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Wildfire susceptibility mapping can be affected by several factors. One of 

the most influential factors is inventory data, its extent, format, and 

reliability. This study aims to evaluate if the Support Vector Machine (SVM) 

has the capability to identify wildfire susceptible regions under limited 

training data conditions. To test this hypothesis wildfires in Mugla province 

in the Eastern Mediterranean Region of Turkey have been selected as a pilot 

study area. The wildfire started in Mugla, on 29 July 2021, that considerably 

affected the residential areas, animals, and vast areas of forests. Fourteen 

wildfire influential variables have been used in the analysis as independent 

variables. Accuracy assessment has been implemented using the Area Under 

the Curve (AUC) technique. Success rate and prediction rates were (91.42%) 

and (87.69%) respectively. According to the prediction rate, SVM 

successfully recognized other burnt areas as the most susceptible regions. 
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M A K A L E  B İ L G İ S İ
Ö Z E T

Makale Tarihleri 
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Kabul : 13 Ekim 2022 

Orman yangını duyarlılık haritalaması çeşitli faktörlerden etkilenebilir. En 

etkili faktörlerden biri envanter verileri, kapsamı, biçimi ve güvenilirliğidir. 

Bu çalışma, Support Vector Machine’in (SVM) sınırlı eğitim verisi koşulları 

altında orman yangınına duyarlı alanları tespit etme ve haritalama 

kabiliyetine sahip olup olmadığını değerlendirmeyi amaçlamaktadır. Bu 

hipotezi test etmek için Türkiye'nin Doğu Akdeniz Bölgesi'nde yer alan 

Muğla ilindeki orman yangınları pilot çalışma alanı olarak seçilmiştir. 

Bahsedilen orman yangını Muğla'da 29 Temmuz 2021'de başlamış ve 

yerleşim alanlarını, hayvanları ve geniş ormanlık alanları önemli ölçüde 

etkilemiştir. Bağımsız değişkenler olarak on dört orman yangını etkili 

değişken analizinde kullanılmıştır. Doğruluk değerlendirmesi için Area 

Under thr Curve (AUC) tekniği kullanılarak uygulama yapılmıştır. Başarı 

oranı ve tahmin oranları sırasıyla (%91.42) ve (%87.69)’dir. Tahmin oranına 

göre, SVM diğer yanık alanları en hassas bölgeler olarak başarıyla tanımladı. 
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1. INTRODUCTION  

Wildfire is among the most harmful natural disasters affecting both lives and properties around the world [1]. 

Global temperature rise, reduction in precipitation, and human activities led to an increase in wildfire occurrences 

[2; 3]. Natural hazards usually occur under specific conditions and in partially predicted areas [4]. Therefore, they 

can be studied and prevented up to some levels [5]. Remote Sensing (RS) technology and Geographical 

Information Systems (GIS) are wonderful systems to monitor and analyze wildfires over large areas in a timely 

and cost-effective manner [6]. Studying the wildfire can be done from different aspects. Some of the most popular 

studies are related to wildfire susceptibility [7], hazard [8], vulnerability [9], risk [10] and etc. Wildfire 

susceptibility considers a basis for other evaluations. In the natural hazard scope, a susceptibility map recognizes 

regions that are more or less disposed to a potential wildfire occurrence using low to high possibility values/classes 

[11]. In order to perform wildfire susceptibility, two main datasets of previous wildfire extent (dependent variable) 

and a set of conditioning factors (independent variables) are essential [12]. Inventory data, conditioning factors, 

and the used method, each play an important role in the precision and reliability of the results. Therefore, they 

have to be selected carefully. This research focuses on the role of wildfire inventory. In some cases, an inventory 

extent might be limited due to non-accessibility to all affected areas. Therefore, the hypothesis is that performing 

a robust method along with an adequate conditioning factors dataset could compensate for the limitation of wildfire 

inventory data. 

In summer 2021, due to the severe heatwave and dry weather, Turkey faced its worst wildfires in years [13]. 

During that summer around 130 wildfires have been detected in 30 provinces [14]. Wildfires mostly occurred 

along the Mediterranean and the Aegean Sea coasts. According to the European Forest Fire Information Service, 

about 136,000 hectares have burned which was about three times the average for an entire year [13]. Fortunately, 

a complete set of inventories is available for this region. Therefore, a small portion of this dataset was used for 

training and performing the wildfire susceptibility modeling. The rest of the inventory has been kept and used for 

accuracy assessment. The aim was to examine whether SVM can predict other susceptible areas or not. There are 

a large number of methods available in order to perform wildfire susceptibility mapping. They can be grouped into 

qualitative and quantitative methods [15]. Qualitative methods like Analytical Hierarchy Process (AHP) [9] and 

fuzzy logic have been utilized by several researchers to assign weight to wildfire conditioning factors according 

to their significance in wildfire occurrence. Such techniques are mostly based on experts’ knowledge that in some 

cases might contain errors. 

