H0(iv), then there exists ϑ ∈ L∞(Ω)

such that
ϑ(z) ⩽ ĉ0λ̂1(q) for a.a. z ∈ Ω, ϑ 6= ĉ0λ̂1(q),

lim sup
x→0

qj(z, x)
|x|q

⩽ ϑ(z)

uniformly for a.a. z ∈ Ω;
(v): for every ϱ > 0, there exists ξ̂ϱ > 0 such that for a.a. z ∈ Ω, the function

x 7→ u∗ + ξ̂ϱ|x|p−2x,

for all u∗ ∈ ∂j(z, x), is nondecreasing on [−ϱ, ϱ].

Remark 2.12. From hypotheses H1(ii), (iii) it follows that

lim
x→±∞

(
min

u∗∈∂j(z,x)

u∗

|x|p−2x

)
= +∞,

uniformly for a.a. z ∈ Ω.
So, the multivalued right hand side of problem (1.1) is (p−1)-superlinear. Note though,

that we do not employ the Ambrosetti-Rabinowitz condition, which in the present non-
smooth setting, has the following form: “There exist τ > p and M > 0 such that

0 < τj(z, x) ⩽ u∗x

for a.a. z ∈ Ω, all |x| ⩾M , all u∗ ∈ ∂j(z, x) and

ess inf
Ω

j(·, x) > 0 for all |x| ⩾M ′′.

Integrating this condition, we obtain the weaker requirement

c6|x|τ ⩽ j(z, x) for a.a. z ∈ Ω, all |x| ⩾M,

with some c6 > 0. Here we replace the Ambrosetti-Rabinowitz condition with the weaker
hypothesis H1(iii) (p < τ). The following function satisfies hypotheses H1 but fails to
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satisfy the Ambrosetti-Rabinowitz condition. For the sake of simplicity we drop the z-
dependence

j(x) =
{

ϑ
q |x|q if |x| ⩽ 1,
|x|p

p (ln |x| − 1
p) + c|x|µ if 1 < |x|,

with 1 < µ, q ⩽ p, ϑ < ĉ0λ̂1(q) and c = ϑ
q + 1

p2 .

Let φ : W 1,p
0 (Ω) −→ R be the energy functional for problem (1.1) defined by

φ(u) =
∫

Ω
G(Du) dz −

∫
Ω
j(z, u) dz ∀u ∈ W 1,p

0 (Ω).

Also, we introduce the positive and negative truncation of φ, namely the functionals

φ±(u) =
∫

Ω
G(Du) dz −

∫
Ω
j(z,±u±) dz ∀u ∈ W 1,p

0 (Ω).

From Clarke [5, p.83], we know that the functionals φ, φ± are locally Lipschitz.

3. Three solutions
In this section, using hypotheses H0 and H1, we will prove a multiplicity theorem

producing three nontrivial smooth solutions. We provide sign information for the two,
the sign of the third is undetermined. Our result here extends the multiplicity theorem
of Wang [30] (semilinear equations driven by the Laplacian with a smooth potential)
and of Aizicovici-Papageorgiou-Staicu [1] (nonlinear Neumann problems driven by the
p-Laplacian and with a smooth potential).

First we show that the functionals φ and φ± satisfy the nonsmooth compactness con-
dition (see Definition 2.7).

Proposition 3.1. If hypotheses H0, H1 hold, then the functionals φ and φ± satisfy the
nonsmooth Cerami condition.

Proof. First we do the functionals φ.
We consider a sequence {un}n∈N ⊆ W 1,p

0 (Ω) such that
|φ(un)| ⩽ c7 ∀n ∈ N, (3.1)

for some c7 > 0 and
(1 + ‖un‖)mφ(un) −→ 0 as n → +∞. (3.2)

The w-compactness of ∂φ(un) ⊆ W−1,p′(Ω) = W 1,p
0 (Ω)∗ and the weak lower semicontinuity

of the norm functional ‖ · ‖∗ of W−1,p′(Ω) imply that we can find u∗
n ∈ ∂φ(un) such that

mφ(un) = ‖u∗
n‖∗. Then from (3.1), we have

|〈u∗
n, h〉| ⩽ εn‖h‖

1 + ‖un‖
for all h ∈ W 1,p

0 (Ω),

with εn → 0+. Note that u∗
n = V (un) − g∗

n with g∗
n ∈ Sr′

∂j(·,un(·)) = {g ∈ Lr′(Ω) : g(z) ∈
∂j(z, un(z)) for a.a. z ∈ Ω} (see Clarke [5, p. 83]). Then∣∣∣∣〈V (un), h〉 −

∫
Ω
g∗

nh dz

∣∣∣∣ ⩽ εn‖h‖
1 + ‖un‖

∀n ∈ N. (3.3)

In (3.3) we use the test function h = un ∈ W 1,p
0 (Ω) and obtain

−
∫

Ω
(a(Dun), Dun)RN dz +

∫
Ω
g∗

nun dz ⩽ εn ∀n ∈ N. (3.4)

Also from (3.1), we have∫
Ω
pG(Dun) dz −

∫
Ω
pj(z, un) dz ⩽ pc7 ∀n ∈ N. (3.5)
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We add (3.4) and (3.5) we obtain∫
Ω

(
pG(Dun) − (a(Dun), Dun)RN

)
dz +

∫
Ω

(
g∗

nun − pj(z, un)
)
dz ⩽ c8 ∀n ∈ N,

for some c8 > 0, so ∫
Ω

(
g∗

nun − pj(z, un)
)
dz ⩽ c8 ∀n ∈ N (3.6)

(see hypothesis H1(iv)). Hypotheses H1(i), (iii) imply that there exist β1 ∈ (0, β0) and
c9 > 0 such that

β1|un(z)|µ − c9 ⩽ g∗
n(z)un(z) − pj(z, un(z)) for a.a. z ∈ Ω, all n ∈ N. (3.7)

We return to (3.6) and use (3.7). We obtain

β1‖un‖µ
µ ⩽ c10 ∀n ∈ N,

for some c10 > 0, so

the sequence {un}n∈N ⊆ Lµ(Ω) is bounded. (3.8)

From hypothesis H1(iii) it is clear that we can always assume that µ < r < p∗. Let
t ∈ (0, 1) such that

1
r

= 1 − t

µ
+ t

p∗ . (3.9)

The interpolation inequality (see Papageorgiou-Winkert [24, p. 116]) implies that

‖un‖r ⩽ ‖un‖1−t
µ ‖un‖t

p∗ ,

so
‖un‖r

r ⩽ c11‖un‖tr ∀n ∈ N, (3.10)

for some c11 > 0. Here we have used (3.8) and the fact that embedding W 1,p
0 (Ω) ⊆ Lp∗(Ω)

is continuous if p 6= N (Sobolev embedding theorem).
So, first we assume that p 6= N and we have

p∗ = Np

N − p
if p < N and p∗ = +∞ if N < p.

