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1Department of Electronics & Communication Technology, National Defence University, Balıkesir, Turkey
2 Department of Electrical and Electronics Engineering, Eskişehir Technical University, Eskişehir, Turkey
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Abstract—Smart grid (SG) and its specific structures are widely taken notice of by many researchers studying power systems. This
paper compares and analyzes the performance of five machine learning approaches combined with principal component analysis
(PCA) to do the task of false data injection attack (FDIA) detection of an SG. For this purpose, PCA method combinations are
presented and tested by using labeled data. Phasor measurement unit (PMU) data is a critical source of monitoring of progress
and performance of an SG system. PMUs are perniciously influenced by FDIAs trying to manipulate the measurements without
being noticed by the bad data detector (BDD) of the SG system. In one sense, the selected PMU data consisting of various
features which play an important role in the control system of SG is used to analyze the characteristics of the SG system. The
results show that FDIA detection is effectively accomplished. The efficiency of the proposed hybrid PCA-based various machine
learning approaches is illustrated on a real measured PMU dataset. As empirical results show, Random Forest (RF) with PCA
achieves the entire accuracy of 95% in FDIA detection.

Keywords—False data injection attack (FDIA), Phasor measurement unit (PMU), Principle component analysis (PCA), Smart grid

(SG)

1. Introduction

1.1. Motivation and Background

The rising electricity demands, along with some
attempts by electricity sellers to compete in the elec-
tricity markets, forced them to operate the electricity
grids close to their physical limits. Thus, these
systems are prone to serious contingencies causing
serious faults [1]. SGs are advanced digital two-way
power flow electrical networks being sustainable,
resilient, and adaptive. They are also capable of

self-healing and have good foresight for state es-
timation under various uncertainties. These specific
properties depend on advanced tools and networks
such as wide area networks, neighborhood area
networks, home access networks, local area net-
works, wide area measurement systems (WAMS),
PMUs, intelligent electronic devices, and, more [2].
However, these advanced structures of SGs are in
danger because of FDIAs against these layers. Well-
coordinated FDIAs are launched by unauthorized
access. They can intrude into various cyber layers
of the SG systems, ranging from sensing and mon-
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itoring devices such as PMUs [3].

PMUs are an essential measurable unit of WAMS
and are deployed in the SG communication topology
[4]. PMUs are programmable to store data trig-
gered by over/under frequency, current, or voltage
events. Data collected from PMUs are transmitted
to phasor data concentrators (PDCs). The PDC
correlates all data into a single dataset. The dataset
is streamed to the third layer that is WAMS via
the applications data buffer. WAMS builds upon
PMUs and has a powerful interconnection between
communication links. WAMS is successfully con-
stituted as advanced control and monitoring infras-
tructure. Comprehensive research is required to in-
dicate advantages in synchrophasor measurements,
miscellaneous applications of PMUs, a multitude
of challenges, designing of PMU structure, place-
ments of PMUs, and a variety of WAMS multi-
functionalities. These functionalities and design is-
sues of PMUs and WAMS should be considered
from local and SG perspectives. Furthermore, IEEE
standards for installation, testing, calibration, and
synchronization of PMUs and PDC requirements are
clarified to guide researchers [5], [6]. They also indi-
cate the functional and performance characteristics
of typical PMUs and PDCs.

1.2. Relevant Literature

An accurate state estimation for SGs equipped
with PMU is a challenging issue [7]. Information
Technology protocols and networks constitute the
basis of the PMU networks. Various types of cyber
attacks pose a problem for these kinds of systems
[8] and they may falsify the control center of
SGs by leading to inaccurate control decisions [9].
Learning-based methods [10], X2 detector [11],
and sum detectors [12] are important examples of
detection of these kinds of attacks. Although these
methods effectively detect FDIAs at determined

locations of the SGs, they have not the ability
for localizing the attack and correcting falsified
measurements.

