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Abstract

We consider fractional integro-differential equations with boundary conditions and prove some differential inequalities related to given
problem with the aid of technique of upper and lower solutions. We require these theorems because they serve as the basis for improvement
of monotone iterative technique to such type of differential equations of boundary value problems.
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1. Introduction

The notions of the classical derivative and integral of integer order are generalized in the field of fractional calculus. The benefit and
significance of using the fractional operators to simulate many physical processes across a range of disciplines have been revealed [9],[10],[6].
Theory of fractional differential equations has received a great deal of attention due to the fact that it is far more comprehensive than the
theory of conventional ordinary differential equations. In recent years, there has been a substantial progress in the study of fractional
differential equations as well as an increasing interest in this field. Following a survey of the literature, we identify several recent works on
fundamental theoretical concepts including existence and uniqueness theorems for fractional differential equations, differential and integral
inequalities and so on. See [1],[12],[4],[5],[3],[13],[14] and the references therein.
In this work, we improve some results in [14] related to fractional differential inequalities by means of the method of upper and lower
solutions.

2. Mathematical Preliminaries

In this section, we recall some useful definitions and basic results to set up the main section.

Definition 2.1. [9] (Left and right Riemann-Liouville fractional integrals).
Let [a,b]⊂R, Re(α)> 0 and f ∈ L1[a,b] . Then the left and right Riemann-Liouville fractional integrals Iα

a+ and Iα

b− of order α are given by

Iα
a+ f (x) =

1
Γ(α)

x∫
a

f (t)dt

(x− t)1−α
, x ∈ (a,b]

and

Iα

b− f (x) =
1

Γ(α)

b∫
x

f (t)dt

(t− x)1−α
, x ∈ [a,b)

respectively.

Definition 2.2. [9] (Left and right Caputo fractional derivatives) Let [a,b]⊂R, Re(α) ∈ (0,1) and f ∈ L1[a,b]. The left and right Caputo
fractional derivatives of order α are

∀x ∈ (a,b],c Dα
a+ f (x) := I1−α

a+ D f (x)
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and

∀x ∈ [a,b) ,c Dα

b− f (x) :=−I1−α

b− D f (x)

respectively.

Let F ∈C [J×R×R+,R], u ∈C1 [J,R] , J = [0,T ]. We consider the following fractional boundary value problem.

CDq1 u(t) = F (t,u(t) , Iq2 u(t)) , g(u(0) ,u(T )) = 0 (2.1)

where 0 < q2 ≤ q1 < 1 and g ∈C[R2,R]. From now on, the fractional operator CDq stands for the left Caputo fractional derivative as well as
Iq represents the left Riemann Liouville fractional integral operator.

Definition 2.3. [10] Let α,β ∈C1[J,R]. Then α and β are said to be
(i) natural lower and upper solutions of (2.1) respectively if

CDq1 α (t) ≤ F(t,α,α), g(α (0) ,α (T ))≤ 0
CDq1 β (t) ≥ F(t,β ,β ), g(β (0) ,β (T ))≥ 0

(ii) coupled lower and upper solutions of type I of (2.1) respectively if

CDq1 α (t) ≤ F(t,α,β ), g(α (0) ,α (T ))≤ 0
CDq1 β (t) ≥ F(t,β ,α), g(β (0) ,β (T ))≥ 0

(iii) coupled lower and upper solutions of type II of (2.1) respectively if

CDq1 α (t) ≤ F(t,β ,α), g(α (0) ,α (T ))≤ 0
CDq1 β (t) ≥ F(t,α,β ), g(β (0) ,β (T ))≥ 0

(iv) coupled lower and upper solutions of type III of (2.1) respectively if

CDq1 α (t) ≤ F(t,β ,β ), g(α (0) ,α (T ))≤ 0
CDq1 β (t) ≥ F(t,α,α), g(β (0) ,β (T ))≥ 0

Lemma 2.4. [10] Let m ∈C1 [J,R] and assume that m(t1) = 0 for t1 ∈ (0,T ] and m(t)≤ 0 for 0≤ t ≤ t1. Then we have CDqm(t1)≥ 0.

As is well known, Laplace transform method is one of the useful technique for solving some initial value problems. Having utilized this
technique, the given problem is converted to an algebraic equation. In this context, the next lemma is crucial and gives the inverse Laplace
transform of given function.