From (3.9), we have

tr = p∗(r − µ)
p∗ − µ

if p < N and tr = r − µ if N < p,

so
tr < p (3.11)

(see hypothesis H1(iii)).
In (3.3) we use the test function h = un ∈ W 1,p

0 (Ω) and have∫
Ω

(a(Dun), Dun)RN dz ⩽ εn +
∫

Ω
g∗

nun dz ⩽ c12(1 + ‖un‖r
r) ∀n ∈ N,

for some c12 > 0 (see hypothesis H1(i)), so
c1

p− 1
‖Dun‖p

p ⩽ c13(1 + ‖un‖tr) ∀n ∈ N

for some c13 > 0 (see (3.10) and Lemma 2.2), so

the sequence {un}n∈N ⊆ W 1,p
0 (Ω) is bounded (3.12)

(see (3.11)).
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Next let p = N . In this case p∗ = +∞, but the embedding W 1,p
0 (Ω) ⊆ Ls(Ω) is

continuous (in fact compact) for all 1 ⩽ s < ∞. So, in the previous argument, we need to
replace p∗ by s > r > µ. As before let t ∈ (0, 1) be such that

1
r

= 1 − t

µ
+ t

s
,

so

tr = s(r − µ)
s− µ

−→ r − µ < p as s → +∞

(see hypothesis H1(iii)). Choosing s > r big we have tr < p and so again we have (3.12).
Because of (3.12), we may assume that

un
w−→ u in W 1,p

0 (Ω), un −→ u in Lr(Ω). (3.13)

In (3.3) we use the test function h = un − u ∈ W 1,p
0 (Ω), pass to the limit as n → +∞ and

use (3.13). We obtain
lim

n→+∞
〈V (un), un − u〉 = 0,

so
un −→ u in W 1,p

0 (Ω)
(see Proposition 2.6), thus φ satisfies the Cerami condition.

Now we do the proof for the functional φ+.
Let {un}n∈N ⊆ W 1,p

0 (Ω) be a Cerami sequence. As before, we have

|〈û∗
n, h〉| ⩽ εn‖h‖

1 + ‖un‖
∀n ∈ N, h ∈ W 1,p

0 (Ω),

with εn −→ 0+ and for some û∗
n ∈ ∂φ(un). We have

û∗
n = V (un) − ĝ∗

n,

with ĝ∗
n ∈ Sr′

∂j(·,u+
n (·)) and so

∣∣〈V (un), h〉 −
∫

Ω
ĝ∗h dz

∣∣ ⩽ εn‖h‖
1 + ‖un‖

∀h ∈ W 1,p
0 (Ω), n ∈ N.

Choosing h = −u−
n ∈ W 1,p

0 (Ω) and using Lemma 2.2 and hypothesis H1(i), we obtain
c1

p− 1
‖Du−

n ‖p
p ⩽ c14 ∀n ∈ N,

for some c14 > 0, so

the sequence {u−
n }n∈N ⊆ W 1,p

0 (Ω) is bounded. (3.14)

Then we continue as we did for the functional φ using this time the test function h = u+
n ∈

W 1,p
0 (Ω) and we show that the sequence {u+

n }n∈N ⊆ W 1,p
0 (Ω) is bounded. It follows that

the sequence {un}n∈N ⊆ W 1,p
0 (Ω) is bounded (see (3.14)). From this and using Proposition

2.6, we conclude that φ+ satisfies the Cerami condition.
Similarly for the functional φ−. □

The next proposition shows that the functionals φ and φ± satisfy the mountain pass
geometry.

Proposition 3.2. If hypotheses H0, H1 hold, then u = 0 is a local minimizer for φ and
φ±.
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Proof. Hypotheses H0(iv) and H1(iv) imply that given ε > 0, we can find δ = δ(ε) > 0
such that {

G(y) ⩾ 1
q (ĉ0 − ε)|y|q ∀|y| ⩽ δ,

j(z, x) ⩽ 1
q (ϑ(z) + ε)|x|q for a.a. z ∈ Ω, all |x| ⩽ δ.

(3.15)

Let u ∈ C1
0 (Ω) with ‖u‖C1

0 (Ω) ⩽ δ. Using (3.15), we have

φ(u) ⩾ 1
q

(ĉ0 − ε)‖Du‖q
q − 1

q

∫
Ω

(φ(z) + ε)|u|q dz

= 1
q

(
ĉ0‖Du‖q

q −
∫

Ω
ϑ(z)|u|q dz

)
− ε

q

(
1 + 1

λ̂1(q)

)
‖u‖q

1,q

⩾ c15‖u‖q
1,q − εc16‖u‖q

1,q,

for some c15, c16 > 0 (here ‖ · ‖1,q = ‖ · ‖
W 1,q

0 (Ω) and we used Lemma 2.11). Choosing
ε ∈ (0, c15

c16
), we see that

φ(u) ⩾ 0 = φ(0) ∀‖u‖C1
0 (Ω) ⩽ δ,

so
u = 0 is a local C1

0 (Ω)-minimizer of φ
thus

u = 0 is a local W 1,p
0 (Ω)-minimizer of φ

(see Gasiński-Papageorgiou [10, Proposition 2.6]).
Similarly for the functionals φ±. □
Next we localize the critical sets of the functionals φ±.

Proposition 3.3. If hypotheses H0, H1 hold, then Kφ+ ⊆ {0} ∪ intC+ and Kφ− ⊆
{0} ∪ (−intC+).

Proof. Let u ∈ Kφ+ . We have

V (u) = ĝ∗ in W−1,p′(Ω), (3.16)
with ĝ∗ ∈ Sr′

∂j(·,u+(·)). From the nonsmooth chain rule of Clarke [5, p. 42], we have

∂j(z, u+(z))


= {0} if u(z) < 0,
⊆ conv{λ∂j(z, 0) : 0 ⩽ λ ⩽ 1} if u(z) = 0,
= ∂j(z, u(z)) if 0 < u(z).

(3.17)

If in (3.16) we act with −u− ∈ W 1,p
0 (Ω) and use (3.17) and Lemma 2.2, we obtain

c1
p− 1

‖Du−‖p
p ⩽ 0,

so u ⩾ 0.
From (3.16) and the nonlinear Green’s identity (see Papageorgiou-Winkert [24, p. 211]),

we have {
−div a(Du) = ĝ∗(z) in Ω,
u|∂Ω = 0.

A standard application of Moser’s iteration technique (see Gasiński-Papageorgiou [12]),
implies that u ∈ L∞(Ω). Then the nonlinear regularity theory of Lieberman [15] implies
that u ∈ C+.

Suppose that u ∈ Kφ+ \{0} and let ϱ = ‖u‖∞ and ξ̂ϱ > 0 be as postulated by hypothesis
H1(v). We have

−div a(Du) + ξ̂pu
p−1 = ĝ∗(z) + ξ̂ϱu

p−1 ⩾ 0 in Ω,
so

div a(Du) ⩽ ξ̂ϱu
p−1 in Ω,

and thus u ∈ intC+ (see Pucci-Serrin [27, p. 120]).
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Similarly for Kφ− . □
The elements of Kφ± are the positive and negative solutions of (1.1) and so we may

assume that these sets are finite. Similarly Kφ consists of the solutions of (1.1) and so we
may assume that Kφ is finite too. Therefore we can compute Ck(φ,∞) and Ck(φ±,∞)
for all k ∈ N0.

We follow the reasoning of Aizicovici-Papageorgiou-Staicu [1, Proposition 3.6] modified
appropriately in order to accommodate the fact that φ is not C1 and it is only locally
Lipschitz.

Proposition 3.4. If hypotheses H0, H1 hold, then Ck(φ,∞) = 0 for all k ∈ N0.

Proof. First we show that if u ∈ W 1,p
0 (Ω) \ {0}, we have

φ(tu) −→ −∞ as t → +∞. (3.18)
To this end note that hypotheses H1(i), (ii) imply that given η > 0, we can find c17 =
c17(η) > 0 such that

j(z, x) ⩾ η|x|p − c17 for a.a. z ∈ Ω, all x ∈ R. (3.19)
Let t > 1. We have

φ(tu) =
∫

Ω
G(D(tu)) dz −

∫
Ω
j(z, tu) dz

⩽ c18t
p(1 + ‖u‖p) − ηtp‖u‖p

p + c19

⩽ (c20 − ηc21)tp + c19,

for some c18, c19, c20, c21 > 0 (see Corollary, (3.16) and recall that t > 1).
Recall that η > 0 is arbitrary. Choosing η > c20

c21
, we infer that (3.18) holds.