In [13], synchrophasor-based island mode detec-
tion systems are thought of as reliable and fast
detection providers. To handle controlling networks,
phasor data-based controlling for resynchronization
is used [14]. Reported rates of most types of PMUs
generally do not exceed the frequency of electrical
grids, i.e., 50 or 60 Hz, such as relay-embedded
PMUs, SEL standalone [15], and Arbiter 1133A
[16].

Continuously reliable and stable operations in SGs
depend on accurate state estimations. Nevertheless,
synthesized FDIAs wisely circumvent convention-
ally BDD by initiating interim or continuous errors
to state estimation mechanisms to severely damage
the entire network performance and operation. To
protect the system from especially such kinds of
attacks, PMUs are placed at selected locations.
They are generally installed on buses, substations,
and transformers. They are thought of as advanced
measurement units measuring phasor components
of networks. The main capability of PMUs is ob-
taining accurate real-time synchronous phasor mea-
surements in large area networks [17]. They are
accepted as robust systems for attackers. However,
it is not possible to place a PMU on each bus of
the system due to the high budget requirement of
the placement. For this reason, PMU placements
should depend on a strategy. For instance, week
locations especially some buses connected with gen-
erators need more protection. They are vulnerable
to adverse attacks and physical malfunctions. In
[18], the system is observed by installing PMUs
at sparse locations and the remainder non PMU
locations are equipped with SCADA systems. PMU
outputs generally are damaged by these reasons i)
an attacker attempts presented as intentional manip-
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ulations or, ii) digital data processing, information
retrieval stage, and storage can cause unintentional
distortion [19]. However, traffic analysis attacks
[20] and Reconnaissance attacks [21] are significant
examples of such kind of these attack types. Serious
challenges derived from the widespread usage of
PMUs and the cyber security of communication net-
works are explained in [21]. System communication
from IP addresses or open ports of PMUs and PDCs
is captured by attackers. Furthermore, falsified data
from the system is injected as correct data.

Synchronized PMUs play key roles to detect
FDIAs and protect SG systems. Authors in [22],
the Margin Setting Algorithm is used for FDIA
detection based on PMU data. In the study, FDIA
is built as a time and playback attack: in a time
attack, measurements are resampled while in a
playback attack, they are played back in reverse.
Nevertheless, traditional defense strategies against
FDIA are not organized by taking into account
data challenges that emerged from the geographi-
cally large deployment of PMUs. Large-scale data
generated by PMUs cause real-time computational
and storage difficulties [23]. Against this challenge,
machine learning models for the detection of FDIAs
give highly satisfying results. These models are
implemented to supply cyber security for SGs and
sensor networks [24], [25]. The main reason for the
high usage of this kind of approach depends on the
fact that cyber security has become more complex
and sophisticated than before. In this case, manual
and traditional based models give no longer have
accurate results [26].

By taking into account the Supervisory control
data system, an approach that depends on sparse
optimization is proposed to detect FDIA [27]. Dif-
ferent attack strategies against PMUs and Remote
Terminal Units are discussed in [28]. To recover
falsified measurements of PMUs, Alternating Di-

rection Method of Multipliers is selected in [29].
This method can be used in larger networks but the
selected parameters can change the accuracy of the
recovery of the measurement.

Generally, the usage of PMUs in SGs aims to
reduce the vulnerability of the grids against cyber
attacks. However, some recent studies show that
PMUs are not entirely in safe condition against the
novel FDIAs [29], [30].

SG system operators monitor and control the
system’s state for the reliable and safe operation
of the system. Measurements of power flow are a
key underlying operation for the control system.
From meter measurements, they give the system
state variables. Bus voltage angles and magnitudes
are the state variables. The quality of PMU voltage
measurements is superior than traditional measure-
ments. Therefore, active/reactive power injection
and flow measurements, and PMUs measurements
are different in the weighted least square algorithm.

1.3. Contributions and Organization

This paper outlines how these specific contribu-
tions of the study models provide better opportuni-
ties to improve the FDIA detection of an SG system.