Quantitative techniques predict wildfire susceptibility regions using mathematical assessment of the data [16]. In 

addition, the subjectivity of qualitative approaches is not included in quantitative techniques. Logistic Regression 

(LR) [17], Frequency Ratio (FR) [18], Evidential Belief Function (EBF) [19], the Weight of Evidence (WOE) 

[18], Artificial Neural Network (ANN) [20], etc. are a few examples of quantitative methods. Among the broad 

range of quantitative methods, Machine Learning (ML) techniques are widely used in natural hazard studies [12; 

21]. They recognize and model non-linear correlations among wildfire and their relevant conditioning factors. 

Wildfire inventory is an essential factor in ML analysis. Compared to qualitative techniques like AHP, the 

proficiency of ML methods is that they perform more reliable and faster outcomes [22]. The undeniable efficiency 

of ML in natural hazard solutions motivated us to test the hypothesis of this study using this technique. Among all 

ML methods, Support Vector Machine (SVM) [23] has been selected to find the association between wildfire 

conditioning factors and inventory data. 

2. STUDY AREA 

Mugla province has been chosen as the study area. It is between 27◦13′30′′ and 29◦41′00′′W longitude and 

36◦18′22′′ and 37◦35′10′′N latitude. Mugla is situated at the intersection between the Aegean and the Mediterranean 

Sea. Pine honey production makes the forests of this region so valuable. According to Forest General Directorate 

(https://www.ogm.gov.tr/tr), 9% of Turkey's wildfires have occurred in Mugla province [24]. Every year around 

500 ha of its forests has been destroyed. Mugla has a warm temperature and rain falls mostly in the winter. The 

study area's location along with a few wildfire figures that occurred in 2021 are represented in Figure 1. 
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Figure 1. Mugla province and wildfire inventory. 

3. METHODOLOGY 

3.1. Data Used 

As has been mentioned in the introduction section, wildfire inventory and conditioning factors are two essential 

elements in wildfire susceptibility mapping. Both dataset details and their sources have been listed in Table I. The 

wildfire inventory map (summer 2021 wildfires) in Mugla has been received from Fire Information for Resource 

Management System Website (FIRMS). Selected areas in Figure 2 represents the portion of the inventory map 

which was utilized for training purpose, and the rest of the inventory points were used in order to test the outcomes. 
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Figure 2. Training and testing points. 

Wildfire conditioning factors have been chosen according to the literature. Altitude, slope, aspect, curvature, TWI, 

TRI, TPI, precipitation, NDVI, wind, distance to rivers, distance to reads, temperature, and LULC have been used 

as the wildfire's most influential factors in the analysis (Figure 3). Altitude has an influence on the wind behavior 

and climatic conditions such as precipitation and temperature [25]. Altitude data was received with a 30 m 

resolution. Subsequently, other wildfire conditioning factors were resampled to the same spatial resolution. The 

direction of fire spread and fire rate is controlled by the slope factor [26]. In addition, the slope has a significant 

role in wind speed. Higher slopes cause faster wildfire spread. Aspect which shows the slope faces directions 

affects the amount of sunlight received [27]. Knowing the slope aspect, the temperature and humidity of the region 

can be predicted. For instance, the southern faces received more sunlight compared to the northern faces. 
Therefore, they are more prone to wildfires as they have the longest exposure time to sunlight.  Meaning that fuels 

on the southern faces dry faster compared to other aspects of the region. The morphology of topography is 

represented by curvature [28]. Positive and negative curvatures show that the surface is convex and concave at 

that cell respectively. Also, a value of zero shows that the surface is flat at that cell. In wildfire studies the wetness 

of the ground is important, therefore, TWI has been measured as well, which is calculated based on (1) [29]: 

𝑇𝑊𝐼 =  𝑙𝑛
𝛼

𝑡𝑎𝑛 𝛽
                                                                                                                                                      (1) 

where α is the cumulative up slope area and tan β is the slope angle at the point. TRI is another wildfire influential 

factor. TRI is the ratio of the variable surface area to the planimetric surface area that is given as (2): 