Fix u ∈ W 1,p
0 (Ω) \ {0} and let ϑ : R −→ W 1,p

0 (Ω) be defined by
ϑ(t) = tu.

We set ξ(t) = (φ ◦ ϑ)(t). Then this is a locally Lipschitz function and from the second
chain rule of Clarke [5, p. 45], we have

∂ξ(t) ⊆ {〈u∗, u〉 : u∗ ∈ ∂φ(tu)} = 1
t

{
〈u∗, tu〉 : u∗ ∈ ∂φ(tu)

}
(3.20)

Hypotheses H1(i), (ii) imply that we can find β1 ∈ (0, β0) and c22 > 0 such that
pj(z, x) − h∗x ⩽ c22 − β1|x|µ for a.a. z ∈ Ω, all x ∈ R, h∗ ∈ ∂j(z, x). (3.21)

We know that u∗ = V (tu) − g∗, with g∗ ∈ Sr
∂j(·,tu(·)) (see Clarke [5, pp. 38, 83]). So, we

have
1
t
〈u∗, u〉 = 1

t

(
〈V (tu), tu〉 −

∫
Ω
g∗(tu) dz

)
⩽ 1

t

( ∫
Ω
pG(D(tu)) dz + c22|Ω|N −

∫
Ω
pj(z, tu) dz − β1‖tu‖µ

µ

)
⩽ 1

t
(φ(tu) + c23)

with c23 = c22|Ω|N > 0 (see hypothesis H1(iv) and (3.21)), so
1
t
〈u∗, tu〉 ⩽ φ(tu) + c23.

On account of (3.18), we see that for t > 0 large we have
1
t
〈u∗, u〉 ⩽ γ < 0, (3.22)

with γ < min{− c23
p ,m}, where m = inf{φ(u) : u ∈ Kφ ∪ ∂B1}.



Superlinear Elliptic Hemivariational Inequalities 1643

At this point our proof changes drastically with respect to that of Aizicovici-Papageor-
giou-Staicu [1, Proposition 3.6], since φ is not smooth and we cannot use the implicit
function theorem. We need to come up with a substitute of it.

Let u ∈ ∂B1. We will show that there exists a unique t̃u > 1 such that φ(t̃uu) = γ.
From the choice of γ, we have γ < φ(u). This fact combined with (3.18), via Bolzano’s
theorem, implies that we can find t̂u > 1 such that φ(t̂uu) = γ. So, we need to show the
uniqueness of t̂u > 1. We argue indirectly. So, suppose that we can find 1 < t̂1u < t̂2u such
that φ(t̂kuu) = γ for k = 1, 2. From (3.17), we have

∂ξ(t̂1u) ⊆ (−∞, γ̂),
with γ̂ ∈ (γ, 0).

The upper semicontinuity (as a multifunction) of the Clarke subdifferential, implies that
we can find δ > 0 such that

∂ξ(t) ⊆ (−∞, γ̂) ∀t : |t− t̂1u| < δ.

Recall that t 7→ ξ(t) = (φ◦ϑ)(t) is locally Lipschitz, hence differentiable almost everywhere
(Rademacher Theorem; see Gasiński-Papageorgiou [12, p. 56]). Let {tn}n∈N be a sequence
of points of differentiability of ξ such that tn → t̂1u. From Chang [4, p. 108], we have

dξ

dt
(tn) < γ̂ ∀n ∈ N,

so
φ((tn + h)u) < ψ(tnu) + γ̂

2
∀h ∈ (−δ, δ), n ∈ N

(choosing δ ∈ (0, 1)), so
φ((t̂1u + h)u) < γ ∀h ∈ (−δ, δ) (3.23)

(since tn −→ t̂1u and γ̂ < 0).
Similarly by choosing δ ∈ (0, 1) even smaller if necessary, we have

φ((t̂2u + h)u) < γ ∀h ∈ (−δ, δ). (3.24)
We can assume that t̂2u > t̂1u is the first time instant t > t̂1u for which we have φ(tu) = γ.
Then φ(t̂2uu) = γ and

φ(tu) < γ ∀t ∈ (t̂1u, t̂2u + δ), t 6= t̂2u
(see (3.20), (3.21)). From this we infer that t̂2u is a local maximizer of locally Lipschitz
function ξ. It follows that

0 ∈ ∂ξ(t̂2u).
This means that we can find u∗ ∈ ∂φ(t̂2uu) such that

〈u∗, u〉 = 0
(see (3.20)). But this contradicts (3.22). Therefore t̂u > 1 is unique.

Consider the map l : ∂B1 −→ (1,∞) (∂B1 = {u ∈ W 1,p
0 (Ω) : ‖u‖ = 1) defined by

l(u) = t̂u.

We show that this map is continuous. Let ε > 0 be small and let t ∈ (t̂u − ε, t̂u),
s ∈ (t̂u, t̂u + ε). We have

φ(su) < γ < φ(tu),
so

φ(sv) < γ < φ(tv) ∀v ∈ Bϱ(u) ∩ ∂B1

(recall that φ is continuous and Bδ = {v ∈ W 1,p
0 (Ω) : ‖v − u‖ < δ‖), so

t̂v ∈ (t, s),
thus

|t̂v − t̂u| < ε
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and so the map u 7→ l(u) = t̂u is continuous.
Now that we have the continuous map l, we can follow again the argument of Aizicovici-

Papageorgiou-Staicu [1, Proposition 3.6]. For u ∈ ∂B1 and t ⩾ 1, we have

φ(tu)


> γ if t < t̂u,
= γ if t = t̂u,
< γ if t̂u < t.

(3.25)

For u ∈ W 1,p
0 (Ω) \ {0}, we define

l̂(u) = 1
‖u‖

l

(
u

‖u‖

)
.

The continuity of l implies the continuity of l̂. We have
φ(l̂(u)u) = γ

(see (3.25)), so
φ(u) = γ =⇒ l̂(u) = 1.

Therefore, if we define

l̂0(u) =
{

1 if φ(u) ⩽ γ,

l̂(u) if γ < φ(u), (3.26)

then l̂0 : W 1,p
0 (Ω) \ {0} −→ R is continuous.

Consider the homotopy
ĥ(t, u) = (1 − t)u+ tl̂0(u)u ∀t ∈ [0, 1], u ∈ W 1,p

0 (Ω) \ {0}.

The continuity of l̂0, implies the continuity of ĥ(·, ·). We have

ĥ(0, u) = u, ĥ(1, u) ⊆ φγ ∀u ∈ W 1,p
0 (Ω) \ {0}.

Moreover,
u ∈ φγ ⇒ h(t, u) = u ∀t ∈ [0, 1]

(see (3.26)). Then it follows that

φγ is a strong deformation retract of W 1,p
0 (Ω) \ {0}. (3.27)

Using the radial retraction, we see that
∂B1 is a retract of W 1,p

0 (Ω) \ {0}. (3.28)
From (3.27) and (3.28) it follows that

φγ and ∂B1 are homotopy equivalent
(see Papageorgiou-Rădulescu-Repovš [23, p. 460]), so

Hk(W 1,p
0 (Ω), φγ) = Hk(W 1,p

0 (Ω), ∂B1) ∀k ∈ N0 (3.29)
(see Papageorgiou-Rădulescu-Repovš [23, p. 462]).