The objective of this study is to develop a robust
FDIA detection model. The selected dataset consists
of attacked and unattacked events. The contributions
of this paper are presented as follows:

• The selected machine learning models with
PCA is proposed and validated using the se-
lected dataset for binary class classification.

• The study highlights the contributions and bene-
fits of the improvements in the machine learning
models as complex models by adding different
approaches in preprocessing stage.

The paper is organized as follows. In Section
II, the method used to detect FDIA is presented.
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Figure 1. Work-flow of the study.

Section II also describes the selected data and
proposed algorithms implemented. Then, the results
for the FDIA detection system are shown in Section
III. Finally, Section IV summarises the main results
and ideas for the paper.

2. Methodology

As shown in Fig. 1, the methodology process
is composed of important parts, data preprocess-
ing, PCA for reducing the feature dimension, Grid
search for hyperparameter optimization, implemen-
tation of the selected models, and evaluation of
the models’ results based on the statistical metrics.
More details of this benchmark are explained below.

2.1. Description of case study

Time-synchronized data consists of PMU mea-
surements and the status of the devices. It enables
monitoring of the SG system state. Synchrophasor
technology contributes to the safety of the cyber-
physical environment for the data flow of the SG
system. The data used in this study is taken from
open-source simulated power system data [31].

The system has 4 synchrophasors measuring 29
features each for 116 PMU measurements. Three

different log types exist relay logs, snort logs, and
control panel logs for each PMU for an additional
12 features and 128 features in total. Table I presents
a short description of each PMU and the extracted
features [32].

Table 1.
Feature Description of The PMU Dataset [31].

Feature Description
PM1 : V - PM3 - V Magnitude of Voltage in A - C Phase
PA1 : VH - PA3 : VH Phase Angle of Voltage in A - C

Phase
PM4 : I - PM6 : I Magnitude of Current in A - C Phase
PA4 : IH - PA6 : IH Phase Angle of Current in A - C

Phase
PA7 : VII - PA9 : VII Phase Angle of Zero, Neg., Pos.,

Voltage
PA7 : V - PA9 : V Magnitude of Zero, Neg., Pos., Volt-

age
PA10 : VH - PA12 : VH Phase Angle of Zero, Neg., Pos.,

Current
PA10 : V - PA12 : V Magnitude of Zero, Neg., Pos., Cur-

rent
F Frequency for relays
DF Frequency Delta for relays
PA:Z Apparent Impedans seen by relays
PA:ZH Apparent Impedans Angles seen by

relays
S Status Flag for relays

The dataset [31] includes thousands of measure-
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ments throughout the SG. In the selected PMU
dataset, each sample is labeled as “No attacked” and
“Attacked”. The classification scheme is simple to
discriminate the instances of samples. The scenario
is run sequentially, the integrated PCA and selected
machine learning models perfectly classify the data.

2.2. Mathematical background of PCA

Kernel principal component analysis (kernel
PCA) is defined as a nonlinear extension of PCA in
[33]. In that study, the method of PCA is presented
as having high efficiency in two real-world data sets:
breast-cancer cytology, handwritten digits and two-
dimensional synthetic distributions. In [34], PCA is
combined with a short-term wind power prediction
model based LSTM model to reduce the data di-
mension. Reducing initial variables’ dimensionality
is the main purpose of the PCA. Input vectors of
PCA is represented as r = [r1, r2, ..., rm] and each
vector includes n features. Feature space S and the
mapping function f can be expressed as follow [35]:

f : rϵRn → f(r)ϵS (1)

The covariance matrix represented as C of f(ri)

is computed by using (2) when the equation of
Σm

i=1f(ri) equals to 0.

C =
1

m
Σm

i=1(f(ri)−mean)(f(ri)−mean)T (2)

The C with nonnegative λ called eigenvalues can
be diagonalized where mean = 1

m
Σm

i=1f(ri). The
following equation should be satisfied with values
of the λ.

