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Abstract
The energy momentum localization problem is one of the old, very interesting and unsolved puzzels in
gravitational theories. Recently this significant problem has been extended to f{R)-gravity which is one of the
famous modified theories gravity. In the present work, we consider generalized form of the Landau-Liftshitz
energy-momentum relation in order to calculate energy distribution associated with the Bianchi VI(A) type
space-time. Results were discussed numerically and specified by using of some well-known f'(R)-gravity models
given in literature.
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Kiitle Cekimsel f{R) Kuraminda Bianchi-Type VI(A) Evreni
icin Yerellesmis Enerji

Ozet
Enerji momentum yerellesme problemi oldukga eski ilging ve halen ¢6ziim bekleyen kiitle-¢ekim kuramlari
bulmacasidir. Son zamanlarda bu problem degistirilmis kiitle-gekim kuramlarina genisletilmistir. Sunulan bu
¢aligmada Bianchi VI(A) tipi uzay-zaman modeline eslik eden enerji dagilimimi hesaplamak igin genellestirilmis
Landau-Liftshitz enerji tanimi g6z 6niinde bulunduruldu. Sonrasinda, sonuglar niimerik olarak analiz edildi. Ek
olarak, literatiirde iyi bilinen baz1 f{R)-gravite modelleri igin elde edilen sonuglar 6zel durumlara indirgendi.

Anahtar Kelimeler: Bianchi-tipi VI(A) uzay zaman, enerji yerellesmesi, modifiye kiitle ¢ekim kurami

INTRODUCTION Recently, modified gravitation theories

Gravitational energy and momentum especially AR) gravity which extends the general
localization problem is one of the most popular theory of relativity have also been taken into
puzzles in modern gravitation theories and it still  account by many scientists to discuss the famous
remains unsolved. Einstein (1915) is known as  gravitational puzzle again (Capozziello, 2002
the first scientist who worked on energy- Carroll et al., 2004; Starobinsky, 2007; Sharif
momentum pseudo-tensors, later different energy and Farasat, 2009; Hendi et al., 2014). Making
momentum prescriptions such as Tolman (1934), use of the generalized Landau-Liftshitz
Papapetrou (1948), Landau-Liftshitz (1951), prescription for the Schwarzschild-de Sitter
Bergman and Thomson (1953) and Weinberg universe, Multamdki et al. (2008) calculated
(1972), have followed his formulation. All of the energy distribution for some well-known AR)
energy-momentum descriptions except for the gravity models including constant curvature
Megller (1958) formulation are restricted to make scalar. Later, Sharif and Farasat (2010), using
computations in cartesian coordinates. In 1990, generalized Landau-Liftshitz energy-momentum
Virbhadra (1990) and Rosen and his prescription, calculated the energy density of
collaborators (1993) re-opened the energy- plane symmetric and cosmic string space-time
momentum localization problem and after those models for some famous fR) gravity choices.
pioneering papers great numbers of work have Next, Amir and Naheed (2013) considered a
been prepared by considering different energy spatially homogeneous rotating space-time
momentum complexes and space-time models solution of f{R) gravity to obtain Landau-Liftshitz
(Xulu, 2000; Vagenas, 2003; Aydogdu et al., energy density. Moreover, using some well-
2006; Salti and Aydogdu, 2006). known f{R) theory suggestions, Salti et al. (2013)
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also discussed energy-momentum localization
problem for Godel-Type metrics. The above
studies motivate to discuss energy-momentum
problem for another background in f{R)-gravity
and extend those works.

The f{R)-gravity is defined by modifying the
Einstein-Hilbert action as given below

= — [ J=9fR)d*x + Sy, (M)

here k = 8mG, g represents the determinant of
the metric tensor, f{R) denotes a general function
of Ricci scalar and S, is the matter part of action
(Carrol et al., 2004). It is known that the Ricci
curvature scalar is given by:

R = g"'Ry, 2

where R, is the Ricci tensor which is related

with the Riemann tensor, i.e. Ry, = Rlﬁv,
Rz = 0y = 0y + Lo LYy = AL, (3)
and A 1o shows the Christoffel symbols:
1
F;L)la = Eglﬁ(acguﬁ + augoﬁ - aBgua)' 4)

Varying Equation 1 with respect to the
metric tensor yields the following field equation

1
F(R)Ruv - Ef(R)guv
—[V,Vy — 9w Vo V¥ F (R) = kT,

Here, it has been defined that F(R) = %&? and

V, represents the covariant derivative. After
construction for the vacuum case, i.e. 7 = 0, the
corresponding field equation transforms to the
following form