𝑇𝑅𝐼 =
(𝐴𝑟𝑒𝑎𝜈−𝐴𝑟𝑒𝑎Ι)

(𝐴𝑟𝑒𝑎Ρ−𝐴𝑟𝑒𝑎Ι)
                  (2)  

The higher the TRI values the greater the topographic roughness. This factor can range from 1 to 800. Value 1 

represents the completely flat area [30]. Precipitation is another wildfire influential factor that has a great impact 

on fuel moisture and soil moisture. NDVI factor has been used in order to measure the vegetation cover. It was 

prepared using Landsat-8 images according to (3): 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅

𝑁𝐼𝑅+𝑅
                                                                                                                                                      (3) 

where NIR and R values are the infrared and red bands, respectively. Another critical conditioning factor is wind. 

It has a great effect on the spread and direction of the wildfire [32]. Therefore, it is necessary to consider it as one 

of the conditioning factors as well. Rivers and roads are liner features that act as a barrier to wildfire spread. 

Therefore, the distance to these factors has been measured and used in the analysis. Another factor that has an 

impact on fuel availability and condition is the temperature [23]. Therefore, this factor also has been included in 
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the wildfire susceptibility assessment. Wildfires act differently in different types of forests [33]. For instance, shrub 

species and flammable forest vegetation types increase the ignition risk [34]. Dense and dry forests are more 

susceptible to wildfire occurrences compared to moist vegetated areas [35].  

Table 1. The sources of data used.  

Data Sources 

Forest fire inventories Fire Information for Resource Management System Website  

https://firms.modaps.eosdis.nasa.gov/ 

Altitude  Digital Elevation Model (DEM) from Earthdata Website  

https://www.earthdata.nasa.gov/    

Slope,  

Aspect,  

Curvature, 

TWI, 

TRI, 

TPI, 

Derived from Digital Elevation Model (DEM) 

Precipitation WorldClim Website  

https://www.worldclim.org/ 

NDVI Landsat 8 

Wind  https://globalwindatlas.info/area/Australia 

 

Distance to rivers https://land.copernicus.eu/imagery-in-situ  

Distance to roads  OpenStreetMap 

https://www.openstreetmap.org/  

Temperature  WorldClim Website  

https://www.worldclim.org/ 

LULC CORINE  

https://land.copernicus.eu/pan-european/corine-land-cover   

 

 

https://firms.modaps.eosdis.nasa.gov/
https://www.earthdata.nasa.gov/
https://www.worldclim.org/
https://globalwindatlas.info/area/Australia
https://land.copernicus.eu/imagery-in-situ
https://www.openstreetmap.org/
https://www.worldclim.org/
https://land.copernicus.eu/pan-european/corine-land-cover
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Figure 3. Wildfire conditioning factors. 

3.2. Support Vector Machine (SVM) 

In the literature, the SVM method has been used to solve complex classification and regression problems in flood 

[36], landslide [37], wildfire [38], earthquake [39], etc. domains. It is a supervised ML method that performs based 

on statistical learning theory [40]. SVM reforms the nonlinear world into the linear using hyper-plane which makes 

it simple and processable [41]. The aforementioned data transformation will be done using a mathematical function 

called kernel function [42]. SVM is able to transform the original input into a high-dimensional feature space. A 

separating hyper-plane is generated in the original space of n coordinates (xi parameters in vector x) between the 

points of two distinct classes. SVM finds a maximum margin of separation between the classes and builds a 

classification hyper-plane in the center of the maximum margin [43]. The point will be classified as +1, in the case 

that it is overhead the hyper-plane and if not, it will be classified as -1. Subsequently, new data will be grouped 

according to its characteristics. The closest training points to the hyperplane are called support vectors.  

For instance, consider a training dataset of instance-label pairs (𝑥𝑖 , 𝑦𝑖) with 𝑥𝑖 ∈  𝑅𝑛, 𝑦𝑖 ∈   , and 𝑖 =
1, … , 𝑚. In the present circumstance of wildfire susceptibility, 𝑥 is a vector of input space that contains altitude, 

slope, aspect, curvature, TWI, TRI, TPI, precipitation, NDVI, wind, distance to rivers, distance to reads, 

temperature, and LULC. The two classes  specify wildfire pixels and non-wildfire pixels. Recognizing the 

optimal separating hyper-plane is the goal of SVM, which can separate the two classes into wildfire and non-

wildfire  from the training dataset. For the case of linearly separable data, a separating hyper-plane can be 

defined as (4): 

𝑦𝑖 (𝑤. 𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖,                                                                                                                                        (4) 

where w is a coefficient vector that defines the orientation of the hyper-plane in the feature space, b is the offset 

of the hyper-plane from the origin, and 𝜉𝑖 is the positive slack variables. A comprehensive description of SVM 

and its internal calculations are presented in Noble [44], Suthaharan [45], Meyer et al. [46], etc. 