Since W 1,p
0 (Ω) is infinite dimensional, we know that ∂B1 is contractible. Hence

Hk(W 1,p
0 (Ω), ∂B1) = 0 ∀k ∈ N0

(see Papageorgiou-Rădulescu-Repovš [23, p. 469]), so

Hk(W 1,p
0 (Ω), φγ) = 0 ∀k ∈ N0

(see (3.29)) and finally
Ck(φ,∞) = 0 ∀k ∈ N0

(recall the choice of γ). □
We can have the same result for the critical groups at infinity of the functionals φ± (see

also Papageorgiou-Rădulescu [21]).
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Proposition 3.5. If hypotheses H0, H1 hold, then
Ck(φ±,∞) = 0 ∀k ∈ N0.

Proof. The proof is similar to that of Proposition 3.4. Let ∂B+
1 = {u ∈ ∂B1 : u+ 6= 0}.

As in the proof of Proposition 3.4, exploiting the p-superlinearity of F (z, ·), we show that
for all u ∈ ∂B+

1 , we have
φ+(tu) −→ −∞ as t → +∞.

Choose γ < min{0, inf
Kφ+ ∪∂B1

φ} such that

〈h∗, h〉 ⩽ γ < 0 ∀h ∈ φ−1
+ (γ), h∗ ∈ ∂φ+(h).

As in the proof of Proposition 3.4, we have a continuous map l+ : ∂B+
1 −→ (1,∞) such

that

φ+(tu)


> γ if t < l+(u),
= γ if t = l+(u),
< γ if l+(u) < t.

We see that φγ
+ = {tu : u ∈ ∂B+

1 , t ⩾ l+(u)}. If we set E+ = {tu : u ∈ ∂B+
1 , t ⩾ 1},

then φγ
+ ⊆ E+. Consider the deformation h+ : [0, 1] × E+ −→ E+ defined by

h+(s, tu) =
{

(1 − s)tu+ sl+(u)u if t ∈ [1, l+(u)],
tu if l+(u) < t.

Then h+(0, tu) = tu, h+(1, tu) ∈ φγ
+ and h(s, ·)|φγ

+
= id|φγ

+
. This means that φγ

+ is a
strong deformation retractor of E+. So, we have

Hk(W 1,p
0 (Ω), φγ

+) = Hk(W 1,p
0 (Ω), E+) ∀k ∈ N0. (3.30)

(see Papageorgiou-Rădulescu-Repovš [23, p. 462]). The set E+ is contractible. Indeed,
let û ∈ ∂B1 ∩ intC+ and consider the deformation

ĥ+(t, u) = (1 − t)u+ tû

‖(1 − t)u+ tû‖
∀t ∈ [0, 1], u ∈ E+.

This continuous deformation collapses E+ to û
‖û‖ ∈ ∂B+

1 ⊆ E+ and so E+ is contractible.
It follows that

Hk(W 1,p
0 (Ω), E+) = 0 ∀k ∈ N0

(see Papageorgiou-Rădulescu-Repovš [23, p. 469]), so

Hk(W 1,p
0 (Ω), φγ

+) = 0 ∀k ∈ N0

(see (3.30)) and thus
Ck(φ+, 0) = 0 ∀k ∈ N0

(recall the choice of γ). □
Now we can have the first multiplicity theorem for problem (1.1).

Theorem 3.6. If hypotheses H0, H1 hold, then problem (1.1) has at least three nontrivial
solutions u0 ∈ intC+, v0 ∈ −intC+, y0 ∈ C1

0 (Ω).

Proof. Recall that without any loss of generality we assume that Kφ+ ⊆ {0} ∪ intC+ is
finite. From Proposition 3.2 we know that u = 0 is a local minimizer of φ+. Then as in
the proof of Theorem 5.7.6 of Papageorgiou-Rădulescu-Repovš [23, p. 449] we can find
ϱ ∈ (0, 1) small such that

φ+(0) = 0 < inf{φ+(u) : ‖u‖ = ϱ} = m+. (3.31)
Hypothesis H1(ii) implies that if u ∈ intC+, then

φ+(tu) −→ −∞ as t → +∞. (3.32)
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Moreover, from 3.1, we have that

φ+ satisfies the nonsmooth Cerami condition. (3.33)

On account of (3.31), (3.32) and (3.33) we can apply the nonsmooth mountain pass the-
orem (see Theorem 2.9). So, we can find u0 ∈ W 1,p

0 (Ω) such that

u0 ∈ Kφ+ ⊆ {0} ∪ intC+, φ+(0) = 0 < m+ ⩽ φ+(u0) (3.34)

(see Proposition 3.3 and (3.31)).
From (3.34) it follows that

u0 ∈ intC+ is a positive solution of (1.1).

Similarly working with φ−, we produce a negative solution v0 ∈ −intC+ of (1.1).
Suppose Kφ̂ = {0, u0, v0}. We will show that

Ck(φ+, u0) = Ck(φ−, v0) = δk,1R ∀k ∈ N0. (3.35)

To this end, let τ, σ ∈ R be such that

τ < φ+(0) = 0 < σ < φ+(u0) (3.36)

(see (3.36)). We introduce the following triple of sets

φτ
+ ⊆ φσ

+ ⊆ W0 = W 1,p
0 (Ω).

For this triple of sets, we consider the corresponding long exact sequence of singular
homological groups

. . .Hk(W0, φ
τ
+) i∗−→ Hk(W0, φ

σ
+) ∂∗−→ Hk(φσ

+, φ
τ
+) . . . (3.37)

with i∗ being the group homomorphism induced by the inclusion i : (W0, φ
τ
+) −→ (W0, φ

σ
+)

and ∂∗ is the boundary homomorphism (see Papageorgiou-Rădulescu-Repovš [23, p. 466]).
Since we have assumed that Kφ = {0, u0, v0}, we have that Kφ+ = {0, u0}. Then from

(3.36) it follows that
Hk(W0, φ

τ
+) = Ck(φ,∞) = 0 ∀k ∈ N0 (3.38)

(see Proposition 3.5).
Note that

φ+(Kφ+) ∩ (σ,∞) = η0 = φ+(u0).
Then Proposition 2.10 implies that

Hk(W0, φ
σ
+) = Ck(φ+, u0) ∀k ∈ N0. (3.39)

Similarly, we have

Hk−1(φσ
+, φ

τ
+) = Ck−1(φ+, 0) = δk−1,0R = δk,1R ∀k ∈ N0 (3.40)

(see Proposition 3.2). Recall that (3.37) is exact. So, from (3.38), (3.39) and (3.40) we
infer that ∂∗ is an isomorphism and

Ck(φ+, u0) = δk,1R ∀k ∈ N0. (3.41)

Consider the homotopy h̃+(t, u) defined by

h̃(t, u) = tφ+(u) + (1 − t)φ(u) ∀(t, u) ∈ [0, 1] ×W0.

Suppose that we can find two sequences {tn}n∈N ⊆ [0, 1] and {un}n∈N ⊆ W0 such that

tn −→ t, un −→ u0 and (h̃+)′
u(tn, un) = 0 ∀n ∈ N. (3.42)

From the equation in (3.42), we infer that

−div a(Dun) = tnĝ
∗
n + (1 − tn)g∗

n,
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with ĝ∗
n ∈ Sr′

∂j(·,u+
n (·)), g

∗
n ∈ Sr′

∂j(·,un(·)). The nonlinear regularity theory, implies that there
exist α ∈ (0, 1) and c24 > 0 such that

un ∈ C1,α
0 (Ω), ‖un‖

C1,α
0 (Ω) ⩽ c24 ∀n ∈ N. (3.43)

Recall that the embedding C1,α
0 (Ω) ⊆ C1

0 (Ω) is compact. So, from (3.42) and (3.43), it
follows that

un −→ u0 in C1
0 (Ω).