Lemma 2.5. [7] Let α ≥ β > 0, α > γ, a,b ∈ R, sα−β > |a| and
∣∣∣sα +asβ

∣∣∣> |b|. Then we get

L −1

{
sγ(

sα +asβ +b
)}= tα−γ−1

∞

∑
n=0

∞

∑
k=0

(−b)n (−a)k (n+k
k
)
tk(α−β )+nα

Γ(k (α−β )+(n+1)α− γ)

We must establish the following Lemma, which gives the solution of the given linear fractional initial value problem. As a new result, it
admits the corresponding result in [8] as a special case.

Lemma 2.6. Assume that λ ∈ C1 [J,R] , 0 < q2 ≤ q1 < 1 and L1,M1 ∈ R. The explicit solution of the following linear fractional
integro-differential equation,

CDq1 λ (t) = L1λ (t)+M1Iq2 λ (t) ,λ (0) = λ0 (2.2)

is given by

λ (t) =
∞

∑
n=0

∞

∑
k=0

(M1)
n (L1)

k (n+k
k
)
tq1(n+k)+nq2

Γ(q1 (n+ k)+nq2 +1)
λ0.

Proof. If we apply the Laplace transform on both side of the equation (2.2), we find the following relations

L
{

CDq1 λ (t)
}

= L1L {λ (t)}+M1L {Iq2 λ (t)}

sλ (s)−λ0

s1−q1
= L1λ (s)+M1

λ (s)
sq2

sq1 λ (s)− sq1−1
λ0 = L1λ (s)+M1λ (s)s−q2

λ (s)
(
sq1 −L1−M1s−q2

)
= sq1−1

λ0

λ (s) =
sq1−1

sq1 −L1−M1s−q2
λ0

λ (s) =
sq1+q2−1

sq1+q2 −L1sq2 −M1
λ0
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At this point, by using the inverse Laplace transform in Lemma 2.5, we arrive at

L −1 {λ (s)} = L −1
{

sq1+q2−1

sq1+q2 −L1sq2 −M1

}
λ (t) = tq1+q2−(q1+q2−1)−1

∞

∑
n=0

∞

∑
k=0

(M1)
n (L1)

k (n+k
k
)
tk(q1+q2−q2)+n(q1+q2)

Γ(k (q1 +q2−q2)+(n+1)(q1 +q2)− (q1 +q2−1))
λ0

=
∞

∑
n=0

∞

∑
k=0

(M1)
n (L1)

k (n+k
k
)
tkq1+n(q1+q2)

Γ(kq1 +(n+1)(q1 +q2)− (q1 +q2−1))
λ0

=
∞

∑
n=0

∞

∑
k=0

(M1)
n (L1)

k (n+k
k
)
tkq1+n(q1+q2)

Γ(kq1 +n(q1 +q2)+1)
λ0

=
∞

∑
n=0

∞

∑
k=0

(M1)
n (L1)

k (n+k
k
)
tq1(n+k)+nq2

Γ(q1 (n+ k)+nq2 +1)
λ0

provided that sq1 > |L1| and
∣∣sq1+q2 −L1sq2

∣∣> |M1|

3. Main Results

We are able to provide some differential inequalities via upper and lower solutions of (2.1)

Theorem 3.1. Let α and β be natural lower and upper solutions of (2.1). Moreover following condition holds

F (t,u1 (t) ,v1 (t))−F (t,u2 (t) ,v2 (t))≤ L(u1−u2)+M (v1− v2) (3.1)

L,M ≥ 0, whenever u1 ≥ u2,v1 ≥ v2.
Then we have α (t)≤ β (t) provided α (0)≤ β (0) .