F(R)R —2f(R) + 3V,V*F(R) = 0. 6)
It can be easily seen that for any constant
curvature scalar Equation 6 becomes

F(Ro)Ry — 2f (Ro) =0, (7

®)
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here we have used that R = R, = constant. In
the non-vacuum case, the constant curvature
scalar condition is described by
F(Ro)Ro — 2f (Ro) = «T. ®)

The paper is organized as follows. In the
second section, we give a brief information about
the Landau-Liftshitz distribution in f{R) gravity
for the Bianchi-VI(A) type space-time. Next, in
the third section, we calculate energy density
Landau-Liftshitz definition for some specific f{R)
models. Finally, we devote the last section to
discussions.

GENERALIZED LANDAU-LIFTSHITZ
PRESCRIPTION IN BIANCHI-TYPE VI(A)
SPACETIME

The generalized Landau-Liftshitz
formulation is given by (Multaméki et al., 2008)

T = F(RO)T,’fv
Z[F(Ro)Ro — f(Ro)] 5 (g**x¥ — gH'x¥), (9)

where 7/} denotes the original Landau-Lifshitz
energy-momentum complex written in general
relativity and it is defined by the following
relation

1y, = (=) (T +t)) (10)
with
tuv —
2% [(2 ap }/6 FLSF[?)/ - ngrga)(g”“gvﬁ -
g‘“’ @By 4 g““ gﬁy(rvargy + T3, I35 —
u

I, sTo B — ) + gmgﬂy(ragrﬁy + rﬁyr
[sTap — aﬁrya) +9%% g7° (T Ts — T 75)]'

(11)

Considering 00 -component of Equation 9
gives energy density associated with the sellected
universe model and it can be written as given
below (Multamaéki et al., 2008).

790 = F(Ry)TY?

—[F(Ro)Ro — f(Ro)]<axlg°°xi +3¢%).  (12)
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In the canonical cartesian coordinates, the
homogenous Bianchi-Type VI(A) spacetime is
defined by the following line-element (Fagundes,
1992):

ds? = dt? — dx? — eZ(A—l)xdyZ

—82(A+1)de2, (13)
where A is a constant with 0<A<1 .
Considering Equation 13 the metric tensor gy,
its inverse form g#V and ,/—g for the Bianchi-

Type VI(A) model can be written, respectively,
as:

guv — (1’ -1, _eZ(A—l)x’ —62(A+1)x), (14)
guv — (1’ -1, _eZ(I—A)x’ —6_2(A+1)x), (15)
J—g=¢e*. (16)

Next, using Equation 4 the nonvanishing
component of Christoffel symbols are calculated
as

3, = (A—1)e2A-bx,
I3 = —(4 + 1)e2@+Dx,
=T =(MA-1,
and using the above results in to the Equaion 3,
the surviving components of Ricci tensor become

Rll = _Z(AZ + 1),

Ry, = 24(1 — A)e?A4-1x,

Ry3 = —2A(1 + A)e?(A+Dx, (18)

Additionally, the constant value of Ricci scalar in
Equation 2 is
R=Ry,=6A4%+2. (19)

Making use of above calculations in to the

Equation 11 , the non-vanishing components of
uv

t;, are found as

1
tip = ~- 54%),

1
tif = ~(1- 4%),
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22 1 [(1 + A)Z]

x | e2(a-Dx
1[ (4A-1)?
tgg = ez(A+1)x]' (20)

Also, the non-zero components of Tf: in the
Equations 10 are calculated as:

2 4Ax
00 _ 84ce

T = T

2
lef — ;(A + 1)2e2(A+1)x’
2

= “(A- 1)2e2(A-Dx,

e2y)

Consequently, in the f{R)-gravity, one can easily
write down Equation 21 in to the Equation 9, the
generalized form of Landau-Liftshitz energy
distribution as given below

700 —
— = {[RoF (Ro) — f(Ro)] — 164%e**F(R,)},

(22)

and it is also calculated

. 1
700 — a[]C(RO) —RoF(RyY], (i=123),

2
i = ﬁ [f(Ro) - RoF(Ro)]'
e 2(1-A)x
722 = T{[Z + (1 - A)x]f(Roy)

+[6(A + 1)2e*4* + (Ax — x — 2)Ry]F(Ry)},
e—2(1+A)x

T{[Z — (1 + Ax]f (Ro)
+[6(A — 1)%e* ™ + (Ax + x — 2)Ry]F(Ry)}.
23

33 =

ENERGY IN SPECIFIC f{R) MODELS

There are many suggested models in the
f(R) theory of gravity (Capozziello and
Laurentis, 2011). In this section of study, we
mainly consider five different well-known
models to calculate energy momentum
distribution associated with Bianchi-Tpe VI(A)
spacetime exactly.

