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ABSTRACT 
 

An analysis of the distributed moving load along the surface of a coated half space is presented. The formulation of the problem 

depends on the hyperbolic-elliptic asymptotic model developed earlier by the authors. The integral solution of the longitudinal 

and transverse displacements along the surface for the sub and super-Rayleigh cases are obtained by using the uniform 

stationary phase method. Numerical comparisons of the exact and asymptotic solutions of the longitudinal displacement are 

illustrated for the certain cross-sections of the profile. 
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HAREKETLİ DAĞILIMLI YÜK ETKİSİ ALTINDA KAPLAMALI BİR ELASTİK YARI 

UZAYIN YÜZEY YER DEĞİŞTİRME ALANI 

 

ÖZET 

 
Kaplamalı elastik bir yarı uzayın yüzeyi boyunca dağılımlı hareketli yükün bir analizi sunulmuştur. Problemin formülasyonu 

yazarlar tarafından önceden geliştirilmiş hiperbolik-eliptik modele dayanmaktadır. Sub ve süper Rayleigh durumları için yüzey 

boyunca boyuna ve enine yer değiştirmelerin integral çözümleri düzgün durağan faz metodu kullanılarak elde edilmiştir. 

Boyuna yer değiştirmenin tam ve asimptotik çözümlerinin nümerik karşılaştırmaları profilin belirli kesitleri için grafikler ile 

gösterilmiştir. 

 

Anahtar Kelimeler: 3-Boyutlu elastisite, Asimptotik model, Hareketli yük, Yüzey dalgası, İnce kaplama 

 

 

 

1. INTRODUCTION 
 

The propagation of surface waves in elastic structures under the action of moving loads is an active area 

of research. It has received significant attention due to its applicability in modern engineering 

application ranging from dynamic response of bridges, [1,2], to the effect of high-speed vehicles to the 

surrounding environments (see e.g., [3,4]). Most of these problems are modelled through a two-

dimensional (2D) setting, however real life problems require modelling and analysis of problems in a 

three-dimensional (3D) framework.  Most of the works dealing with 3D problems either employ a 

numerical approach or leave the obtained solutions in integral forms both of which do not immediately 

yield to further physical analysis (a very good account of such solutions may be found in the leading 

texts by Achenbach [5] and Miklowitz [6]). These considerations necessitate different approaches one 

of which, the asymptotic approximation, is the essential theme of the current paper. The method used in 

this article, first introduced by Kaplunov et al. [7], relies on the relation of the longitudinal and transverse 

wave potentials (see eqn. (5), also Chadwick [8]) reducing the 3D problem to a pair of 2D plain 

problems. The model is also aimed at deriving the contribution arising from the Rayleigh surface wave. 

This allows one to analyse the physical parameters of the problem in a more straightforward manner.  
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In this paper the dynamic response of the surface of a coated elastic half-space to a distributional load 

moving with a velocity 𝑐 is considered. In Section 2, the mathematical model is presented through the 

governing equations and boundary conditions. The problem is then scaled with respect to the thickness 

of the coating as well as the load speed, being closer to the surface wave speed. In Sections 3 and 4, the 

surface dynamics is investigated for super and sub-Rayleigh load speeds respectively. In both sections, 

the displacements fields are presented for the different problem parameters. The conclusions and the 

discussions of the obtained results are given in Section 5. 

 

2. STATEMENT OF THE PROBLEM 

 

We consider a 3D elastic half-space coated by a thin layer of thickness ℎ, see Figure 1. 

 

 
Figure 1. Coated half-space under the action of a moving distributional load 

 

The equations of motion in 3D elasticity are adopted in their classical form [5] 

 (𝜆 + 𝜇) grad div𝐮 + 𝜇Δ𝐮 = 𝜌
∂2𝐮

∂𝑡2
 , (1) 

 

where 𝐮 = (u1, u2, u3) is the displacement vector, 𝜆 and 𝜇 are Lamé constants, 𝜌 is the volume density 

and 𝛥 is 3D Laplace operator. Here, the 3D coated elastic half-space is loaded with a distributional force 

of amplitude 𝑃, moving along the 𝑂𝑥1 axis on the surface at a constant speed 𝑐. The boundary conditions 

on the surface may hence be written as 

 