Cr = λir (3)

Each eigenvector r of C is easily expanded by
a linearly expression, the expansion of each eigen
vector r of C is seen in (4).

r = aiΣ
m
i=1f(ri) (4)

To calculate the quotiety ai, a kernel matrix K

with size mxm is defined and its elements are
computed as following:

Kij = f(ri)
Tf(ri) = f(ri).f(rj) = k(ri, rj) (5)

The two vectors’ inner product in space S is
k(ri, rj) =< f(ri), f(rj) >. The kernel matrix K

is substituted with K ′ called the Gram matrix as
value of projected dataset f(ri) is not zero mean.
K ′ is expressed as in the following:

K ′ = K −MK −KM +MKM (6)

The M matrix has mxm dimension and consists
of 1

m
elements. To calculate the eigen value problem

in (3), K ′ is updated in (7).

K ′a = mλa (7)

The orthonormal eigen vectors of K regarding to
the p highest positive eigenvalues λ1 ≥ λ2 ≥ .... ≥
λp are the vectors of a. Therefore, ri is names as
the orthonormal eigen vectors of C expressed in the
(8).

ri =
1√
λi

f(ri)ai (8)

rnew called mapping function and rnew for a new
vector sample to the feature space is represented as
f(rnew). The projection of rnew onto eigen vectors
ri is calculated by (9):
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t = (r1, r2, ..., rp)
Tfnew (9)

The ti that is ith transformed feature of kernel
PCA is computed as the following:

ti = rTi f(rnew) =
1√
λi

aTi k(ri, rnew) (10)

In an attempt to construct the kernel matrix, train-
ing data will be used. Until this time, various types
of kernel functions are proposed in many studies in
the literature. Generally, the most preferred kernel
function is the Gaussian kernel function. In this
study, it is selected as the kernel function defined
as follow:

k(x, y) = e−|x−y|2/2.σ2

(11)

2.3. Machine Learning Classification with PCA

In this study, the main objective is to further
observe whether the defined projections based on
PCA delivers a separable space of attacked and
normal (with contingencies) samples. The FDIA
detection procedure depends on a binary classifi-
cation algorithm. Five different machine learning
models that are effectively used in literature are
implemented to solve this problem.

From this dataset, each feature is involved in
the preprocessing. Missing data patterns including
the null values in some features describe which
value is missing and observed in a dataset. As
discussed in [36], there is no standard procedure for
missing data patterns in the recent literature. Data
preprocessing is a combination of important steps
to obtain high-quality data, including data cleansing
and data sampling. In the preprocessing, based on
the three missing data patterns which exist mostly
in the studies that are non-monotone, univariate, and

monotone [37]. Data is analyzed to indicate whether
missing data and unrelated parameters are in the
measurements. During this process, we also perform
normalization on all datasets. In the training phase,
attack detection is used to generate a classifier based
on the selected models, which preserves the attack
feature of input vectors and classifies the attack from
normal data. After training, the classifier is used to
detect the attacked values.

2.3.1 Support Vector Machine

Support vector machine (SVM) has a strong learn-
ing and generalization ability, so it is generally
used to solve classification problems. To separate
a given set of binary labeled data, a hyperplane
which is maximally distant from samples, i.e. with
maximized margin is drawn [38].

{
wTϕ(si) + b = 1, yi = +1

wTϕ(si) + b = −1, yi = −1
(12)

Each sample in the data is represented as si.
ϕ can be defined as a projection function of
si into a linearly separable space and a normal
orthogonal vector to the hyperplanes is also
represented as w. In this study, where σ is a
scaling parameter, a Gaussian kernel realized
as ϕ(s.s′) = exp(−||s − s′||2/2σ) is considered
as a projection function. By minimizing the
reciprocal while maintaining yi(w

Tϕ(si) + b) ≥ 1

∀i, the distance between the two hyperplanes (i.e.
margin = 2/w2) in (12) is maximized to enable
a decent classification process by using additional
offset constant b.
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2.3.2 K-Nearest Neighbours

k-nearest neighbor (kNN) is a well-known classi-
fication algorithm. The main function of this clas-
sifier is to assign a sample to the nearest possible
class of K neighbors (i.e., either normal or attacked
labeled measurements) [39]. In spite of its simple
structure, classifier has proven high accuracy in
complex classification problems.

dij = ||si − sj||, sjϵS (13)

where si and s correspond to unlabelled and
prelabeled samples respectively. Based on the
majority of neighbours, data is classified for k > 1.
Various k values are tested and cross validated to
increase the implementation accuracy.