Proof. We first set βε (t) = β (t)+ ελ (t) for ε > 0, where

λ (t) =
∞

∑
n=0

∞

∑
k=0

(M)n 2k (L)k (n+k
k
)
tq1(n+k)+nq2

Γ(q1 (n+ k)+nq2 +1)
.

is taken as a unique solution of the equation

CDq1 λ (t) = 2Lλ (t)+MIq2 λ (t) , λ (0) = 1 (3.2)

Notice that βε (0) = β (0)+ ελ (0)> β (0) and βε (t)> β (t) for 0≤ t ≤ T . If we differentiate βε (t) in terms of Caputo’s sense , we get

CDq1 βε (t) = CDq1 β (t)+C Dq1 ελ (t)

≥ F (t,β (t) , Iq2 β (t))+2Lελ (t)+MεIq2 λ (t) (3.3)

Since βε (t)> β (t) on J, we can use the Liphitzlike inequality in (3.1) such that

F (t,βε (t) , Iq2 βε (t))−F (t,β (t) , Iq2 β (t))≤ L(βε −β )+MIq2 (βε −β )

which leads to

F (t,β (t) , Iq2 β (t))≥ F (t,βε (t) , Iq2 βε (t))−Lελ (t)−MεIq2 λ (t) (3.4)

If we substitute (3.4) into (3.3), we have

CDq1 βε (t) ≥ F (t,β (t) , Iq2 β (t))+2Lελ (t)+MεIq2 λ (t)

≥ F (t,βε (t) , Iq2 βε (t))−Lελ (t)−MεIq2 λ (t)+2Lελ (t)+MεIq2 λ (t)

= F (t,βε (t) , Iq2 βε (t))+Lελ (t)

> F (t,βε (t) , Iq2 βε (t)) (3.5)

We aim to prove α (t)< βε (t) on t ∈ [0,J], which completes the proof by letting ε −→ 0. Suppose that α (t)< βε (t) on t ∈ [0,J] is not true.
Then there would exists a t1 ∈ J such that α (t)< βε (t) for 0≤ t < t1 and α (t1) = βε (t1).
By composing m(t) = α (t)−βε (t), it is found that m(t)≤ 0 for 0≤ t < t1 and m(t1) = 0. This results in CDq1 m(t1)≥ 0, on account of
Lemma 2.4. It then follows that

F (t1,α (t1) , Iq2 α (t1)) ≥ CDq1 α (t1)≥C Dq1 βε (t1)> F (t1,βε (t1) , Iq2 βε (t1))

giving rise to a contradiction because of the fact that α (t1) = βε (t1). Then the inequality

α (t)< βε (t) ,∀t ∈ J

holds, which means α (t)≤ β (t) on J.
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Theorem 3.2. Let α and β be coupled lower and upper solutions of type I of (2.1). Assume further that following inequalities are satisfied:

F (t,u1 (t) ,v1 (t))−F (t,u2 (t) ,v2 (t)) ≤ L(u1−u2) (3.6)

F (t,u1 (t) ,v1 (t))−F (t,u2 (t) ,v2 (t)) ≥ −M (v1− v2) (3.7)

L,M ≥ 0, whenever u1 ≥ u2 and v1 ≥ v2.
Then α (0)≤ β (0) implies that α (t)≤ β (t) on J.

Proof. We begin by constructing βε (t) = β (t)+ ελ (t) and αε (t) = α (t)− ελ (t) for ε > 0. The function λ (t) is also supposed to be
unique solution of (3.2). It is clear that βε (0) = β (0)+ ελ (0) > β (0) and αε (0) = α (0)− ελ (0) < α (0) imply αε (0) < βε (0). In
addition to that for 0 < t ≤ T we get βε (t)> β (t) and αε (t)< α (t).
Differentiating both sides of βε (t) = β (t)+ ελ (t) leads to

CDq1 βε (t) = CDq1 β (t)+C Dq1 ελ (t)

≥ F (t,β (t) , Iq2 α (t))+2Lελ (t)+MεIq2 λ (t) (3.8)

Since βε (t)> β (t) for 0≤ t ≤ T , we can employ the inequality (3.6) then it yields

F (t,βε (t) , Iq2 α (t))−F (t,β (t) , Iq2 α (t)) ≤ L(βε −β )

F (t,β (t) , Iq2 α (t)) ≥ F (t,βε (t) , Iq2 α (t))−Lελ (t)

Inserting foregoing inequality into (3.8) gives

CDq1 βε (t) ≥ F (t,βε (t) , Iq2 α (t))−Lελ (t)+2Lελ (t)+MεIq2 λ (t)

= F (t,βε (t) , Iq2 α (t))+Lελ (t)+MεIq2 λ (t) (3.9)