𝜎𝑖3 =
∂𝑢𝑖
∂𝑥3

+
∂𝑢3
∂𝑥𝑖

= 0,    𝑥3 = −ℎ,
 

𝜎33 = 𝜆 (
∂𝑢1
∂𝑥1

+
∂𝑢2
∂𝑥2

) + (𝜆 + 2𝜇)
∂𝑢3
∂𝑥3

= −𝑃
𝑎

𝜋[(𝑥1 − 𝑐𝑡)
2 + 𝑎2]

𝛿(𝑥2), 𝑥3 = −ℎ 

 

 

 

where 𝜎𝑖3 and 𝜎33are components of the Cauchy stress tensor, 𝑖 = 1,2, 𝛿(⋅) is Dirac delta function and 

𝑎 is a parameter describing the Gaussian profile of the load. Employing Helmholtz decomposition of a 

vector field (see, [9]) 

 𝐮 = grad𝜑 + curl𝝍, (2) 
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and approximate hyperbolic-elliptic formulation presented in [7] and [10], we obtain pseudo-elliptic 

equations from equation (1) in the interior −ℎ < 𝑥3 of the half-space 

 

 
∂2𝜙

∂𝑥3
2 + 𝑘1

2Δ2𝜙 = 0,
∂2𝜓𝑖

∂𝑥3
2 + 𝑘2

2Δ2𝜙 = 0, 𝑖 = 1,2, (3) 

 

with boundary equation at 𝑥3 = 0 

 Δ2𝜙 −
1

𝑐𝑅
2

∂2𝜙

∂𝑡2
−
𝑏ℎ

𝑘1

∂

∂𝑥3
(Δ2𝜙) = 𝐴𝑃

𝑎

𝜋[(𝑥1 − 𝑐𝑡)2 + 𝑎2]
𝛿(𝑥2), (4) 

 

and relations between the potentials 

 

 
∂𝜙

∂𝑥𝑖
=

2

1 + 𝑘2
2

∂𝜓𝑖
∂𝑥3

, 𝑖 = 1,2. (5) 

 

In the above formulae, the vector potential 𝝍 is defined as 𝝍 = (−𝜓2, 𝜓1, 0), 𝑘𝑖 = 1 − 𝑐𝑅
2/𝑐𝑖

2 are the 

wave numbers, Δ2 = ∂𝑥1
2 + ∂𝑥2

2  is the 2D Laplacian, 𝐴 and 𝑏 are constants first defined in [10], and 𝑐𝑅, 

𝑐1 and 𝑐2 are the Rayleigh, longitudinal and transverse wave speeds respectively. 

Solution of equation (3) may be written in symbolic form as 

 

 𝜙(𝑥1, 𝑥2, 𝑥3, 𝑡) = exp(−𝑘1√−Δ2𝑥3)𝜙(𝑥1, 𝑥2, 0, 𝑡), (6) 

 

where √−Δ2 is a pseudo differential operator (for further details see [10]). Straightforward 

differentiation of (6) gives 

 

 
∂𝜙

∂𝑥3
|𝑥3=0 = −𝑘1√−Δ2𝜙(𝑥1, 𝑥2, 0, 𝑡),  

 

and equation (4) can be written as  

 

 Δ2𝜙 −
1

𝑐𝑅
2

∂2𝜙

∂𝑡2
− 𝑏ℎ√−Δ2Δ2𝜙 = 𝐴𝑃

𝑎

𝜋[(𝑥1 − 𝑐𝑡)2 + 𝑎2]
𝛿(𝑥2). (7) 

 
It is a common practice that since the determination of the displacement field over the entire half-space 

is very difficult, if not impossible, throughout the paper we will focus on the surface displacements, i.e., 

displacements over 𝑥3 = 0, which can be expressed through equations (2) and (5) in terms of one single 

potential as 

 𝑢𝑖 =
𝑐𝑅
2

2𝑐2
2

∂𝜙

∂𝑥𝑖
, 𝑖 = 1,2. (8) 

 

We now restrict ourselves to steady-state regime with introducing moving coordinate 𝜒 = 𝑥1 − 𝑐 𝑡. 
Rewriting equation (7) in terms of the new coordinate we get for the super-Rayleigh (𝑐 > 𝑐𝑅) and the 

sub-Rayleigh (𝑐 < 𝑐𝑅) regimes 

 