We know that u0 ∈ intC+. So, we can find n0 ∈ N such that
un ∈ C+ \ {0} ∀n ⩾ n0,

thus {un}n⩾n0 ⊆ Kφ+ = {0, u0}, a contradiction. So, (3.42) cannot be true and the ho-
motopy invariance of critical groups for nonsmooth functionals due to Corvellec-Hantoute
[8], implies that

Ck(φ, u0) = Ck(φ+, u0) ∀k ∈ N0,

so
Ck(φ, u0) = δk,1R ∀k ∈ N0.

Similarly, working this time with the pair {φ−, v0} we obtain that
Ck(φ, v0) = δk,1R ∀k ∈ N0.

Therefore (3.35) is true. From Proposition 3.3, we have
Ck(φ, 0) = δk,0R ∀k ∈ N0. (3.44)

Moreover, from Proposition 3.4, we have
Ck(φ,∞) = 0 ∀k ∈ N0. (3.45)

Recall that we have assumed that Kφ = {0, u0, v0}. So, from (3.35), (3.44), (3.45) and the
Morse relation (see (2.2)) with t = −1, we have

(−1)0 + 2(−1)1 = 0,
a contradiction. So, there exists y0 ∈ Kφ, y0 6∈ {0, u0, v0}. Then y0 ∈ C1

0 (Ω) is the third
nontrivial solution of (1.1). □
Remark 3.7. In the above multiplicity theorem, we do not provide any sign information
for the third solution y0.

4. Nodal solution
In this section we prove another multiplicity theorem for problem (1.1), producing this

time five nontrivial smooth solutions, four of constant sign and the fifth nodal (sign-
changing).

To do this we need to modify the hypotheses on the map a and the reaction ∂j(z, ·),
producing a new geometry near zero.

The new hypotheses on the data of problem (1.1) are the following:
H ′

0: a(y) = a0(|y|)y for all y ∈ RN with a0(t) > 0 for all t > 0, hypotheses H ′
0(i), (ii), (iii)

are the same as the corresponding hypotheses H0(i), (ii), (iii) and
(iv): pG0(t) − a0(t)t2 ⩾ 0 for all t ⩾ 0 and there exists 1 < q ⩽ p such that the map
t 7→ G0(t

1
q ) is convex, lim sup

t→0+

qG0(t)
tq ⩽ c∗.

Remark 4.1. The examples given after hypotheses H0, all satisfy the new conditions.

H ′
1: j : Ω × R −→ R is a function such that for all x ∈ R, z 7→ j(z, x) is measurable, for

a.a. z ∈ Ω, x 7→ j(z, x) is locally Lipschitz, j(z, 0) = 0, 0 ∈ ∂j(z, 0) for a.a. z ∈ Ω and
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(i): |u∗| ⩽ a(z)(1 + |x|r−1) for a.a. z ∈ Ω, all x ∈ R, all u∗ ∈ ∂j(z, x) and with
a ∈ L∞(Ω), p < r < p∗;

(ii): lim
x→±∞

j(z, x)
|x|p

= +∞ uniformly for a.a. z ∈ Ω;

(iii): there exists µ ∈
(
(r − p) max{N

p , 1}, p∗}
such that

0 < β0 ⩽ lim inf
x→±∞

min
u∗∈∂j(z,x)

u∗x− pj(z, x)
|x|µ

,

uniformly for a.a. z ∈ Ω.
(iv): there exists τ ∈ (1, q) (q ∈ (1, p] as in hypothesis H ′

1(iv)) such that

lim
x→0

τj(z, x)
|x|τ

= η̂0 > 0, lim inf
x→0

min
u∗∈∂j(z,x)

u∗

|x|τ−2x
⩾ η0 > 0

uniformly for a.a. z ∈ Ω;
(v): there exist ϑ− < 0 < ϑ+ and ξ̂∗ > 0 such that for a.a. z ∈ Ω we have

max{u∗ : u∗ ∈ ∂j(z, ϑ+)} ⩽ −η̂ < 0 ⩽ η̂ = min{v∗ : v∗ ∈ ∂j(z, ϑ)} and for
a.a. z ∈ Ω, the function x 7→ j(z, x) + ξ̂∗

p |x|p is strongly convex.

Remark 4.2. In hypothesis H ′
1(v) the strong convexity of x 7→ j(z, x)+ ξ̂∗

p |x|p is equivalent

to saying that there exists σ > 0 such that x 7→ j(z, x) − σ
2x

2 + ξ̂∗
p |x|p is convex. This

in turn is equivalent to the strong monotonicity with constant σ of the multifunction
x 7→ ∂j(z, x) + ξ̂x|x|p−2x (see Rockafellar-Wets [28, p. 565]).

The following function j satisfies hypotheses H ′
1. For the sake of simplicity, we drop

the z-dependence:

j(x) =
{
x2 − c|x|p if |x| ⩽ 1,
|x|p

p

(
ln |x| − 1

p

)
+ ĉx2 if 1 < |x|,

with 2 < p, 2
p < c < 1, ĉ = (1 − c) + 1

p2 > 0.

First we produce two constant sign smooth solutions (positive and negative) which are
local minimizers of the energy functional φ.

Proposition 4.3. If hypotheses H ′
0, H ′

1 hold, then problem (1.1) has two constant sign
solutions u0 ∈ intC+ and v0 ∈ −intC+ which are local minimizers of the energy functional
φ.

Proof. We consider the following truncation of the potential function j(z, ·):

ĵ+(z, x) =
{
j(z, x+) if x ⩽ ϑ+,
j(z, ϑ+) if ϑ+ < x.

(4.1)

Evidently for all x ∈ R, the map z 7→ ĵ(z, x) is measurable and for a.a. z ∈ Ω, the map
x 7→ ĵ+(z, x) is locally Lipschitz. Using the first nonsmooth chain rule of Clarke [5, p. 42],
we have

∂ĵ+(z, x)


= {0} if x < 0,
⊆ conv{t∂j(z, 0) : 0 ⩽ t ⩽ 1} if x = 0,
= ∂j(z, x) if 0 < x < ϑ+,
⊆ conv{s∂j(z, ϑ+) : 0 ⩽ s ⩽ 1} if x = ϑ+,
= {0} if ϑ+ < x.

(4.2)

We introduce the locally Lipschitz functional φ̂+ : W 1,p
0 (Ω) −→ R defined by

φ̂+(u) =
∫

Ω
G(Du) dz −

∫
Ω
ĵ(z, u) dz ∀u ∈ W 1,p

0 (Ω).
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From Corollary 2.3 and (4.1), we see that the functional φ+ is coercive. Also, using the
Sobolev embedding theorem we see that φ̂+ is sequentially weakly lower semicontinuous.
So, we can find u0 ∈ W 1,p

0 (Ω) such that

φ̂+(u0) = inf{φ̂+(u) : u ∈ W 1,p
0 (Ω)}. (4.3)

From hypotheses H1
0 (iv) and H ′

1(iv), we see that we can find c∗
1 > c∗, η1 ∈ (0, η0) and

δ > 0 such that{
G(y) ⩽ c∗

1
q |y|q for all |y| ⩽ δ,

u∗ ⩾ η1x
τ−1 for a.a. z ∈ Ω, all 0 ⩽ x ⩽ δ, u∗ ∈ ∂j(z, x).