The first
Faulkner et al.,
polynomial form:

model (Starobinsky,
2007) is described

1980;
in a

fist(R) = R + §R?, (24)
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where & denotes a positive real number.
The second model (Faulkner et al., 2007) is
given by

fona(®) =R -, 25)

where € is a constant parameter. This model is
known also as the dark energy model of f(R)-
gravity.

The next model (Nojiri and Odintsov, 2007)
is defined as
fatn(R) =R —pR™' — qR?, (26)
with p and q are constant.

Another one is given by the following
definition (Nojiri and Odintsov, 2004):

fun(®) = R = pln (2) + (—1)"1qR™

‘ 27)
Here n represents an integer and p, q, o are
constant parameters.

The final model is known as the
chameleon model and it is given by (Nojiri and
Odintsov, 2007).

2 (R\"
fen®) =R—(1-m2(5) —28, (8
where A denotes the famous cosmological
constant, m shows an integer and A is a constant
parameter.
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For suitable choices of above constants, all
of the f(R) models mentioned above can be
reduced to the general relativity. Now,
considering the above f(R) gravity models and
Equation 22, one can obtain the following energy
densities:

00 _
Tist =

%{Z(SAZ +1)2¢

—8A4%e* [4£(34% +1) + 1]}, (29)
1
00 _ B
Tnd = 2 Ga F )2
+A%[3e* — 16e* (342 + 1)? + 4e*e4¥]},
(30)

00 _ 1 2 A A2, 4Ax
Tsth = Sz in)? {p(1+ 347 — 44%e™*¥) +

16Ae**(34% + 1)2[4q(3A% + 1) — 1] —

4q(3A2 + 1)4} 31)
1
dn =5 A=D1 —m)(64* +2)" — p
n 2 n
—16A4%e%Ax |1 — p+2nq(-1)"(34°+1) :
2(3A2+1)—pln(6A€T+2)
(32)

1
w8 = 5 {20 — 164%4

-(%)

™ 22(m-1)[1-m+A42(3—3m+8me*4 )]
34%2+1

6A%+2
/12

}
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Figure

1. The energy density vs. x for the first, second and fifth f(R) models, respectively. Auxiliary

parametersare: A =05, =k =1=¢=A=A=1landm =2
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Figure 2. The energy density with respect to x coordinate for the third and fourth models of f(R)-gravity.
Auxiliary parameters are: A = 0.5,k =p=q=0=1andn = 20

In the Figure 1, it is seen that energy
densities have negative values and increase with
x direction for the first, second and fifth f(R)
specific cases. It is obviously seen that from the
Figure 2 that energy densities take positive values
and increase exponentially.

CONCLUSION

Considering Bianchi-Type VI(A) spacetime
representation and some popular models of f(R)
gravity including a constant Ricci curvature
scalar, we have mainly evaluated the Landau-
Liftshitz energy distribution. All of the
corresponding calculations have been performed
in cartesian coordinates. We have found, in f(R)
gravity, the energy distribution associated with
the Bianchi-Type VI(A) model as given below:

700 —

——{[RoF (Ro) — f(Ro)] — 16A%e** F(Ry)}.
(34)

Assuming A, =0, one can see that
energy and momentum distributions transform
into the following forms:

2§
Toer(a=0) = Py (35)
4
Tond(a=o) = E—K' (36)
-4
T???h(A:O) = _pZKq' 37
00 1 n
Tath(a=0) = ﬂ[(_z) q(1—mn)
2
—p+pin(2)] (38)

Tg?h(A:O) = 7K [2A

+2M(1 —m)2A2(1 — m)]. (39)
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It is seen that each energy distributions are
equal to a constant. Therefore, it can be
generalized that

00 —
T4l (a=0) = constant (40)

On the other hand, in case of A = A4y =
1, the energy momentum distributions for all
models do not have constant values as expected.

Moreover, when we take f(R) = R, in Equation
22 it can be concluded that

799 = —%Azew. (41)
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