 
∂2𝜙

∂𝑥2
2 − 휀

2
∂2𝜙

∂𝜒2
− 𝑏ℎ√−(

∂2

∂𝑥2
2 +

∂2

∂𝜒2
)(
∂2𝜙

∂𝑥2
2 +

∂2𝜙

∂𝜒2
) = 𝐴𝑃

𝑎

𝜋[𝜒2 + 𝑎2]
𝛿(𝑥2), (9) 
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and 

 
∂2𝜙

∂𝑥2
2 + 휀

2
∂2𝜙

∂𝜒2
− 𝑏ℎ√−(

∂2

∂𝑥2
2 +

∂2

∂𝜒2
)(
∂2𝜙

∂𝑥2
2 +

∂2𝜙

∂𝜒2
) = 𝐴𝑃

𝑎

𝜋[𝜒2 + 𝑎2]
𝛿(𝑥2), (10) 

 

respectively, where 

 휀 = √1 −
𝑐2

𝑐𝑅
2 .  

 

The small parameter 휀 signifies the fact that the speed of the applied load is close to the Rayleigh wave 

speed for which the approximate model is based on, so that 휀 ≪ 1. Furthermore, thickness of the coating 

is taken smaller than a typical wave length (see, [11,12]). Here, it is also appropriate to expect that the 

distributions occur along the  𝑥1 axis due to the direction of the movement of the load. Making use of 

the arguments mentioned above, it is reasonable to introduce the scaled variables 

 

 𝜒 =
𝜉𝑏ℎ

휀2
,     𝑥2 =

휂𝑏ℎ

휀3
 . (11) 

 

On employing the scaling (11), equations (9) and (10) become, respectively, 

 
∂2𝜙

∂휂2
−
∂2𝜙

∂𝜉2
−√−

∂2

∂𝜉2
∂2𝜙

∂𝜉2
=
𝐴𝑃

휀

𝑎𝑠
𝜋[𝜉2 + 𝑎𝑠2]

𝛿(휂), (12) 

 

and 

 
∂2𝜙

∂휂2
+
∂2𝜙

∂𝜉2
−√−

∂2

∂𝜉2
∂2𝜙

∂𝜉2
=
𝐴𝑃

휀

𝑎𝑠
𝜋[𝜉2 + 𝑎𝑠2]

𝛿(휂), (13) 

 

where 𝑎𝑠 = 𝑎 휀
2/ (𝑏 ℎ). It is the object of next two sections to obtain the solutions of equations (12) 

and (13). 

 

3. THE SUPER-RAYLEIGH REGIME 

 

Consider first the super-Rayleigh regime. On applying the Fourier transform to equation (12) in the 

variable 𝜉, we obtain 

 
𝑑2𝜙𝐹

𝑑휂2
+ 𝑘2(1 + |𝑘|)𝜙𝐹 =

𝐴𝑃

휀
𝑒−𝑎𝑠|𝑘|𝛿(휂), (14) 

 

where 

 𝜙𝐹(𝑘, 휂, 0) = ∫ 𝜙(𝜉, 휂, 0)𝑒−𝑖𝑘𝜉
∞

−∞

𝑑𝜉.  

 

Similarly, employing the two-sided Laplace transform, defined as  

 𝜙𝐹𝐿(𝑘, 𝑠, 0) = ∫ 𝜙(𝑘, 휂, 0)𝑒−𝑠𝜂
∞

−∞

𝑑휂,  
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to equation (14) we get 

 𝑠2𝜙𝐹𝐿 + 𝑘2(1 + |𝑘|)𝜙𝐹𝐿 =
𝐴𝑃

휀
𝑒−𝑎𝑠|𝑘|,  

 

which results in 

 𝜙𝐹𝐿 =
𝐴𝑃

휀

1

𝑠2 + 𝑘2(1 + |𝑘|)
𝑒−𝑎𝑠|𝑘|.  

 

The symmetry of the transformed potential with respect to 𝑠 enables the immediate use of Laplace 

transform tables (see, [13]) leading to 

 

 𝜙𝐹 =
𝐴𝑃

휀

sin(|𝑘|√1 + |𝑘||휂|)

|𝑘|√1 + |𝑘|
𝑒−𝑎𝑠|𝑘|.  