2.3.3 Logistic Regression

In linearly separable data calculations, logistic
regression (LR) is a classification model which has
generally high certainty. It develops an idea from
the statistic field where a logistic model is used to
discern probability of an event or true/false class.
This algorithm can also be used in multiple classes
of events. The sum of all probabilities is unity.
Thus in the dataset is assigned a value between 0
and 1. Based on maximum likelihood estimation,
LR algorithm coefficients are determined from the
training step which is done. The best coefficients
are accumulated and the model estimates a value. It
is for the default class if the value is very close to
1. Otherwise, for the other class, the value is very
close to 0 [40].

2.3.4 Decision Tree

To solve complex classification problems, DT is
a powerful machine learning algorithm. Therefore,
its learning capability is successfully applied to
fulfill classification and complex regression tasks in
different domains of islanding detection, intrusion
detection, transient stability, power systems, and cy-
bersecurity [41]. To designate a particular class for
the input, a DT determines all the possible mapping
in feature space. Easier real time implementation
and accurate interpretation are allowed by logical
operations to correlate features with the classes. As
a scenario-based normal/attack state, a binary the
classification problem is addressed using DT.

2.3.5 Random Forest

RF is an ensemble classifier that consists of more
than a single decision tree. Compared to other
traditional classification algorithms, it has low com-
putation error. Significant features, minimum node
size, and constructed trees are used for splitting each
node. There are some advantages of RF presented
in the following [42]:

1) For future reference, generated forests can be
saved.
2) RF overcomes the overfitting problem.
3) Variable importance and accuracy are
automatically generated.

The best node is selected to split by applying
randomization when constructing individual trees
in RF. RF generates multiple noisy trees affecting
wrong decisions and accuracy for new samples.

2.4. Hyperparameter Optimization

Hyperparameter optimization has high impor-
tance for performance of machine learning models
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due to controlling the progression of the train-
ing phase. There are various hyperparameter op-
timization methods such as Grid search, Bayesian
optimization, Random search, and Manual search.
In this study, Grid search method is selected to
optimize the hyperparameters.

The Grid search algorithm is widely chosen to
identify hyperparameter configuration space and
shows possible optimum values of hyperparame-
ters [43]. Grid search performs by evaluating the
Cartesian-product of a finite set of values selected
manually. As part of this algorithm, the below steps
are required to fulfill substantially to determine the
global optimums:

• To search and obtain phase scale, the algorithm
is implemented in a large space.

• Based on the search space experience of well-
performed hyperparameter space, the search
space and phase scale are narrowed.

• Step 2 is repeated several times before the
optimum value is determined.

2.5. Evaluation metrics

Based on input data, machine learning classifica-
tion models predict class labels as output. A defi-
nition of True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN) for
binary classification is given from the confusion ma-
trix. The confusion matrix discovers the correct and
incorrectly classified illustrations from the dataset
samples. It consists of four categories shown in
Table 2.

After completion of construction and application
of the models, four evaluation metrics as accuracy,
precision, recall, and F1-score are calculated. They
show the effectiveness and efficiency of models used
in a study. The percentage of total correct predic-
tions is called accuracy. Precision can be defined

Table 2.
The Confusion Matrix of Binary Classification.

Actual class Predicted class
Normal Attack

Normal TN FP
Attack FN TP

as a percentage of correct positive predictions. A
percentage of positive labeled instances predicted
as positive is called recall. F1-score is a weighted
average of recall and precision. The following met-
rics derived from the confusion matrix are used to
evaluate the models in this study [40].