(4.4)

From the second inequality in (4.4) we obtain

j(z, x) ⩾ η1
τ
xτ for a.a. z ∈ Ω, all 0 ⩽ x ⩽ δ. (4.5)

Indeed, we know that j(z, ·) is differentiable a.e. on R and j′
x(z, x) ∈ ∂j(z, x) at every

point of differentiability. Integrating we obtain (4.5). If u ∈ intC+, let t ∈ (0, 1) be small
such that 0 ⩽ tu(z) ⩽ δ for all z ∈ Ω. Since τ < q ⩽ p, we see that by choosing t ∈ (0, 1)
even smaller if necessary, we have

φ̂+(tu) < 0,
so

φ̂+(u0) < 0 = φ̂+(0)
(see (4.3)) and thus u0 6= 0..

From (4.3) we have
0 ⩽ ∂φ̂+(u0),

so
〈V (u0), h〉 =

∫
Ω
ĝ∗

+h dz ∀h ∈ W 1,p
0 (Ω), (4.6)

here ĝ∗
+(z) ∈ ∂ĵ+(z, u0(z)) a.e. in Ω.

In (4.6) we use the test function h = −u−
0 ∈ W 1,p

0 (Ω). We obtain
c1

p− 1
‖Du−

0 ‖p
p ⩽ 0

(see Lemma 1.1 and (4.2)), so u0 ⩾ 0, u0 6= 0.
Next in (4.6) we choose the test function h = (u0 − ϑ+)+ ∈ W 1,p

0 (Ω). We have

〈V (u0), (u0 − ϑ+)+〉 =
∫

Ω
ĝ∗

+(u0 − ϑ+)+ dz

⩽ −
∫

Ω
η̂(u0 − ϑ+)+ dz

< 0 = 〈V (ϑ+), (u0 − ϑ+)+〉,
so u0 ⩽ ϑ+. So, we have proved that

u0 ∈ [0, ϑ+], u0 6= 0. (4.7)
We have {

−div a(Du0) = ĝ∗
+(z) in Ω,

u0|∂Ω = 0.
(see (4.6)). Since u0 ∈ L∞(Ω) (see (4.7)), using the nonlinear regularity theory of Lieber-
man [15], we have that u0 ∈ C+ \ {0}.

Let ξ̂x > 0 be as postulated by hypothesis H ′
1(v). Since by hypothesis 0 ∈ ∂j(z, 0) for

a.a. z ∈ Ω, from hypothesis H ′
1(v), we have

u∗x+ ξ̂xx
p ⩾ σx2 for a.a. z ∈ Ω, all x ∈ R, u∗ ∈ ∂j(z, x). (4.8)

So, we have
−div a(Du0) + ξ̂xu

p−1
0 = ĝ∗

+(z) + ξ̂xu
p−1
0 ⩾ 0 in Ω
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(see (4.8)), so
div a(Du0) ⩽ ξ̂xu

p−1
0 in Ω,

thus u0 ∈ intC+ (see Pucci-Serrin [27, p. 120]).
On account of hypothesis H ′

1(v), we have

w∗ + ξ̂xϑ
p−1
+ ⩾ u∗ + ξ̂xx

p−1 (4.9)

for a.a. z ∈ Ω, all 0 ⩽ x ⩽ ϑ+, all u∗ ∈ ∂ĵ(z, x), w∗ ∈ ∂j+(z, ϑ+). Therefore

−div a(Du0) + ξ̂xu
p−1
0 = ĝ∗

+(z) + ξ̂xu
p−1
0

⩽ g∗
ϑ+(z) + ξ̂xϑ

p−1
+

⩽ −div a(Dϑ+) + ξ̂xϑ
p−1
+ in Ω. (4.10)

with g∗
ϑ+

(z) ∈ ∂j(z, ϑ+) for a.a. z ∈ Ω (see (4.7), (4.9)).
Since g∗

ϑ+
(z) ⩽ −η̂ < 0 for a.a. z ∈ Ω, from (4.10) and Proposition 2.4 of Papageorgiou-

Winkert [26], we have
u0(z) < ϑ+ ∀z ∈ Ω,

so
u0 ∈ intC1

0 (Ω)[0, ϑ+]. (4.11)

From (4.11), (4.2) and (4.6) it follows that u0 ∈ intC+ is a positive solution of (1.1).
Note that

φ|[0,φ+] = φ̂+|[0,ϑ+]

(see (4.1)). From (4.11) and (4.3) it follows that

u0 is a local C1
0 (Ω)-minimizer of φ,

so
u0 is a local W 1,p

0 (Ω)-minimizer of φ
(see Gasiński-Papageorgiou [10]). Similarly working with the locally Lipschitz integrand

ĵ−(z, x) =
{
j(z, ϑ−) if x < ϑ−,
j(z,−x−) if ϑ− ⩽ x

and the corresponding locally Lipschitz functional φ̂− : W 1,p
0 (Ω) −→ R defined by

φ̂−(u) =
∫

Ω
G(Du) dz −

∫
Ω
j−(z,−u−) dz ∀u ∈ W 1,p

0 (Ω),

we produce a negative solution
v0 ∈ intC1

0 (Ω)[ϑ−, 0]

for problem (1.1), which is a local minimizer of φ. □

Using the two solutions from Proposition 3.8 and the nonsmooth mountain pass theorem
(see Theorem 2.9), we can have two more solutions of constant sign, for a total of four
solutions of constant sign.

Proposition 4.4. If hypotheses H ′
0, H ′

1 hold, then problem (1.1) has two more constant
sign solutions û ∈ intC+, v̂ ∈ −intC+, which are distinct from u0 and v0.

Proof. Recall that we have assumed that
Kφ+ and Kφ− are finite. (4.12)

From Proposition 4.3 we already have two constant sign u0 ∈ intC+ and v0 ∈ −intC+.
From the proof of Proposition 4.3, we know that

u0 is a minimizer of φ̂+.
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But φ̂+|[0,ϑ+] = φ+|[0,ϑ+] (see (4.1)). So, from (4.11), we see that

u0 is a local C1
0 (Ω)-minimizer of φ+

so
u0 is a local W 1,p

0 (Ω)-minimizer of φ+ (4.13)
(see Gasiński-Papageorgiou [10]).

Then (4.12) and (4.13) and Theorem 5.7.6 of Papageorgiou-Rădulescu-Repovš [23, p.
449] (the result is also valid in the present nonsmooth setting with the same proof), imply
that we can find ϱ ∈ (0, 1) small such that

φ+(u0) < inf{φ+(u) : ‖u− u0‖ = ϱ} = m+. (4.14)
On account of hypothesis H ′

1(ii) if u ∈ intC+, then
φ+(tu) −→ −∞ as t → +∞. (4.15)

Moreover, from Proposition 3.1 we know that
φ+ satisfies the Cerami condition. (4.16)

Then (4.14), (4.15) and (4.16), permit the use of Theorem 2.9. We can find û ∈ W 1,p
0 (Ω)

such that
û ∈ Kφ+ and m+ ⩽ φ+(û). (4.17)

From (4.17), (4.14) and Proposition 3.3, we have
û 6= u0, û ∈ intC+ ∪ {0}.

It remains to show that û is nontrivial. On account of hypothesis H ′
1(iv), given ε > 0, we

can find δ > 0 such that∣∣∣∣j(z, x) − η̂

τ
|x|τ

∣∣∣∣ ⩽ ε|x|τ for a.a. z ∈ Ω, all |x| ⩽ δ. (4.18)

Consider the C1-functional ψ+ : W 1,p
0 (Ω) −→ R defined by

ψ+(u) =
∫

Ω
G(Du) dz − 1

τ
‖u+‖τ

τ ∀u ∈ W 1,p
0 (Ω).