 

The related inverse Fourier transform is then given by 

 

 

𝜙(𝜉, 휂, 0) =
𝐴𝑃

2𝜋휀
∫

sin (|𝑘|√1 + |𝑘||휂|)

|𝑘|√1 + |𝑘|
𝑒−𝑎𝑠|𝑘|

∞

−∞ 

𝑒𝑖 𝑘 𝜉𝑑𝑘

=
𝐴𝑃

𝜋휀
∫
sin(𝑘√1 + 𝑘|휂|) cos(𝑘𝜉)

𝑘√1 + 𝑘

∞

0

𝑒−𝑎𝑠𝑘𝑑𝑘.

 (15) 

 

The longitudinal and the transverse displacements, 𝑢1 and 𝑢2, may be expressed, through the new 

variables, on the surface 𝑥3 = 0 as (cf. eqn (8)) 

 

 𝑢1 =
휀2𝑐𝑅

2

2𝑏ℎ𝑐2
2

∂𝜙

∂𝜉
,  𝑢2 =

휀3𝑐𝑅
2

2𝑏ℎ𝑐2
2

∂𝜙

∂휂
 . (16) 

 

Let us first evaluate the longitudinal displacement 𝑢1, which may be written through straightforward 

differentiation of (15) as 

 

 

𝑢1 = −
𝐴𝑃휀𝑐𝑅

2sgn(𝜉)

2𝜋𝑏ℎ𝑐2
2 ∫

sin (𝑘√1 + 𝑘|휂|)sin (𝑘|𝜉|)

√1 + 𝑘

∞

0

𝑒−𝑎𝑠𝑘𝑑𝑘

=
𝐴𝑃휀𝑐𝑅

2sgn(𝜉)

4𝜋𝑏ℎ𝑐2
2 ∫

cos (𝑘√1 + 𝑘|휂| + 𝑘|𝜉|) − cos (𝑘√1 + 𝑘|휂| − 𝑘|𝜉|)

√1 + 𝑘

∞

0

𝑒−𝑎𝑠𝑘𝑑𝑘

=
𝐴𝑃휀𝑐𝑅

2sgn(𝜉)

4𝜋𝑏ℎ𝑐2
2 Re{∫

𝑒𝑖|𝜉|(𝑘√1+𝑘𝜇∗+𝑘)

√1 + 𝑘

∞

0

𝑒−𝑎𝑠𝑘𝑑𝑘 −∫
𝑒𝑖|𝜉|(𝑘√1+𝑘𝜇∗−𝑘)

√1 + 𝑘

∞

0

𝑒−𝑎𝑠𝑘𝑑𝑘} ,

 (17) 

 

where 𝜇∗ = |휂/𝜉|.  
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Integrals appearing in eqn. (17) are frequently encountered in the dynamic surface wave propagation 

problems and in most cases, they are notoriously difficult to calculate if not impossible. We will 

therefore investigate the far-field asymptotic behaviour of the integrals as |𝜉| ≫  1 and 𝜇∗ ∼ 1. It may 

be shown that while the first integral in (17) does not have any stationary points in the integration 

interval, i.e., any points for which the derivative vanishes, the second integral has one, which is obtained 

by taking the derivative of the exponent with respect to 𝑘, given by 

 

 𝑘∗ =
2(1 − 3𝜇∗

2 +√1 + 3𝜇∗2)

9𝜇∗2
.  

 

Consequently, the asymptotic contribution of the first integral in (17) is negligible in comparison to the 

second integral. It should also be noted that the stationary point 𝑘∗ coincides with the lower limit of the 

integral on the line of Mach cone 𝜇∗ = 1 (see, [11]). Therefore, we must use the uniform stationary 

phase method to obtain a uniform asymptotic expansion of the considered integral, (see [14,15]). 

Applying the uniform stationary phase method, we get at the leading order 

 

 

∫
𝑒𝑖|𝜉|(𝑘√1+𝑘𝜇∗−𝑘)

√1 + 𝑘

∞

0

𝑒−𝑎𝑠𝑘𝑑𝑘~𝑓(𝑘∗)√
2

|𝜉|ℎ1
″(𝑘∗)

{cos (|𝜉|ℎ1(𝑘∗)) [√
𝜋

8
− 𝐶 (−𝑘∗√

|𝜉|ℎ1
″(𝑘∗)

2
)]

                                                                                     −sin (|𝜉|ℎ1(𝑘∗)) [√
𝜋

8
− 𝑆(−𝑘∗√

|𝜉|ℎ1
″(𝑘∗)

2
)]}

  