1. Accuracy = (TP + TN) / Total

2. Precision = TP / (FP + TP )

3. Recall = TP / (TP + FN)

4. F1 - score = 2 TP / (2 TN + FP + FN)

3. Implementation and Result Analysis

3.1. Application Effect of PCA with the Ma-
chine Learning Models

The selected dataset consists of PMU current
measurements, snort log, control panel log, and
relay trip status. The information on SG operating
conditions is read by an intrusion detection system
to monitor the working conditions of the SG sys-
tem. This study presents a machine learning-based
fault diagnosis and also system monitoring in SGs.
Many valuable approaches and technics have been
proposed related to this issue.

In this study, the algorithm of PCA is used in com-
bination with various machine learning approaches
such as SVM, kNN, LR, RF, and DT. FDIA detec-
tion is performed via PCA and selected algorithms.
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Table 3.
The machine learning models hyperparameter configuration space.

Model Hyperparameter with search space Optimized Parameter
SVM C : (0.1, 100) C : 0.1

kernel: [linear, rbf] kernel: rbf
gamma: (0.0001, 10) gamma: 0.5

kNN nneighbors: (3,20) nneighbors: 5
leafsize: [1, 5] leafsize: 1
weights: [uniform, distance] weights: distance
algorithm: [balltree, brute, auto, kdtree] algorithm: balltree

LR penalty: [l1, l2] penalty: l2
C: [0.001, 0.01, 0.1, 1, 10, 100, 1000] C:1
maxiter : [1000] maxiter: 1000

DT maxfeatures: [auto, sqrt, log2] maxfeatures: auto
minsamplessplit: (2,16) minsamplessplit: 2
minsamplesleaf : (1,12) minsamplesleaf : 10
randomstate: [42] randomstate: 42

RF criterion: [gini, entropy] criterion: gini
randomstate : [42] randomstate: 42
nestimators: [10, 15, 20] nestimators: 20
minsamplesleaf : [1, 2, 3] minsamplesleaf : 3
minsamplessplit: (3,8) minsamplessplit: 7
maxfeatures: [sqrt, auto, log2] maxfeatures: sqrt

Table 4.
Results of The Hybrid Models with added PCA.

Metrics Single Classifiers Classifiers with PCA
SVM kNN LR DT RF SVM kNN LR DT RF

Accuracy 0.78 0.88 0.73 0.89 0.90 0.85 0.93 0.77 0.91 0.95
Precision 0.91 0.91 0.98 0.91 0.97 0.95 0.95 0.99 0.93 0.97

Recall 0.85 0.92 0.71 0.91 0.92 0.87 0.98 0.75 0.93 0.95
F1 Score 0.89 0.93 0.88 0.93 0.95 0.91 0.95 0.83 0.94 0.97

This study is the beginning of systems to be de-
veloped for FDIA detection and protection systems
and models. The defined approach deals with the
entire time-series data. The dataset has two classes
due to this, there is a simple decision mechanism.
This proposed mechanism can give higher accuracy
by using PCA to reduce the dimension of the inputs.

The effect of hyperparameter optimization on

the detection performance is high and varies by
the algorithm. The performance differences of the
models with PCA are higher than single algorithms.
Although hyperparameter optimization certainly in-
creased the detection performance for SVM, kNN,
and RF, in that case, the increment rate depends on
the characteristics of the dataset and the meaningful
defaults of the respective algorithm. Table 3 shows
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Figure 2. The comparison of the machine learning models using AUC-ROC Curve.

the hyperparameters with search space and their
optimized values.