Let φ̃+ = φ+|C1
0 (Ω) and ψ̃+ = ψ+|C1

0 (Ω). From Palais [19, Theorem 16], we have

Ck(φ̃+, 0) = Ck(φ+, 0) and Ck(ψ̃+, 0) = Ck(ψ+, 0) ∀k ∈ N0. (4.19)

Then using (4.18) and Theorem 5.1 of Corvellec-Hantoute [8] (with U = B
C1

0 (Ω)
δ = {C1

0 (Ω) :
‖u‖C1

0 (Ω) < δ} and choosing ε > 0 small), we obtain

Ck(φ̃+, 0) = Ck(ψ̃+, 0) ∀k ∈ N0,

so
Ck(φ+, 0) = Ck(ψ+, 0) ∀k ∈ N0 (4.20)

(see (4.20)).
As in the Proposition 3.7 of Papageorgiou-Rădulescu [21], the presence of the concave

term near zero (see hypothesis H ′
1(iv)) implies that
Ck(ψ+, 0) = 0 ∀k ∈ N0,

so
Ck(φ+, 0) = 0 ∀k ∈ N0. (4.21)

On the other hand û ∈ Kφ+ is of mountain pass type and so Theorem 4.7 of Corvellec [6]
implies that

C1(φ+, û) 6= 0. (4.22)
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From (4.21) and (4.22) we infer that û 6= 0. So, û ∈ intC+ is the second positive solution
of 1.1.

Similarly, working with φ− and v0 ∈ −intC+, we produce a second negative solution
v̂ 6= v0, v̂ ∈ −intC+. □

In fact we can produce extremal constant sign solution, that is, a smallest positive
solution and a biggest negative solution (barrier solutions). We will use these solutions to
produce a nodal solution.

On account of hypotheses H ′
1(i), (iv), for a given ε > 0, we can find η1 ∈ (0, η0) and

c25 > 0 such that
u∗x ⩾ η1|x|τ − c25|x|r for a.a. z ∈ Ω, all x ∈ R, u∗ ∈ ∂j(z, x). (4.23)

Motivated by this unilateral growth condition for the subdifferential ∂j(z, ·), we consider
the following auxiliary Dirichlet problem{

−div a(Du) = η1|u|τ−2u− c25|u|r−2u in Ω,
u|∂Ω = 0. (4.24)

From this problem, we have the following result (see Papageorgiou-Rădulescu [21, Propo-
sition 3.5]).

Proposition 4.5. If hypotheses H ′
0, H ′

1 hold, then problem (4.24) has a unique positive
solution u ∈ intC+ and since the equation is odd, v = −u ∈ −intC+ is the unique negative
solution of (4.24).

Let S+ (respectively S−) be the set of positive (respectively negative) solution of (1.1).
We know that

∅ 6= S+ ⊆ intC+ and ∅ 6= S− ⊆ −intC+

(see Proposition 3.8). The solutions from Proposition 4.5 provide bounds for the elements
of S+ and of S− respectively.

Proposition 4.6. If hypotheses H ′
0 and H ′

1 hold, then u ⩽ u for all u ∈ S+ and v ⩽ v
for all v ∈ S−.

Proof. Let u ∈ S+ ⊆ intC+ and introduce the Carathéodory function γ+(z, x) defined by

γ+(z, x) =
{
η1(x+)τ−1 − c25(x+)r−1 if x ⩽ u(z),
η1u(z)τ−1 − c25u(z)r−1 if u(z) < x.

(4.25)

We set
Γ+(z, x) =

∫ x

0
γ+(z, s)

and consider the C1-functional k+ : W 1,p
0 (Ω) −→ R defined by

k+(u) =
∫

Ω
G(Du) dz −

∫
Ω

Γ+(z, u) dz ∀u ∈ W 1,p
0 (Ω).

Corollary 2.3 and (4.25) imply that k+ is coercive. Also via the Sobolev embedding
theorem, we see that k+ is sequentially weakly lower semicontinuous. So, we can find
ũ ∈ W 1,p

0 (Ω) such that

k+(û) = inf{k+(u) : u ∈ W 1,p
0 (Ω)}. (4.26)

Since τ < q < p < r, we see that
k+(û) < 0 = k+(0),

so û 6= 0.
From (4.26), we have

k′
+(ũ) = 0,
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so
〈V (û), h〉 =

∫
Ω
k+(z, ũ)h dz ∀h ∈ W 1,p

0 (Ω). (4.27)

In (4.27) we choose the test function h = −ũ− ∈ W 1,p
0 (Ω). Using Lemma 2.2, we obtain

c1
p− 1

‖Dũ−‖p
p ⩽ 0,

so
ũ ⩾ 0, ũ 6= 0.

In (4.27) we use the test function h = (ũ− u)+ ∈ W 1,p
0 (Ω). We have

〈V (ũ), (ũ− u)+〉
=

∫
Ω

(η1u
τ−1 − c25u

r−1)(ũ− u)+ dz

⩽
∫

Ω
g∗

+(ũ− u)+ dz

= 〈V (u), (ũ− u)+

(since u ∈ S+) with g∗
+ ∈ Sr′

∂j(·,u(·)) corresponding to u ∈ S+ (see (4.25) and (4.23)), so

ũ ⩽ u.

So, we have proved that
ũ ∈ [0, u], ũ 6= 0. (4.28)

From (4.28), (4.25), (4.27) and Proposition 4.5, it follows that ũ = u, so
u ⩽ u ∀u ∈ S+

(see (4.28)).
Similarly we show that v ⩽ v for all v ∈ S−. □
Now that we have these bounds, we can generate the extremal constant sign solutions

of (1.1).

Proposition 4.7. If hypotheses H ′
0, H ′

1, then problem (1.1) has a smallest positive so-
lution u∗ ∈ S+ ⊆ intC+ (that is, u∗ ⩽ u for all u ∈ S+) and a biggest negative solution
v∗ ∈ −intC+ (that is, v ⩽ v+ for all v ∈ S−).

Proof. From Filippakis-Papageorgiou [9], we know that S+ is downward directed (that is,
if u1, u2 ∈ S+, then there exists u ∈ S+ such that u ⩽ u1, u ⩽ u2). So, we may focus only
on S+ ∩ [0, ϑ+] 6= ∅ (see (4.7)). Then using Lemma 3.10 of Hu-Papageorgiou [14, p.178],
we can find a sequence {un}n⩾1 ⊆ S+ ∩ [0, ϑ+] such that

inf S+ = inf
n∈N

un.

Evidently {un}n∈N ⊆ W 1,p
0 (Ω) is bounded and so, we may assume that

un
w−→ u∗ in W 1,p

0 (Ω), un −→ u∗ in Lr(Ω). (4.29)
We have

V (un) = g∗
n in W−1,p′(Ω) ∀n ∈ N, (4.30)

with g∗
n ∈ Sr′

∂j(·,un(·)). On (4.30) we act with un − u∗ ∈ W 1,p
0 (Ω). Then

〈V (un), un − u∗〉 =
∫

Ω
g∗

n(un − u∗) dz,

so
lim

n→+∞
〈V (un), un − u〉 = 0

(see (4.29) and hypothesis H ′
1(i)), thus

un −→ u∗ in W 1,p
0 (Ω) (4.31)
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(see Proposition 2.6) with u ⩽ u∗ (see Proposition 4.6).
On account of hypothesis H ′

1(i), we may assume that

g∗
n

w−→ g∗ in Lr′(Ω). (4.32)

Moreover, we may also assume that

un(z) −→ u(z) for a.a. z ∈ Ω (4.33)

(see (4.33)). Since g∗
n(z) ∈ ∂j(z, un(z)) for a.a. z ∈ Ω, all n ∈ N, from (4.32), (4.33),