 

where 

 ℎ1(𝑘) = 𝑘√1 + 𝑘𝜇∗ − 𝑘, 𝑓(𝑘) =
𝑒−𝑎𝑠𝑘

√1 + 𝑘
 ,  

 

and 𝐶(𝑥) and 𝑆(𝑥) are the Fresnel functions, defined by 

 

 𝐶(𝑥) = ∫cos(𝑡2)

𝑥

0

𝑑𝑡, 𝑆(𝑥) = ∫sin (𝑡2)

𝑥

0

𝑑𝑡,  

 

(see, [16]). Thus, the displacement 𝑢1 is given by 

 

 

𝑢1~−
𝐴𝑃휀𝑐𝑅

2𝑠𝑔𝑛(𝜉)

4𝜋𝑏ℎ𝑐2
2 𝑓(𝑘∗)√

2

|𝜉|ℎ1
″(𝑘∗)

{cos (|𝜉|ℎ1(𝑘∗)) [√
𝜋

8
− 𝐶 (−𝑘∗√

|𝜉|ℎ1
″(𝑘∗)

2
)]

                                                                             −sin (|𝜉|ℎ1(𝑘∗)) [√
𝜋

8
− 𝑆(−𝑘∗√

|𝜉|ℎ1
″(𝑘∗)

2
)]}

 (18) 

 

Following a similar approach for 𝑢2  as in the preceding process, the far-field asymptotic expansion for 

the transverse displacement may be written as 
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𝑢2~−
𝐴𝑃휀2𝑐𝑅

2𝑠𝑔𝑛(휂)

4𝜋𝑏ℎ𝑐2
2 𝑔(𝑘∗)√

2

|𝜉|ℎ1
″(𝑘∗)

{cos (|𝜉|ℎ1(𝑘∗)) [√
𝜋

8
− 𝐶 (−𝑘∗√

|𝜉|ℎ1
″(𝑘∗)

2
)]

                                                                             −sin (|𝜉|ℎ1(𝑘∗)) [√
𝜋

8
− 𝑆(−𝑘∗√

|𝜉|ℎ1
″(𝑘∗)

2
)]} ,

  

 

where 

 𝑔(𝑘) = 𝑒−𝑎𝑠𝑘.  
 

In order to illustrate the accuracy of the approximate displacements we present below graphs of the 

comparisons of 𝑢1 given by (18), and the exact solution (17), both of which are scaled as  

 

 𝑈1 =
4𝜋𝑏ℎ𝑐2

2

𝐴𝑃𝑐𝑅
2휀
 𝑢1.  

 

In Figure 2, the longitudinal cross-sectional profile of the exact and asymptotic solutions of 𝑈1 for 

different values of 𝑎𝑠 are presented. In this figure, solid lines correspond to exact solutions whereas the 

dashed lines correspond to asymptotic solutions. It is clearly seen in these graphs that the greater values 

of the parameter  𝑎𝑠 reduces the magnitude of the displacement resulting in a more uniform distributed 

profile, which is an expected result (cf. [17,18]). It should be noted that the values of the parameter 𝑎𝑠 
either corresponds to the amplitude of the profile of the load for fixed values of the material parameter 

𝑏 and the coating thickness ℎ; or, to the coating thickness ℎ for fixed values of 𝑎, and 𝑏. This allows us 

to arbitrarily change either the profile of the load or the coating thickness according to the desired 

displacement outcome.  

 

 

 

 

 Figure 2. Super-Rayleigh displacement 𝑈1 versus 휂 at 𝜉 = 5.  
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Figure 3 compares the transverse cross-sectional profile of 𝑈1 for exact and approximate solutions for 

different values of 𝑎𝑠. Once again the displacement amplitude reduces for larger values of 𝑎𝑠 
demonstrating a smoothened displacement profile. We also would like to draw attention to the peculiar 

fact that, in both Figures 2 and 3 for increasing values of 𝑎𝑠, particularly for values greater than unity, 

the agreement between the exact and approximate solutions start to fail. This is not an inconsistency 

since the asymptotic solution is valid in the Mach cone 𝜇∗ = 1 (|𝜉| = |휂|) (for further details see, 

[11,12]), and the argument of the exponential factor appearing in eqn. (18) becomes positive for certain 

particular values, making the displacement unbounded. However, these particular values are out of the 

Mach cone and therefore do not violate the validity of the obtained approximate displacement. 

 

 

 

 

 Figure 3. Super-Rayleigh displacement 𝑈1 versus 𝜉 at 휂 = 5.  
 