On the other side, It is convenient to write

F (t,βε (t) , Iq2 α (t))−F (t,βε (t) , Iq2 αε (t)) ≥ −MIq2 (α−αε )

F (t,βε (t) , Iq2 α (t)) ≥ F (t,βε (t) , Iq2 αε (t))−MεIq2 λ (t)

where since αε (t)< α (t) on [0,T ], we have used (3.7). Now, substituting that inequality in the right hand side of (3.9)

CDq1 βε (t) ≥ F (t,βε (t) , Iq2 αε (t))−MεIq2 λ (t)+Lελ (t)+MεIq2 λ (t)

= F (t,βε (t) , Iq2 αε (t))+Lελ (t)

> F (t,βε (t) , Iq2 αε (t)) (3.10)

follows immediately.
A similar procedure can be applied to αε (t) = α (t)− ελ (t) to achieve the following results

CDq1 αε (t)< F (t,αε (t) , Iq2 βε (t)) (3.11)

on [0,T ]
We next prove that αε (t) < βε (t) on [0,T ]. Contrary to this claim, we presume for a moment that the inequality is not true and, setting
m(t) = αε (t)−βε (t) there would exist a point t1 such that m(t1) = 0 and m(t)≤ 0 for 0≤ t < t1. We get at once CDq1 m(t1)≥ 0 by Lemma
2.4. Obviously, it causes a contradiction. Then, it should has been

αε (t)< βε (t)

on J. Finally, letting ε −→ 0, we reach at

lim
ε−→0

(α (t)− ελ (t)) ≤ lim
ε−→0

(β (t)+ ελ (t))

α (t) ≤ β (t) ,

for t ∈ J, ending the proof.

Theorem 3.3. Let α and β be coupled lower and upper solutions of type II of (2.1). Additionally, following inequalities

F (t,u1 (t) ,v1 (t))−F (t,u2 (t) ,v2 (t)) ≥ −L(u1−u2) (3.12)

F (t,u1 (t) ,v1 (t))−F (t,u2 (t) ,v2 (t)) ≤ M (v1− v2) (3.13)

hold whenever u1 ≥ u2 and v1 ≥ v2 and L,M ≥ 0 on J.
Then α (0)≤ β (0) implies that α (t)≤ β (t).
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Proof. In that case, for some ε > 0, we compose βε (t) = β (t)+ ελ (t) and αε (t) = α (t)− ελ (t) where the function λ (t) is taken as the
unique solution of the following linear equation

CDq1 λ (t) = 2Lλ (t)+MIq2 λ (t) , λ (0) = 1

which is given by

λ (t) =
∞

∑
n=0

∞

∑
k=0

(M)n 2k (L)k (n+k
k
)
tq1(n+k)+nq2

Γ(q1 (n+ k)+nq2 +1)
.

Taking derivatives in Caputo sense on both sides of constructed functions and using (3.12) and (3.13), we have the following strict inequalities

CDq1 βε (t) > F (t,αε (t) , Iq2 βε (t))

and

CDq1 αε (t) < F (t,βε (t) , Iq2 αε (t))

with αε (t)< βε (t). At this stage we apply proof by contradiction with the help of Lemma 2.4 to show αε (t)< βε (t) on J. As a final step,
performing ε −→ 0, we get the desired result

α (t) ≤ β (t) ,

for t ∈ J, which completes the proof.
To complete the proof, we can utilize the same procedure discussed before. So, we skip over the details of the proof.

Theorem 3.4. Let α and β be coupled lower and upper solutions of type III of (2.1). We also assume that

F (t,u1 (t) ,v1 (t))−F (t,u2 (t) ,v2 (t))≥−L(u1−u2)−M (v1− v2) (3.14)

L,M ≥ 0, whenever u1 ≥ u2,v1 ≥ v2.
Then we have α (t)≤ β (t) provided α (0)≤ β (0) .

Proof. We can use the same technique as before to finish the proof. As a result, we will pass through all of the proof’s details.

4. Conclusions

This paper deals with the extension of some differential inequalities in the literature to fractional integro-differential equations with boundary
conditions. Our main tool to derive the results is the concept of upper and lower solutions, as well as the theory of strict and nonstrict
fractional differential inequalities.These theorems are necessary because they provide the framework for adapting the monotone iterative
technique to such a class of fractional boundary value problem (2.1).
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