3.3. Area Under the Curve (AUC) 

Among a variety of accuracy assessment techniques, AUC is the most popular technique in natural hazard studies 

which provides the prediction and success rates [18; 47; 48]. The proficiency of AUC in evaluating the 

susceptibility mapping outcomes has been assessed in the literature. AUC evaluates the existence of the known 
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natural hazard inventory data in the derived susceptibility map. Firstly, the wildfire susceptibility map was divided 

into equal intervals and hierarchically ranked from minimum to maximum. The calculated values of all cells were 

sorted into descending order, and cell values were split into 100 classes with 1% accumulation intervals. The 

“tabulate area” tool in ArcGIS was utilized to examine the existence of wildfire in each class. Finally, the success 

curve and prediction curve indicated the percentage of wildfires in each interval. 

4. RESULTS AND DISCUSSION 

SVM has been applied and a wildfire susceptibility map has been generated. The correlation between wildfire 

inventory and conditioning factors was evaluated using SVM. The wildfire inventory map (summer 2021 

wildfires) in Mugla has been received from FIRMS. A small portion of inventory data (30%) was used to train 

SVM and 70% was utilized for accuracy assessment. The reason is to test if SVM was able to perform accurately 

in case of limited training data. Regarding the conditioning factors, altitude, slope, aspect, curvature, TWI, TRI, 

TPI, precipitation, NDVI, wind, distance to rivers, distance to reads, temperature, and LULC have been used. 

Altitude was derived from DEM downloaded from “Earthdata Website” which ranged from 0 to 3001 meters. 

Other topographical factors of slope (0-76.60°), aspect (nine slope directions), curvature (concave, flat, and 

convex), TWI (2-25), TRI (0-95) and TPI (-119-105) were derived from DEM. WorldClim Website was used to 

extract the annual precipitation (3-20) in the study area. NDVI factor (-0.3-0.5) was calculated from Landsat 

imagery. Wind factor (1-11 m/s) was downloaded from the global wind atlas website. Distance to rivers (0-

22255m) and roads (0-32265) were calculated using the Euclidean distance tool in ArcGIS. The temperature (13-

28C) factor was received from WorldClim Website and detailed LULC with 35 categories was received from 

CORINE Website. 

Figure 4 shows the wildfire susceptibility map for Mugla province. It illustrates the susceptibility of wildfire 

incidents according to the related wildfire conditioning variables. The quantile classification technique has been 

used to group the wildfire susceptibility maps into classes of “very high”, “high”, “moderate”, “low”, and “very 

low”. Figure also represents the inventory point around the region. Interestingly, inventory points are mostly placed 

in “high” and “very high”. In order to prove the success of the SVM in detecting susceptible areas, AUC has been 

applied. Success rate and prediction rates were (91.42%) and (87.69%) respectively. Hence, visually and 

mathematically it has been proven that SVM can undertake wildfire susceptibility mapping under limited training 

data conditions with high accuracy. As can be seen in figure, the most susceptible areas are the regions with high 

slope degrees, high temperature, less precipitation, and higher wind speed. These areas need to be carefully 

monitored and managed for future planning and disaster management. 

 
Figure 4. Wildfire susceptibility map. 
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5. CONCLUSION 

The wildfire susceptibility map helps several sectors in order to study, plan, manage and mitigate this disaster. It 

can considerably contribute to detecting the susceptible zones and subsequently prevent possible damage in the 

future. RS and GIS technologies proved to be promising tools in the natural hazard studies domain. This study 

performed wildfire susceptibility mapping using small inventory data and tested the reliability of the outcomes 

using the actual inventory which has not been used in training the method. The aim was to examine if SVM is 

capable to provide accurate susceptibility analysis in the case of lack of training.  In some regions, there is limited 

access to the affected areas, therefore, the inventory dataset will not be as accurate as possible. The susceptibility 

mapping has been performed and the study area has been classified into different susceptible regions. 

Subsequently, the AUC method has been applied and the prediction rate of 87.69% has been achieved. It has been 

concluded that a combination of relevant and accurate conditioning factors datasets with the ML method can 

compensate for the limited inventory dataset in similar cases. 
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