3. THE SUB-RAYLEIGH REGIME 

 

We now proceed to the sub-Rayleigh regime. Taking the Fourier and Laplace transforms of equation 

(13) we obtain 

 

 𝜙𝐹𝐿 =
𝐴𝑃

휀

1

𝑠2 − 𝑘2(1 − |𝑘|)
𝑒−𝑎𝑠|𝑘|.  

 

As before, the Laplace transform may easily be written using the symmetry of the potential in 𝑠, giving 

 

 𝜙𝐹(𝑘, 휂, 0) =

{
 
 

 
 

−
𝐴𝑃

휀

𝑒−
|𝑘|(√1−|𝑘||𝜂|+𝑎𝑠)

2|𝑘|√1 − |𝑘|
, |𝑘| < 1;

𝐴𝑃

휀

𝑒−𝑎𝑠|𝑘|sin (|𝑘|√|𝑘| − 1|휂|)

|𝑘|√|𝑘| − 1
, |𝑘| > 1.

  

 

Employing the inverse Fourier transform we arrive at 
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𝜙(𝑘, 휂, 0) =
𝐴𝑃

𝜋휀
{∫

𝑒−𝑎𝑠𝑘sin (𝑘√𝑘 − 1|휂|)

𝑘√𝑘 − 1

∞

1

cos (𝑘|𝜉|)𝑑𝑘

−∫
𝑒−𝑘(√1−𝑘|𝜂|+𝑎𝑠)

2𝑘√1 − 𝑘

1

0

cos (𝑘𝜉)𝑑𝑘}. 

 

 

The longitudinal surface displacement 𝑢1 can be written from equation (16) in the following form 

 

 

𝑢1(𝜉, 휂, 0) =
𝐴𝑃휀𝑐𝑅

2sgn(𝜉)

2𝜋𝑐2
2𝑏ℎ

[∫
𝑒−𝑘(√1−𝑘|𝜂|+𝑎𝑠)

2√1 − 𝑘

1

0

sin(𝑘|𝜉|) 𝑑𝑘

−∫
𝑒−𝑎𝑠𝑘 sin(𝑘√𝑘 − 1|𝜉|𝜇∗)

√𝑘 − 1

∞

1

sin(𝑘|𝜉|) 𝑑𝑘]. 

(19) 

 

Considering the far-field approximation as |𝜉| ≫ 1, it may be shown that the leading order asymptotic 

behaviour of 𝑢1 arises from the stationary point of the second integral in equation (19), which can be 

written as 

 

 

∫
sin (𝑘|𝜉|)sin (𝑘√𝑘 − 1|𝜉|𝜇∗)

√𝑘 − 1

∞

1

𝑒−𝑎𝑠𝑘𝑑𝑘 =
1

2
Re{∫

𝑒𝑖|𝜉|(𝑘√𝑘−1𝜇∗−𝑘)

√𝑘 − 1

∞

1

𝑒−𝑎𝑠𝑘𝑑𝑘 −

−∫
𝑒𝑖|𝜉|(𝑘√𝑘−1𝜇∗+𝑘)

√𝑘 − 1

∞

1

𝑒−𝑎𝑠𝑘𝑑𝑘} .

  

 

A change of variable 𝑡 = √𝑘 − 1 transforms the integrals above to 

 

 

∫
sin (𝑘|𝜉|)sin (𝑘√𝑘 − 1|𝜉|𝜇∗)

√𝑘 − 1

∞

1

𝑒−𝑎𝑠𝑘𝑑𝑘 = 𝑒−𝑎𝑠Re {∫ 𝑒𝑖|𝜉|(𝜇∗𝑡
3−𝑡2+𝑡𝜇∗−1)𝑒−𝑎𝑠𝑡

2

∞

0

𝑑𝑡 −

−∫ 𝑒𝑖|𝜉|(𝜇∗𝑡
3+𝑡2+𝑡𝜇∗+1)𝑒−𝑎𝑠𝑡

2

∞

0

𝑑𝑡} .