The main idea of the SVM transform the data
to higher dimensional feature space and draw an
optimal hyperplane maximizing the margin between
the two classes. Based on the idea of proximity,
kNN presents good performance and its optimized
hyperparameters enhance its predictive ability. Al-
though LR has not had a well-performed result, the
grid search effect can be seen most in this model.
However, most models have promising results apart
from the LR model based on the AUC-ROC compar-
ison seen in Fig.2. RF model gives the highest AUC-

ROC rate and the results are 0.90. In addition, the
least AUC-ROC results are obtained by LR and the
results are 0.78. The results show that Grid search
has an immense effect to improve the results.

The statistical results of the classifiers are shown
in Table II. The evaluation of the learners is ob-
served while accuracy gives a general indication of
model performance. Based on the rate of detection
accuracy, the model comparison is made. Compara-
tive results are obtained by testing the PCA+SVM,
PCA+kNN, PCA+LR, PCA+DT, PCA+RF algo-
rithms. According to four different evaluation cri-
teria which are precision, recall, F measure, and
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accuracy, RF has the highest results. LR has the
lowest accuracy and implementation performance
compared. In this study, the number of samples is
increased during the implementations. And then the
results are observed in detail. In general, more sam-
ples need more computing time but give more real-
istic results. Between the four approaches, SVM has
a stable increase in performance but another three
approaches which are DT, kNN, and, RF surpass
its performance when more amount of additional
data are added. The discriminant function of some
steps overlaps other functions because the main
theory of SVM assumes a hyperplane separating
the data points. Thus, under such inputs, it is dif-
ficult to obtain maximum performance from linear
SVM. Therefore, it is concluded that for the binary
classification of FDIA, the most convenient method
among these selected approaches is combining RF
with PCA.

The block diagram of the real-time FDIA de-
tection scheme used in the explained approach is
shown in Figure 1. An expert system can be con-
structed with these models to anticipate FDIA more
effectively. Afterward, this investigation with ex-
ceeding calculations as PCA is all the more precise
with kNN and RF calculations in the future.

The studied PCA-based machine learning mod-
els are compared with other recent detection ap-
proaches. Also, considering that the datasets are
collected from a wide variety of dimensions of SG
systems. For different system layers and networks,
detection rates of the recent studies are between 90
and 99% [44], [45]. Deep learning methods and
SVM are highly used model for FDIA detection
and has different performances in FDIA detection
in various studies [46], [47]. For 13-bus and 123-
bus systems, the SVM model [48] presents a worse
performance with a detection accuracy of less than
80% and kNN method [49] has better performance.

In [49], the proposed model also reduces noise
on disturbances and the masking effect of the os-
cillatory trends. In [50], an improved ANN-based
classification model using softmax layer and en-
sembling supplies an effective training. This model
achieves a 92% accuracy rate. In [51], knowledge
discovery in databases process based on ANN is
proposed. As overall 87.17% classification accuracy
is achieved for the classification of fraudsters and
non-fraudsters, for low-voltage consumers. In [52],
for electricity theft detection, a combination of long
short-term memory and convolutional neural net-
work is used and reaches 89% accuracy. As a result,
the studied model surpasses the performances of
many existing approaches in the literature. However,
the superiority of the proposed model compared
with other models will give a more accurate result
for the PMU dataset of the same system.

4. Conclusion

In conclusion, as machine learning models are
very promising to detect the FDIA for safety-
critical power networks, hybrid models can also
be their primary FDIA detection mechanism. In
this paper, PCA method combinations are presented
and tested by using a labeled dataset. The main
objective of this implementation is to present the
performance of some machine learning models by
integrating the PCA algorithm. It can be seen
that the selected models give high-accuracy results
but it is just a classification determining whether
there is an event or not. The results show that
attack detection is easily actualized but the current
problem is to classify multi-labeled measurements
which different kinds of cyber-attacks and power
system disturbances. Ideas about FDIA detection
and discrimination of the attacks will be proposed
in the following studies. Furthermore, multi-labeled
measurements which mean different cyber attacks
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and power system disturbances will be studied.
This study and its complementary studies are to be
carried out in the future, both physical and cyber
structures of SG systems will be taken into account
by making a detailed analysis to develop effectively
FDIA detection mechanisms.
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