Proposition 3.9 of Hu-Papageorgiou [14, p. 694] and recalling that the multifunction
x 7→ ∂j(z, x) is upper semicontinuous, we have

g∗(z) ∈ conv lim sup
n→+∞

∂j(z, un(a)) ⊆ ∂j(z, u(z)) for a.a. z ∈ Ω. (4.34)

If in (4.30) we pass to the limit as n → +∞ and use (4.31), (4.32), we obtain

V (u∗) = g∗ in W−1,p′(Ω),

with g∗ ∈ Sr′

∂j(·,u∗(·)), so u∗ ∈ S+ ⊆ intC+ (see (4.31)), with u∗ = inf S+.
Working similarly we produce v∗ ∈ S− such that v ⩽ v∗ for all v ∈ S−. We mention

that S− is upward directed (that is, if v1, v2 ∈ S−, then there exists v ∈ S− such that
v1 ⩽ v, v2 ⩽ v; see Filippakis-Papageorgiou [9]). □

Now we are ready to produce a nodal solution. The idea is the following. Using suitable
truncation, we focus on the order interval [v∗, u∗]. Any nontrivial solution of (1.1) in this
interval district from u∗ and v∗, will be nodal. So, the goal is to find such a solution in
[v∗, u∗].

Implementing this strategy, first we truncate j(z, ·) at u∗(z) and at v∗(z). So, we
introduce the function

i(z, x) =


j(z, v∗(z)) if x < v∗(z),
j(z, x) if v∗(z) ⩽ x ⩽ u∗(z),
j(z, u∗(z)) if u∗(z) < x.

(4.35)

Evidently z 7→ i(z, x) is measurable and x 7→ i(z, x) is locally Lipschitz. We have

∂i(z, x) =


= {0} if x < v∗(z),
⊆ conv{s∂j(z, 0) : 0 ⩽ s ⩽ 1} if x = v∗(z),
= ∂j(z, x) if v∗(z) < x < u∗(z),
⊆ conv{t∂j(z, 0) : 0 ⩽ t ⩽ 1} if x = u∗(z),
{0} if u∗(z) < x.

(4.36)

Also, we introduce the positive and negative truncation of i(z, ·), namely the locally Lip-
schitz integrands

i±(z, x) = i(z,±x±). (4.37)
We have

∂i+(z, x) =


= {0} if x < 0,
⊆ conv{s∂i(z, 0) : 0 ⩽ s ⩽ 1} if x = 0,
= ∂i(z, x) if 0 < x < u∗(z),
⊆ conv{t∂i(z, 0) : 0 ⩽ t ⩽ 1} if x = u∗(z),
{0} if u∗(z) < x.

(4.38)

∂i−(z, x) =


= {0} if x < v∗(z),
⊆ conv{s∂i(z, 0) : 0 ⩽ s ⩽ 1} if x = v∗(z),
= ∂i(z, x) if v∗(z) < x < 0,
⊆ conv{t∂i(z, 0) : 0 ⩽ t ⩽ 1} if x = 0,
{0} if 0 < x.

(4.39)
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We consider the following locally Lipschitz functionals defined on W 1,p
0 (Ω):

σ(u) =
∫

Ω
G(Du) dz −

∫
Ω
i(z, u) dz,

σ±(u) =
∫

Ω
G(Du) dz −

∫
Ω
i±(z, u) dz ∀u ∈ W 1,p(Ω).

Proposition 4.8. If hypotheses H ′
0, H ′

1 hold, then u∗ ∈ intC+ and v∗ ∈ −intC+ are local
minimizers of σ.

Proof. From Corollary 2.3 and (4.35), (4.37), we see that the functional σ+ is coercive.
Also, it is sequentially weakly lower semicontinuous. So, we can find ũ∗ ∈ W 1,p

0 (Ω) such
that

σ+(ũ∗) = inf
u∈W 1,p

0 (Ω)
σ+(u) < 0 = σ+(0) (4.40)

(using hypothesis H ′
1(iv) and since τ < q < p < r), so ũ∗ 6= 0.

Using (4.38) and the nonlinear regularity theory of Lieberman [15], we show that
Kσ+ ⊆ [0, u∗] ∩ C+,

so
Kσ+ = {0, u∗}

(since u∗ is extremal), thus
ũ∗ = u∗ ∈ intC+ (4.41)

(see (4.40)).
From (4.35) and (4.37), we see that

σ|C+ = σ+|C+ .

Then (4.40) and (4.41) imply that
u∗ is a local C1

0 (Ω)-minimizer of σ
so

u∗ is a local W 1,p
0 (Ω)-minimizer of σ

(see Gasiński-Papageorgiou [10]). Similarly for v∗ ∈ −intC+, using this time the functional
σ−. □

We are ready to have the nodal solution.

Proposition 4.9. If hypotheses H ′
0, H ′

1 hold, then problem (1.1) has a nodal solution
y0 ∈ [v∗, u∗] ∩ C1

0 (Ω).

Proof. From Proposition 4.8 we know that
u∗ ∈ intC+ and v∗ ∈ −intC+ are local minimizers of σ. (4.42)

We may assume that
σ(v∗) ⩽ σ(u∗).

The reasoning is similar if the opposite inequality holds.
Using (4.36) and the nonlinear regularity theory, we show that

Kσ ⊆ [v∗, u∗] ∩ C1
0 (Ω). (4.43)

Again we assume that Kσ is finite (otherwise on account of (4.43) we already have an
infinity of smooth nodal solutions and so we are done). We can find ϱ ∈ (0, 1) small such
that {

τ(v∗) ⩽ σ(u∗) < inf{σ(u) : ‖u− u∗‖ = ϱ} = m̂,
‖v∗ − u∗‖ > ϱ

(4.44)

(see Papageorgiou-Rădulescu-Repovš [23, p. 449]).
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Since σ is coercive (see (4.35)), we have that
σ satisfies the nonsmooth Cerami condition. (4.45)

Then (4.44) and (4.45) permit the use of Theorem 2.9. So, we can find y0 ∈ W 1,p
0 (Ω) such

that
y0 ∈ Kσ, m̂ ⩽ σ(y0), C1(σ, y0) 6= 0 (4.46)

(see Corvellec [6]). From (4.46) and (4.44), we see that
y0 6∈ {u∗, v∗}.

Note that
σ|[v∗,u∗] = φ|[v∗,u∗]

(see (4.35)).
Since v∗ ∈ −intC+, u∗ ∈ intC+ via a homotopy invariance argument as in the proof of

Theorem 3.6 and using Theorem 5.2 of Corvellec-Hantoute [8], we have
Ck(σ, 0) = Ck(φ, 0) ∀k ∈ N0,

so
Ck(σ, 0) = 0 ∀k ∈ N0 (4.47)

(see the proof of Proposition 3.9).
Comparing (4.47) and (4.46), we infer that y0 6= 0. The nonlinear regularity theory

implies that y0 ∈ [v∗, u∗] ∩ (C1
0 (Ω) \ {0}), hence y0 is a nodal solution of (1.1). □

Summarizing, we can state the following multiplicity theorem for problem (1.1).

Theorem 4.10. If hypotheses H ′
0 and H ′

1 hold, then problem (1.1) has at least five non-
trivial solutions

u∗, û ∈ intC+, u∗ ⩽ û, u∗ 6= û,

v∗, v̂ ∈ −intC+, v̂ ⩽ v∗, v∗ 6= v̂,

y0 ∈ [v∗, u∗] ∩ C1
0 (Ω) nodal.

Remark 4.11. We stress that in the above multiplicity theorem, we provide sign infor-
mation for all the solutions produced and the solutions are ordered v̂ ⩽ v∗ ⩽ y0 ⩽ u∗ ⩽ û.
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