 (20) 

 

If we analyse the stationary points of the integrals in eqn. (20), we immediately observe that only the 

first integral in (19) has stationary points which are given by 

 

 𝑡1 =
1 + √1 − 3𝜇∗2

3𝜇∗
     and     𝑡2 =

1 − √1 − 3𝜇∗2

3𝜇∗
, 0 < 𝜇∗ ≤ 1/√3.  
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It should be emphasized that the two stationary points converge to each other along the line 𝜇∗ =

1/√3 which imposes the use of the stationary phase method. Thus, we are concerned with the 

approximate value of an integral of the form 

 

 ∫ 𝑒𝑖|𝜉|ℎ2(𝑡,𝜇∗)
∞

0

𝑔(𝑡)𝑑𝑡, (21) 

 

where, in our specific problem,   

 

 ℎ2(𝑡, 𝜇∗) = 𝜇∗𝑡
3 − 𝑡2 + 𝜇∗𝑡 − 1   and     𝑔(𝑡) = 𝑒−𝑎𝑠𝑡

2
.  

 

A change of variable of the form 

 

 ℎ2(𝑡, 𝜇∗) =
𝑢3

3
− 𝛼𝑢 + 𝛽, (22) 

 

introduced by Chester et al. [19], provides a means of obtaining a uniform asymptotic expansion when 

two stationary points coincide. Here 𝛼 and 𝛽 are determined as 

 

 𝛼 =
1 − 3𝜇∗

2

(3𝜇∗)
4/3
, 𝛽 = −

2

27
(9 +

1

𝜇∗
2
).  

 

Substituting (22) into the integral in equation (21), we get 

 

 𝑒𝑖|𝜉|𝛽𝑒−𝑎𝑠∫ 𝑒𝑖|𝜉|(𝑢
3/3−𝛼𝑢)𝑝(𝑢)

∞

0

𝑑𝑢, (23) 

 

where 

 𝑝(𝑢) = 𝑒−𝑎𝑠𝑡
2 𝑑𝑡

𝑑𝑢
 ,  

 

and 𝑡 = 𝑡(𝑢) is a single valued analytic function and derivation of 𝑡(𝑢) is given by 

 𝑑𝑡

𝑑𝑢
=

𝑢2 − 𝛼

ℎ2′(𝑡, 𝜇∗)𝑡
 , 

 

 

for more details see [15]. Following Bleistein [20], 𝑝(𝑢) can be written as 

   
𝑝(𝑢) = 𝑎0 + 𝑏0𝑢 + (𝑢

2 − 휁)𝑟(𝑢), 
 

where 

 𝑎0 =
𝛼1/4

√2
[
𝑒−𝑎𝑠𝑡2

2

√ℎ2
″(𝑡2)

+
𝑒−𝑎𝑠𝑡1

2

√ℎ2
″(𝑡1)

],  

and 
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 𝑏0 = −
𝛼−1/4

√2
[
𝑒−𝑎𝑠𝑡2

2

√ℎ2
″(𝑡2)

−
𝑒−𝑎𝑠𝑡1

2

√ℎ2
″(𝑡1)

].  

 

Thus, (23) is written as 

 

 𝑒𝑖|𝜉|𝛽𝑒−𝑎𝑠{𝑎0 ∫ 𝑒𝑖|𝜉|(𝑢
3/3−𝛼𝑢)𝑝(𝑢)

∞

−∞

𝑑𝑢 + 𝑏0 ∫ 𝑢𝑒𝑖|𝜉|(𝑢
3/3−𝛼𝑢)

∞

−∞

𝑑𝑢 + 𝐼(|𝜉|, 𝛼)}, (24) 

 

where 

 𝐼(|𝜉|, 𝛼) = ∫(𝑢2 − 휁)

∞

−∞

𝑒𝑖|𝜉|(𝑢
3/3−𝛼𝑢)𝑟(𝑢)𝑑𝑢.  

After applying the same process for 𝐼(|𝜉|, 𝛼) it may be seen that the asymptotic contribution of 𝐼(|𝜉|, 𝛼) 
is negligible in comparison to the integrals in (24). Therefore, the asymptotic expansion of the integral 

given in (20) takes the form 

 

 
∫
sin (𝑘|𝜉|)sin (𝑘√𝑘 − 1|𝜉|𝜇∗)

√𝑘 − 1

∞

1

𝑒−𝑎𝑠𝑘𝑑𝑘~𝑒−𝑎𝑠Re{𝑒𝑖|𝜉|𝛽(2𝜋𝑎0|𝜉|
−1/3Ai(−|𝜉|2/3𝛼) −

−𝑖2𝜋𝑏0|𝜉|
−2/3Ai′(−|𝜉|2/3𝛼))}.

  

 

where 𝐴𝑖(𝑥) is the Airy function, for more details see [16]. 

 

The resulting longitudinal displacement 𝑢1 is then given by 

 

 
𝑢1 ∼ −

𝐴𝑃휀𝑐R
2sgn(𝜉)𝑒−𝑎𝑠

𝑏ℎ𝑐2
2 Re{𝑒𝑖|𝜉|𝛽(𝑎0|𝜉|

−1/3Ai(−|𝜉|2/3𝛼)

− 𝑖𝑏0|𝜉|
−2/3Ai′(−|𝜉|2/3𝛼))} . 

 

 

Obtaining the asymptotic expansion for the transverse displacement follows the same lines presented in 

detail for the longitudinal displacement, and therefore it is found as 

 

 
𝑢2 ∼ −

𝐴𝑃휀2𝑐R
2sgn(휂)𝑒−𝑎𝑠

𝑏ℎ𝑐2
2 Re {𝑒𝑖|𝜉|𝛽 (𝑎1|𝜉|

−1/3Ai(−|𝜉|2/3𝛼)

− 𝑖𝑏1|𝜉|
−2/3Ai′(−|𝜉|2/3𝛼))}, 

 

 

where 

 𝑎1 =
𝛼1/4

√2
[
𝑡2𝑒

−𝑎𝑠𝑡2
2

√ℎ2
″(𝑡2)

+
𝑡1𝑒

−𝑎𝑠𝑡1
2

√ℎ2
″(𝑡1)

],  

 

and 

 𝑏1 = −
𝛼−1/4

√2
[
𝑡2𝑒

−𝑎𝑠𝑡2
2

√ℎ2
″(𝑡2)

−
𝑡1𝑒

−𝑎𝑠𝑡1
2

√ℎ2
″(𝑡1)

].  

The longitudinal displacement 𝑈1 is scaled, similar as in Section 2, and written as 
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 𝑈1 =
𝑏ℎ𝑐2

2

𝐴𝑃𝑐𝑅
2휀
 .  

 

Figures 4 and 5 illustrate the comparisons of the exact and asymptotic displacements 𝑈1 for the 

longitudinal and transverse cross sectional profiles, respectively. As before, the solid lines correspond 

to exact solutions and the dashed lines are the corresponding approximate solutions. Similar 

observations considered in the case of super Rayleigh regime apply here too, in that the smoothened 

displacement profiles require the values of the parameter 𝑎𝑠 to be large. However, care must be taken 

in the choice of the mentioned parameter taking into account the validity region (Mach cones) of the 

obtained asymptotic solutions. Therefore, in the graphs, although we see a diminished displacement 

profile in 𝑈1 for the particular value 𝑎𝑠 = 1, the exponential factor in the asymptotic solution as well as 

the domain of validity of the approximation causes a discrepancy for smaller values of the variable 휂. 

 

 

 

 

 Figure 4. Sub-Rayleigh displacement 𝑈1 versus 휂 at 𝜉 = 10.  
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 Figure 5. Sub-Rayleigh displacement 𝑈1 versus 𝜉 at 휂 = 5.  
 

4. CONCLUSION 

 

In the present paper, the response of a 3D coated elastic half-space under the action of a distributed 

moving load is investigated. The displacement field is obtained through the application of an asymptotic 

model developed earlier by the authors. This approach reduces the 3D problem to a pair of 2D plain 

problems in the wave potentials, and therefore enables a convenient physical analysis of the original 

problem. The obtained approximate solutions for the displacement fields are expressed in terms of 

elementary functions differing from the known numerical solutions or solutions in terms of implicit 

integrals. This fact makes it possible to further examine the required elastic fields of the considered 

problem. The accuracy of the approximate solutions is presented by means of graphs giving comparisons 

of the asymptotic and exact solutions. It is clearly seen in the Figures that the effect of the coating and/or 

the width of the distributed load play a similar role reducing the singularity under the load encountered 

generally in point load problems. The parameter 𝑎𝑆 has a two-fold role: depending on the desired 

smoothness of the displacement field, either the thickness of the coating or the width of the distributed 

load may be altered, i.e. for a very thin layer, a larger width of the load might be chosen; if the layer 

thickness is large, even a point load may give smoothened results. Obviously, such choices are dictated 

by real-life applications and adjustments might be made according to the needs of the industry. 
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